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Motivation: Polynomial Integrals Over ON

Consider the N × N orthogonal group

ON = {g = [gij ] ∈ MN(C)
∣∣g unitary & gT = g∗}

and the basic coordinate functions

vij ∈ C (ON); vij(g) = gij (g ∈ ON , 1 ≤ i , j ≤ N).

Basic Problem
Given any polynomial function

f ∈ Pol(ON) := ∗ − Alg
(
vij : 1 ≤ i , j ≤ N

)
⊂ C (ON),

compute the Haar integral

hON
(f ) =

∫
ON

f (g)dg .

Equivalently, compute all joint moments of random variables

{vij}1≤i ,j≤N ⊂ L∞(ON , dg).



Motivation: Polynomial Integrals Over ON

I The need to compute polynomial integrals arises in many
contexts: random matrices, (free) probability, QIT, physics...

I Bad News: Polynomial integrals over ON are generally hard
to explicitly compute (or even estimate).

I Good News: Often, one is interested in the polynomial
integrals in the large N limit. In this setting, some
simplifications occur. More precisely:

Theorem (Attributed to many)

Let W = {wij}i ,j∈N be an i.i.d. array of N(0, 1) real Gaussian RVs
over a probability space (Ω,P). Then the normalized coordinates
{
√

Nvij}1≤i ,j≤N converge in distribution to G. I.e., for any fixed
k-tuples i , j : [k]→ N,

lim
N→∞

hON

(√
Nvi(1)j(1) . . .

√
Nvi(k)j(k)

)
=

∫
Ω

wi(1)j(1) . . .wi(k)j(k)dP.
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The Free Orthogonal Quantum Group FON

We want to consider a “free version” of ON , denoted by FON .

Define a universal unital ∗-algebra

Pol(FON) := ∗−Alg
(
{uij}1≤i ,j≤N

∣∣U = [uij ] is unitary & U = U := [u∗ij ]
)

Pol(FON) is actually Hopf ∗-algebra with coproduct, counit and
antipode determined by:

∆(uij) =
N∑

k=1

uik ⊗ ukj

ε(uij) = δij

S(uij) = uji (1 ≤ i , j ≤ N).

Pol(FON) together with ∆, ε,S yields a compact quantum group -
the free orthogonal quantum group FON .
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Polynomial Integrals Over FON

Since FON is a compact quantum group, there is a (faithful)
∆-invariant Haar state1:

h = hFON
: Pol(FON)→ C; (h⊗id)∆ = (id⊗h)∆ = h(·)1Pol(FON).

Thus we can talk about polynomial integrals over FON :

For each P ∈ C〈Xij : 1 ≤ i , j ≤ N〉 evaluate hFON

(
P({uij}1≤i ,j≤N)

)
GNS Construction: Put L2(FON) := L2(Pol(FON), h) and

L∞(FON) = Pol(FON)′′ ⊆ B(L2(FON)).

The von Neumann algebra L∞(FON) is completely determined by
the above polynomial integrals.

1h is tracial.



Integrals via Weingarten Calculus
I Fix k ∈ N and let NC2(k) = set of non-crossing pairings of

[k] = {1, 2, . . . , k}.
I For each i : [k]→ N, π ∈ NC2(k), put

δπ(i) =
{1 if i is constant on each block of π

0 otherwise

Example: δt t(i) = 1 iff i(1) = i(2)&i(3) = i(4).
I Finally define a matrix Wk,N ∈ MNC2(k)×NC2(k)(C) by

W−1
k,N = [N#(π∨σ)]π,σ∈NC2(k).

Theorem (Banica-Collins ‘07)

hFON
(ui(1)j(1) . . . ui(k)j(k)) =

∑
π,σ∈N2(k)

δπ(i)δσ(j)Wk,N(π, σ).

Observation: Wk,N(π, σ) = N−k/2(δπ,σ + O(N−1)).



Asymptotic Freeness

Corollary (Banica-Collins ’07)

Let S = {sij}i ,j∈N be a free semicircular system in a finite von
Neumann algebra (M, τ) Then the the normalized coordinates
SN = {

√
Nuij}1≤i ,j≤N converge in distribution to S.

Proof.
Use the asymptotics Wk,N(π, σ) = N−k/2(δπ,σ + O(N−1)):

hFON
(
√

Nui(1)j(1) . . .
√

Nui(k)j(k))

= Nk/2
∑

π,σ∈N2(k)

δπ(i)δσ(j)Wk,N(π, σ) =
∑

π∈N2(k)

δπ(i)δπ(j) + O(N−1)

= #{π | i , j constant on blocks of π}+ O(N−1)

= τ(si(1)j(1) . . . si(k)j(k)) + O(N−1).

