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Motivations:
@ unify concepts of noncommutative independence
@ find and understand their relations to random matrices
@ find random matrix models for various distributions

@ construct a unified random matrix ensemble
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Random matrix asymptotics

Q@ If Y(u,n) is a suitable Hermitian random matrix (i.i.d.
Gaussian), it converges under the trace to a semicircular
operator

nILmOO (u,n) = w(u)

@ If Y(u, n) is a suitable non-Hermitian random matrix (i.i.d.
Gaussian), it converges under the trace to a circular operator

lim Y(u,n) — n(u)

n—0
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Aproaches to independent matrices

O free probability and freeness

@ operator-valued free probability and freeness with
amalgamation

© matricially free probability and matricial freeness

Romuald Lenczewski Matricial Freeness and Random Matrices



Voiculescu's asymptotic freeness and generalizations

@ Independent Hermitian Gaussian random matrices converge to
a free semicircular family

{Y(u,n):ve U} - {w(u):ue u}

@ Independent Non-Hermitian Gaussian random matrices
converge to a free circular family

{Y(u,n):ue U} - {n(u) :ue u}

© Generalization to non-Gaussian matrices by Dykema.

@ Asymptotic freeness with amalgamation of band matrices
(Gaussian independent but not identically distributed) by
Schlakhtyenko.
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Matriciality

@ Random matrix is a prototype of a noncommutative random
variable, so it is natural to look for a matricial concept of
independence.

@ Replace families of variables and subalgebras by arrays
{Xi,iel} = (Xij)ijes

{Aiie 1} — (Aij)ijes

© Replace one distinguished state in a unital algebra by an array
of states

© = (Wij)ijeJ
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Matricial freeness

The definition of matricial freeness is based on two conditions
@ 'freeness condition’
g0i7j(3132 e a,,) =0

where ay € A, _j, n Keryj, j and neighbors come from
different algebras

@ 'matriciality condition’: subalgebras are not unital, but they
have internal units 1;;, such that the unit condition

lijw=w

holds only if w is a ‘reduced word" matricially adapted to (/,})
and otherwise it is zero.

The definition of strong matricial freeness is similar.
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This concept has allowed us to

o
2]

o

unify the main notions of independence

give a unified approach to sums and products of independent
random matrices (including Wigner, Wishart, free Bessel)

find a unified combinatorial description of limit distributions
(non-crossing colored partitions)

derive explicit formulas for arbitrary mutliplicative convolutions
of Marchenko-Pastur laws

find random matrix models for boolean independence,
monotone independence for two matrices, s-freeness for two
matrices (noncommutative independence defined by
subordination)

construct a random matrix model for free Meixner laws
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On the level of random matrices and their asymptotic operatorial
realizations the idea is that of decomposition:

© decompose random matrices Y (u, n) into independent
symmetric blocks

@ decompose the trace 7(n) into partial traces 7;(n)

© decompose free semicircular (circular) families into matricial
summands

@ prove that these dcompositions are in good correspondence

@ study relations between the summands (matricial freeness )
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Symmetric blocks

Independent symmetric blocks are built from blocks of same color.

Sii(u,n) Sio(u,n) ... Sy.(u,n)
Y (u.n) = Soq(u,n) Soo(u.n)
Sr’l(u, n)
If Y(u,n) is Hermitian, then of course

Sy n) = Sj(u,n) and 57;(u, n) = 5;,i(u, n)

but we want to treat Hermitian and Non-Hermitian cases.
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Decomposition of matrices

Asymptotic dimensions

For any n € N we partition the set {1,2,..., n} into disjoint
nonempty subsets (intervals)

{1,2,...,n} = Ni(n) U ... U N, (n)

where the numbers

i M

n—o0 n

are called asymptotic dimensions .
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Decomposition of matrices

@ decomposition of independent matrices into symmetric blocks

Y(u,n) = 2 Tij(u, n)

i<j
@ decompose free Gaussians into matricially free Gaussians

w(u) = ZM‘J(U)

@ so that they correspond to each other in all mixed moments

nll_)moo Tij(u,n) = w;j(u)
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Three types of blocks

