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Outline

» Overview of numerical random matrix theory
» Numerical results
» “Generic’ edge behaviour
» Algorithm:
» Computation of inverse Cauchy transforms
» Recovery of a measure from Its inverse Cauchy transforms

* Finite n: Invariant ensembles + free probability?
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Numerical random matrix theory
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Numerical results
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Numerics can lead to new theorems




Legendre Legendre
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Legendre Legendre

Theorem:
Jacobi measure .
Jacobl measure Square root measure
w/ not too fast | .
. w/ univalent =  w/ univalent Cauchy
decay & univalent
Cauchy transform transform

Cauchy transform
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Legendre Legendre

o SR Holder continuous derivative times Analytic times

/ Jacobi weight semicircle

Jacobi measure
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Gaussian | egendre
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Numerical Free Probability




* [he challenge:
* [he measures typically have square root singularities
* Free probabllity Is a nonlinear operation

* Representing the measures In a bad basis (like Fourier) will be too

computational expensive
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Cauchy—Stieljes transtorm

» Associated with a measure is its Cauchy—Stieljes transform:

Gu(z) = [ —— dutz)

2 b

» This is analytic off the support of the measure

» Because we are working with probability measures, we have

GM(Z):E/ } du(aj)rvl/dlu:l

% % b % &

* Therefore, the Cauchy—>Stieljes transform is invertible near oo
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~ree probability algorithm

e Input: measures g and pup in expansion form

e (utput: uqs ™ up in expansion form

1. Construct scheme to evaluate G, (y) and G .(y) pointwise

2. Recover s pup from pointwise knowledge of

5 2 & 1
G,uj LB (y) S G,uj (y> Bin G,u; (y) 5 g
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~ree probability algorithm

e Input: measures g and pup in expansion form

. Dutput ,uA ,uB in expansion form

1 Construct scheme to evaluate G, (y) and G ( ) polntw1se

8 Recover ,uA ,u “from p01ntw1se knowledge of

G W) =G () + G (y) -

Y
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Numerical Cauchy transforms and their inverse

* We will consider the following three types of measures:

» Point measures
du = 6(xz — xg) dx
» Measures with square root singularities (such as semicircle)

dp = ¥(z)vVz — avb — xdz

» Smoothly decaying measures (such as Gaussian)

dp = ¢Y(x)dx
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Numerical Cauchy transforms and their inverse

dp = 0(x — xg) do

dp = ¥(z)vVz — avb — xdz

—

Assume
= Eolae—

dp = (z) do continuous
derivative
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PoiNt measures

* [rivial;
6(x — xg) 1
= d =
G“(Z) / Z— T 2 Z — X
* [hus the inverse Is:
2 1
G,u, (UJ) = E + X
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Chebyshev series and function approximation




Consider the Joukowski map from the unit circle to the unit interval

Functions analytic inside and outside the unit circle are mapped to
functions analytic off the unit interval
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VWe define four inverses to the Joukowski map:

I e) = s VR LY | JB () — e =V |

JT_l(a:)::zj—H\/l—a:\/l—l—x

L
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For smooth ¥ in

dp = Y(z)vVze — 1vV1 — zdx

we want to find a representation that converges rapidly

We can map to the unit circle and in expand in Laurent series:

sy =v(3(c+1)) = X we

k=—o0

Y(J(€)) is smooth (so ¥ decays fast) and symmetric (so ¥ = ¥ _k)

Thus we get the representation:

W(z) = @)) = D dwdp (@)
k=—0o0
= o+ >k [J]H@)F + I @)
k=1
= o+ ) _ UnTh(z)
=1

where Ty (x) = cos k arccos x is the Chebyshev T polynomial
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* We also need the Chebyshev U series

* Define Ug(x) by
Tl;+1($)

Ukl T

* When mapped to the unit circle this gives

(T (U@

BEI (e s ¢

* Going between Chebyshev I and U expansions Is fast due to:

To(z) = Up(x)
T (z) U12($)

Uk (ZE) = Uk_g(x)
2

Tk (ZE)
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Plemelj's lemma and square root decaying
measures