Thus the generators {
√

Nuij}1≤i ,j≤N of the von Neumann algebra
L∞(FON) are asymptotically free and semicircular.
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Strong Asymptotic Freeness

Question
Can we say anything more about the mode of convergence of

SN = {
√

Nuij}1≤i ,j≤N −→ S?

Theorem (B. ’13)

SN is strongly asymptotically free and semicircular. I.e., for any
non-commutative polynomial P ∈ C〈Xij : i , j ∈ N〉,

hFON

(
P(SN)

)
−→ τ

(
P(S)

)
& ‖P(SN)‖L∞(FON) −→ ‖P(S)‖L∞(M,τ).

Remark: Using standard C∗-algebraic techniques, a similar result
also holds for matrix-valued polynomials
P ∈ Mk(C)⊗ C〈Xij : i , j ∈ N〉.
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The One Variable Case: Superconvergence of
√
Nu11

The one-variable version of the above theorem was already known.

Theorem (Banica-Collins-Zinn Justin ’09)

Let µN be the spectral measure of
√

Nu11 ∈ L∞(FON). Then

I µN is atomless and suppµN =
[
− 2
√

N
N+2 , 2

√
N

N+2

]
.

I dµN
dt is analytic on

(
− 2
√

N
N+2 , 2

√
N

N+2

)
and converges

uniformly to
√

4−t2

2π = d(semicircle law)
dt .

The proof involves modeling u11 as a certain variable over
Woronowicz’ SUq(2) quantum group (N = −q − q−1), and
exploiting the structure there.



For the Multivariate Setting...
We work with moments. Fix P ∈ C〈Xij : i , j ∈ N〉. Recall that

‖P(SN)‖L∞(FON) = lim
q→∞

‖P(SN)‖Lq(FON),

lim
N→∞

‖P(SN)‖Lq(FON) = ‖P(S)‖Lq(M,τ) (q ∈ 2N).

Consequently, lim infN→∞ ‖P(SN)‖L∞(FON) ≥ ‖P(S)‖L∞(M,τ).

We want: lim sup
N→∞

‖P(SN)‖L∞(FON) ≤ ‖P(S)‖L∞(M,τ).

Proposition (Uniform Lq-L∞ estimates for FON)

For any ε > 0, there is a q = q(P, ε) > 0 such that

‖P(SN)‖L∞(FON) ≤ (1 + ε)‖P(SN)‖Lq(FON) UNIFORMLY in N.

Letting N →∞, q →∞, ε→ 0, we get

lim sup
N→∞

‖P(SN)‖L∞(FON) ≤ ‖P(S)‖L∞(M,τ).
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Uniform Lq-L∞ estimate
We use Vergnioux’s property of rapid decay for the dual quantum
groups F̂ON .

I Inductively define subspaces {Hk}k≥0 of Pol(FON) where

H0(N) = C1, H1(N) = span{uij}1≤i ,j≤N

and Hk(N) = span{H1(N)Hk−1(N)} 	 Hk−2(N) (k ≥ 2).

I Peter-Weyl/“Fock” decomposition (Banica ’95):

Pol(FON) = L2 −
⊕
k≥0

Hk(N).

Theorem (“Property RD” Vergnioux ’07)

Let Pk : Pol(FON)→ Hk(N) be the ⊥-projection. Then there is a
constant DN > 1 (only depending on N) such that for any
k , l , n ∈ N

‖Pk(xy)‖L2 ≤ DN‖x‖L2‖y‖L2 (x ∈ Hl(N), y ∈ Hn(N)).
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For our polynomial P(SN), we have

P(SN) ∈
deg P⊕
k=0

Hk(N)

and property RD + some book-keeping implies

‖P(SN)‖L∞ ≤ DN(deg P + 1)3/2‖P(SN)‖L2 .

Replacing P by (P∗P)m (m ∈ N), we get an L4m-L∞ estimate:

‖(P∗P)m(SN)‖L∞ ≤ DN(deg(P∗P)m︸ ︷︷ ︸
≤2m deg P

+1)3/2‖(P∗P)m(SN)‖L2

=⇒ ‖P(SN)‖L∞ ≤ D
1/2m
N (2m deg P + 1)3/4m‖P(SN)‖L4m (m ∈ N).

To conclude, one just needs to show that

lim
m→∞

D
1/2m
N (2m deg P + 1)3/4m = 1 uniformly in N.

This is established by proving that {DN}N≥3 is bounded.
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Some Applications

I Since strong convergence is stable with respect to taking
reduced free products (Skoufranis ’12), get strong asymptotic
freeness for the free unitary quantum groups FUN from FON .

I Can deduce well known L2-L∞ inequalities for polynomials in
semicircular systems from the corresponding ones for
L∞(FON) given by property RD.