The symmetric blocks are called
© balanced if d; > 0 and d; > 0
@ unbalanced if i =0Adi>00rdi>0Ad; =0
© evanescent if d; =0and d; =0
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Arrays of Fock spaces

Arrays of Fock spaces

Define arrays of Fock spaces

(Ceu( u)) ifi=j
Fijlu) = {fo(ce,,,(u)) i 2

where (i,j) € 7 and v € U, with

(o8]
Fo(H) =CQ@®H and F(H)=CQ® P HE™,

m=1

denoting boolean and free Fock spaces, respectively.
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Matricially free Fock space of tracial type

By the matricially free Fock space of tracial type we understand

M =DM,

j=1

where each summand is of the form

oo
M;=CQ D (‘B (‘D }—i?,iz(ul) ... ®~7:i,(,]1,j(um)7

m=1 (il’i27u1)7é"'¢(im’j7u"7)

where Fig(u) is the orthocomplement of CQ; j(u) in F; j(u).
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Creation operators

Definition

Define matricially free creation operators on M
pij(u) = ajj(u)T™ (e j(u))T
where 7 is the canonical embedding in the free Fock space
T: M — F(H)
over the direct sum of Hilbert spaces

M = @D Ce;;(u)

ij,u

with the vacuum space (—szl CQ; replacing the usual CQ.
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Toeplitz-Cuntz-Krieger algebras

Relations

If we have one square matrix of creation operators (p; ;) and
ajj = 1for all i,j, then they are partial isometries satisfying
relations

r
2 ©ij97j = k0K — @i for any k
j=1

r
Z@t,jpkd =1 for any k
j=1

where g; is the projection onto C2;. The corresponding
C*-algebras are Toeplitz-Cuntz-Krieger algebras .
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Matricially free Gaussians

Arrays of matricially free Gaussians operators
wij(u) = pij(u) + i ;(u)
play the role of matricial semicircular operators

wlﬁl(u) w172(u) wlyr(u)
[w(u)] _ wz,l(u) w 2(u)

wr1(u)

and generalize semicircular operators.
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Decomposition of semicirle laws

The corresponding arrays of distributions in the states {Wy,...,WV,}
from which we build the array (V; ;) by setting V; ; = W

o11(u) kia(u) ... K1r(u)
[o(0)] = fcz,l(u) 022(u)
/ir,l(u)

where o} j(u) is a semicircle law and &; j(u) is a Bernoulli law.
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Symmetrized Gaussian operators

Symmetrized Gaussian operators

We still need to symmetrize matricially free Gaussians and define
the ensemble of symmetrized Gaussian operators

~ wjd(u) if i :j

Wi i(u) = e,
I"l( ) { w;J(u)+w;J(u) lfl;é_/

which give Fock space realizations of limit distributions.
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Asymptotic distributions

Theorem
Under natural assumptions (block-identical variances), the
Hermitian Gaussian Symmetric Block Ensemble converges in
moments to the ensemble of symmetrized Gaussian operators
im 75(n) (T (1. 1) ... Tt 1)) =
wj(@ilyjl(ul) PN oAJ,-me(um))
where uq,...,um € U, and 7j(n) denotes the normalized partial

trace over the set of basis vectors {ej : k € Ny} composed with
classical expectation.
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Free probability version

Theorem [Voiculescul]

Under natural assumptions, the Hermitian Gaussian Ensemble
converges in moments to the ensemble of free Gaussian operators

lim 7(n)(Y(u1,n)...Y(um,n)) = ®(w(ur)...w(um))

n—o

where vy, ..., un € U, 7(n) denotes the normalized trace composed
with classical expectation and @ is the vacuum vector.

