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This presentation is based on joint work with

Andu Nica (University of Waterloo).
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Free Multiplicative Convolution

We will use algebraic framework

Dalg = {µ : C[X ]→ C : µ linear, µ(1) = 1}

Operation � on Dalg corresponds to multiplication of free elements in
a noncommutative probability space (A, ϕ):
if µ is the distribution of a ∈ A and ν is the distribution of b ∈ A and
a is free from b, then µ� ν is the distribution of ab.

There are explicit formulas for writing moments of µ� ν in terms of
moments of µ and ν

G = {µ ∈ Dalg : µ(X ) = 1} is a commutative group
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What is the structure of G?

Theorem. (Voiculescu 1987)

S : G ∼→ C[[z ]]×

(multiplicative group of power series with constant term = 1)

Theorem. (Nica, Speicher 1996)

cfn(Rµ�ν) =
∑

π∈NC(n)

cfn;π(Rµ) cfn;K(π)(Rν)

There is also a ‘k-tuples’ analogue of this formula.

Theorem. The above theorem translates into the language of Hopf
algebras.
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Why translate anything into Hopf algebras?

Organize information

Use universal properties such as free, cofree . . .

Algebraic structure theory, e.g., Milnor-Moore Theorem.

Duality: interplay between B and B∗.

Calculus in the convolution algebra: in graded connected seeting all
formal power series are locally finite on certain elements of the
convolution algebra, we can define functions such as exp and log by
their usual power series expansion, they still have the usual properties.

Universality of Qsym and sym; expose connections with other areas of
mathematics.
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Symmetric functions as a graded connected Hopf algebra

sym ⊆ C[[x1, x2, . . . , xn, . . .]]b.

∆: sym→ sym ⊗ sym is an algebra homomorphism given by
∆(f ) =

∑
i f
′
i ⊗ f ′′i , where f ′i and f ′′i are such that

f (x1, x2, . . . ; y1, y2, . . .) =
∑

i f
′
i (x1, x2, . . .)f

′′
i (y1, y2, . . .).

ε : sym→ C is given by ε(f ) = f (1, 0, 0, . . .).

graded by the obvious notion of degree

sym = C[e1, e2, . . .] = C[p1, p2, . . .]

∆(en) =
∑
i+j=n

ei ⊗ ej , ∆(pn) = pn ⊗ 1 + 1⊗ pn.

X(sym) = {f : sym→ C : f an algebra map } is a group under
f ∗ g = mult(f ⊗ g)∆.
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Sym encodes the representation theory of Sn

B =
⊕∞

n=0 Rep(Sn)

ρ · τ = Ind
Si+j

Si×Sj (ρ⊗ τ)

∆(ρ) =
∑
i+j=n

ResSnSi×Sj (ρ).

The isomorphism B → sym is given by
Specht’s module corresponding to partition λ 7→ Schur function sλ.

Character values χλ(µ) can be recovered by expressing sλ’s as linear
combinations of products of pn’s.

Expressing sλsµ as a linear combination of sν ’s encodes the
Littlewod-Richardson Rule.
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Noncrossing partitions
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Symmetric functions yn

For π = {B1, . . . ,Bk} ∈ NC (n) define eπ = e|B1| . . . e|Bk |

Define yn =
∑

π∈NC(n−1)

eπ ∈ sym

y1 = 1, y2 = e1, y3 = e21 + e2, y4 = e31 + 3e1e2 + e3, . . .

sym = C[y2, y3, . . .]

Theorem. (Gessel, 1996) To every poset there corresponds a
quasi-symmetric function. (More precisely, Gessel explicitely describes
a Hopf morphism from Rota’s Hopf algebra of posets to Qsym; this
morphism can now be seen as a special case of the universal
Aguiar-Bergeron-Sottile morphism)

yn are the symmetric functions corresponding to NC (n).
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Parking functions

|PF (n)| = (n + 1)n−1 = |maximal chains in NC (n)|

Parking function representation of Sn: Sn acts on CPF (n) by
permuting the indices

Twisted parking function representation of Sn: twist above by the
sign representation, that is σ(a1, . . . , an) = τ(σ)(aσ1 , . . . , aσn).

Theorem. (Stanley 1997)
Symmetric function of the twisted parking representation of Sn−1
= symmetric function of the poset NC (n)
= yn
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Diagonal Harmonics

Sn acts diagonally on F[x, y] := F[x1, . . . , xn; y1, . . . , yn]

Invariants = F[x; y]Sn

Coinvariants = F[x; y]Sn := F[x; y]/〈F[x; y]Sn+ 〉

Problem: find a nice basis for coinvariants!

Diagonal harmonics =
DHn = {p :

∑n
i=1 ∂

r
xi
∂syip = 0 for all 0 ≤ r , s with 1 ≤ r + s ≤ n}

Fact: DHn is an Sn-invariant subspace of F[x; y] whose projection to
coinvariants is an Sn-equivariant isomorphism.

Problem: find an explicit description for DHn.

Theorem.(Haiman 2001) DHn is isomorphic to the twisted parking
function representation. In particular |DHn| = (n + 1)n−1.
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yn and free multiplicative convolution

Proposition.

∆(yn) =
∑

π∈NC(n)

yπ ⊗ yK(π)

For µ ∈ G define χµ ∈ X(sym) by χµ(yn) = cfn(Rµ).

Theorem. There is an isomorphism between G and X(sym) given by
µ 7→ χµ. There is also a ‘k-tuples’ analogue.

LS transform. Using calculus in convolution algebra we see that
log(χµ) gives rise to a transform LSµ(z) = −z log Sµ(z) ∈ C[[z ]] with
the property that LSµ�ν = LSµ + LSν . LS has a k-tuples analogue
with the property of linearizing products of commuting distributions.
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Free probabilistic definition of yn

We have the following dictionary:

χµ(yn) = cfn(Rµ),

χµ(hn) = (−1)n cfn(Sµ),

χµ(en) = cfn(1/Sµ),

χµ(pn) = (−1)n+1n cfn(log Sµ).

An alternative way to define yn is to define them to be the unique
symmetric functions that make this dictionary work.
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Questions

Question. Can you find a nice combinatorial proof for

∆(yn) =
∑

π∈NC(n)

yπ ⊗ yK(π)?

In our paper we present a failry short, but indirect proof using
Minor-Moore Theorem, ‘dictionary’ definition of yn and the
multiplicativity property of the S-transform.

We have a lengthy and cumbersome induction proof using the
recursion

yn =
n∑

m=2

(
em−1 ·

∑
1=i1<i2<···<im=n

yi2−i1 yi3−i2 · · · yim−im−1

)
.
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Questions.

Question. Can we transfer any results/tools between diagonal
harmonics and free probability? For example, can the formula for
∆(yn) tell you anything about diagonal harmonics?

Question. There are results encoding some classical probability into
sym. Can we use these results to find even more connections between
classical and free probability?

Question. In the paper where Stanley proves that yn are twisted
parking symmetric functions, he also also looks at parking symmetric
functions in type B. Is there an analogous result connecting them
with noncrossing partitions of type B? Does this analogous result
extend to cover the coproduct in the Hopf algebra translation of the
free-cummulant formula for � in type B?
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Thank You!
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