* We want to calculate G, (z) for

dp = ¥(x)vVe — 1vV1 — zdo

Recall that ¢(z) = —5=G(2) is analytic off (=1, 1), vanishes at oo and satisfies
the jJump:

¢7(z) — ¢~ (z) =¢(z)Vz -1Vl —o

O P S
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+ We have expanded in Chebyshev U series ¥(& Z Uy (@

* A simple calculation shows that

[J;l(x)kﬂr [ (@) = I @) — I ()]

— —2iU(x)V/1 — 22

e So

O

Cu(z) =73 7 (z)H!

k=0

for J;l(x):x—\/x—l\/mqtl
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O R Pl Gl R Gl e

Smoothness implies = —2iU%(z)V/1 — 22
absolute convergence \

Gulor— 7w st e
k=0

for S ) == =/ il
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Inverting the Cauchy transform

* \WWe want to solve
-3 -

* VWe make the transformation back to the unit circle

z:J(C):% <C—I—%> so that Zl%(kH:UJ
k=0

his Is again a polynomial, and reliably solvable using eigenvalues of
companion matrices!
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~ree probability algorithm

e Input: measures g and pup in expansion form

e (utput: uqs ™ up in expansion form

i Recover ua o pup from pointwise knowledge of

= 1
G/‘j KB (y) = G,LLA( ) 0 G ( ) = g
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Recovering endpoints of a square root measure

* Along (b,00) and (a,0), G, is

real and tends to zero u (supp 1)
slEor zin (a,b),
Gl == @l = Cplas— @l
» Because 1t Is real in two different
directions, G;;* has a stationary
point at Gu(a) and Gu(b)
* [hus we can compute them supp 1)

using bisection

Tuesday, 23 July 13



Recovering coefficients of a square root decaying measure

* We have

7}

Whenever w is in the range of G,

* Thus given a sequence of points wx,...,wn In the range of G, we can treat the
problem as a linear least squares problem:

i X v
5 > upd (MG (w)))* = w;
fo=s
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ChOOSiﬂg » We need to choose points that like in the image of G,

W; * Suppose we have a distribution of points y1,...,ym Which cover

(as M tends to o0) a domain which contains the image of Gy as
a subset

« Note that 1

Gpu(u+iv) =/ — dp

(Ve d0im e 1)

Since u — x + 1v s In the upper half plane for v positive,

s —— = 1 =8G lad- ) < 0
u—xr—+ 1

* [hus we choose w; as the y; such that

sgn Sw; # sgn %G;l (w;)
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Finte 7
Free Probability & Invariant Ensembles?
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FiNnte n 1s close to Invariant ensemble
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FiNnte n 1s close to Invariant ensemble

Take as equilibrium measure for new
invariant ensemble Cj,
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FiNnte n 1s close to Invariant ensemble

| =

Take as equilibrium measure for new
invariant ensemble Cj,

4

n=>5 /A{ m}k Calculate spectral density of Cj
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FiNnte n 1s close to Invariant ensemble

| =

Take as equilibrium measure for new
invariant ensemble Cj,

i L fzi;:,;f':;sc/_"-’\ ]
| ,-\; \ \
Wi \ .
=& “/A{ « Calculate spectral density of Cj

Tuesday, 23 July 13



Observation: 1 &~ o0

0.30 7
0.25 7
0.20 7
0.10 7

0.05 :—

n = 00: Free convolution u4 H up Weight with equilibrium measure (4

SR g 2 g 0% , 2 4
ENIEREGIU [ BEUmImeasure of e=* xe™* Convolution e™® %xe™*
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GUE + Quartic 2 point correlation

Monte Carlo Invariant ensemble
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GUE + Quartic 2 point correlation

Monte Carlo Invariant ensemble
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GUE + Quartic 2 point correlation

Monte Carlo Invariant ensemble
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Legendre
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Legendre
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Satisfies Tracy—Wic
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Conclusions

* Free probabllity operations can be accomplished numerically

'he approach can be generalized to mu

'his can lead to a better understanding of free probability

tiple support intervals

» Not clear how to invert Cauchy trans

'orms for multiple support intervals
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