Romuald Lenczewski Matricial Freeness and Random Matrices



Asymptotic distribution

Symbolically

Under the partial traces and under the trace, we have

n“—>moo T,-J(u, n) = @,'J(u)

which is a block refinement of

lim Y(u,n) =w(u)

n—oo

under the trace in free probability.
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Asymptotic distribution

Symbolically

The general formula reduces to
Q T, j(u,n) — @jj(u) if block is balanced
@ T;j(u,n) — wjj(u) if block is unbalanced, j =0 A i >0

© T j(u,n) = wji(u) if block is unbalanced, j >0 A p=0
Q T j(u,n) — 0 if block is evanescent

simply because o q(u) may vanish.
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Combinatorics

Colored non-crossing pair partition

We color blocks 71, ..., 7, of a non-crossing pair partition 7 by
numbers from the set {1,2,...,r}. If we denote the coloring
function by f, we get

(m,f) ={(m1,f),....(mm, )}

the collection of colored blocks. We add the imaginary block and
we also color that block. |
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Let a real-valued matrix B(u) = (b;j(u)) be given for any u € [t].
Limit mixed moments can be expressed in terms of products

bg(m,f) = bg(m1,f) ... bg(mk,f)
where by is defined on the set of blocks as
bq(mk, f) = bij(u),

whenever block 7, = {r, s} is colored by i, its nearest outer block
o(my) is colored by j and u, = us = u, where we assume that the
imaginary block is colored by g.
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1 1 2 1
C2 C2 R ] 2 |
| 2 | | 1 | | 2 | | 1 2 |
| | | | | | | |
S LT SRR S B O R
012 3 415 012 3 405 012 3 405 012345867
(m,f1) (m,f2) (m,f3) (0,8)
b2 2b2 1 by 2b21 bz 1b1 2 by 2b22b21
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Convolutions of matrices

Limit distributions can be described in terms of convolutions.

Convolve matricial semicircle laws

according to the rule

pigBuviy =

[,u][V]Z{ pijwvi; ifi#j

where w denotes the Boolean convolution.
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Non-Hermitian case

Symbolically

In the case when the matrices Y (u, n) are non-Hermitian, variances
of Y j(u, n) are block-identical and symmetric, then

lim T;j(u,n) =nij(u)

n—o0

which is a block refinement of

lim Y(u,n) = n(u)

n—o0

under the trace in free probability, where 7(u) are circular
operators.
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Other results

Using the Gaussian Symmetric Block Ensemble and matricial
freeness, we can

o

2]

find limit distributions of Wishart matrices B(n)B*(n) for
rectangular B(n)

prove asymptotic freeness of independent Wishart matrices

find limit distributions of B(n)B*(n), where B(n) is a sum or
a product of independent rectangular random matrices

find a random matrix model for boolean independence,
monotone independence and s-freeness

find a random matrix model for free Bessel laws (and
generalize that result)

produce explicit expressions for moments of free multiplicative
convolutions of Marchenko-Pastur laws
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Embedding products of random matrices

In order to study products of independent random matrices, we
embed them as symmetric blocks Tj j.1(n) of one matrix

0 S 0 ... 0 0
5271 0 5273 A 0 0
0 S3» 0 ... 0 0
Y(n) = ’ .
0 0 0o ... 0
0 0 0o ... 0

built from S; ;. 1(n) and Sj1,j(n), where S; , = S «(n).
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Limit distribution of products

Under the assumptions of identical block variances of symmetric
blocks and for any p € N, let

B(n) = T12(n)T23(n)...

for any n € N. Then, for any k € N,

lim 71(n) ((B(n)B*(n))k> = Pildy, db, ..., dpet)

n—a0

where di, da, ..., dpi1 are asymptotic dimensions and Py's are
some multivariate polynomials.
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Multivariate Fuss-Narayana polynomials

Theorem

The polynomials Py have the form

Pk(dl,...,dp+1) = 2 N(k7j17"'7jp+1) d{ldéZdI{’Tf
it Fjpr1=pk+1

and are called multivariate Fuss-Narayana polynomials since their
coefficients are given by

k=2 K ) (5 ()

If p =1, we get so-called Narayana polynomials .
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Marchenko-Pastur law

Marchenko-Pastur law

The special case of p = 1 corresponds to Wishart matrices and the
Marchenko-Pastur law with shape parameter t > 0, namely

(x—a)(b—x)

2TXx

where a = (1 —4/t)? and b = (1 + +/t)2.

pt = max{1l — t,0}dp + L, 5 (x)dx
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Free convolution of Marchenko-Pastur laws

Corollary 2

If dl/d2 =1, d2/d3 =1p,..., dpfl/dp =tp1, dp+1/dp = tp, then
the moments of the n-fold free convolution of Marchenko-Pastur
laws

Pt X pe, X X py,

are given by

CkPi(di, da, ..., dpi1)

where k € N and Ci's are multiplicative constants.
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Fock space for free Meixner laws

Consider now the special case of the matricially free Fock space
M = Ml @M27

where

o0}
Mp = CQ1@€|—>(H?I‘®H1)7
k=0
e}
My = CQLo @ HS,
k=1

and €1, € are unit vectors, H; = Ce; for j € {1,2}, where e, &
are unit vectors.
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Gaussian operators for free Meixner laws

Use simplified notation

P1 = 021, (2 = 22

for the creation operators associated with constants 3; and (3,
(squares of previously used «; ;) Let

W1 = w21, W2 =Ww22

be the associated Gaussians.
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Moments of free Meixner laws

Theorem

If 1 is the free Meixner law corresponding to (a1, az, 81, 32), where
(1 # 0 and (B> # 0, then its m-th moment is given by

Mpm(p) = V1((w +7)7),
where
W= w1+ w

and
v = (a2 — 01) (B 0105 + B Tp293) + oa,
and W, is the state defined by the vector ;.
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Free Meixner laws

Consider the sequence of Gaussian Hermitian random matrices
Y (n) of the block form

where
© the sequence (D(n)) is balanced,

@ the sequence of symmetric blocks built from (B(n)) and
(C(n)) is unbalanced,

© the sequence (A(n)) is evanescent,
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Free Meixner laws

Theorem

Let 71(n) be the partial normalized trace over the set of first N
basis vectors and let 51 = v 1 > 0 and 52 = vp 5 > 0 be the
variances. Then

lim 71(n) (M(n))™) = VU1((w + 7)™

n—ao0

where
M(n) = Y(n) + a1l (n) + axh(n)

for any n e N, where I(n) = l1(n) + h(n) is the decomposition of
the n x n unit matrix induced by [n] = Ny U Ns.
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Asymptotic conditional freeness

Theorem

The Free Meixner Ensemble
{M(u,n):ue u neN}

is asymptotically conditionally free with respect to the pair of
partial traces (71(n), 2(n)).
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In progress

In progress:

@ construction of random matrix models for a general class of
probability measures

@ new combinatorial results related to the triangular operator
and parking functions of type B

© generalization of asymptotic monotone independence to more
than two matrices

Romuald Lenczewski Matricial Freeness and Random Matrices



Bibliography

M. Anshelevich, Free martingale polynomials, J. Funct. Anal.
201(2003), 228-261.

F. Benaych-Georges, Rectangular random matrices, related
convolution, Probab. Theory Relat. Fields 144 (2009), 471-515.
M. Capitaine, M. Casalis, Asymptotic freeness by generalized
moments for Gaussian and Wishart matrices. Applications to beta
random matrices. Indiana Univ. Math. J. 53 (2004), 397-431.

D. Shlyakhtenko, Random Gaussian band matrices and freeness
with amalgamation, Int. Math. Res. Notices 20 (1996), 1013-1025.
D. Voiculescu, Limit laws for random matrices and free products,
Invent. Math. 104 (1991), 201-220.

Romuald Lenczewski Matricial Freeness and Random Matrices



Papers relevant to this talk

R.L., Matricially free random variables, J. Funct. Anal. 258
(2010), 4075-4121.

R.L., Asymptotic properties of random matrices and
pseudomatrices, Adv. Math. 228 (2011), 2403-2440.

R.L., Rafat Satapata, Multivariate Fuss-Narayana polynomials in
random matrix theory, . Electron. J. Combin. 20, Issue 2 (2013).
R.L., Limit distributions of random matrices, arXiv (2012).

R.L., Random matrix model for free Meixner laws arXiv (2013).

Romuald Lenczewski Matricial Freeness and Random Matrices



