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Compact Matrix Quantum Groups & Easy QG’s

One possible motivation for quantum groups (C∗-alg. approach)
Symmetries of a (compact) space X : group (G , ○) acting on X
dualization: (C(G),∆) coacting on C(X )
noncommutative version: quantum group coacting on a C∗-algebra

Definition (Woronowicz 87)

Let n ∈ N. A compact matrix quantum group consists of

a unital C∗-algebra A

generated by elements uij , 1 ≤ i , j ≤ n (∗-algebra is dense)

such that u = (uij) and ut = (uji) are invertible

and a ∗-homomorphism ∆ ∶ A→ A⊗min A, uij ↦ ∑k uik ⊗ ukj

Remark: comp. matrix QG ⇒ compact QG, Haar state exists.
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Ex. 1: Orthogonal group On ⊆Mn(C)
↝ free orthogonal quantum group O+

n [Wang 95]

C(On) = C∗(uij ,1 ≤ i , j ≤ n ∣ uij = u∗ij ,uu
t = utu = 1,uijukl = ukluij)

C(O+
n ) ∶= Ao(n) ∶= C∗(uij ,1 ≤ i , j ≤ n ∣ uij = u∗ij ,uu

t = utu = 1)

Note: matrix multiplication ○ ∶ On ×On → On

translates to comultiplication ∆ ∶ C(On)→ C(On)⊗ C(On)

Ex. 2: permutation group Sn ⊆Mn(C)
↝ quantum permutation group S+n [Wang 98]

C(Sn) = C∗(uij ∣ uij = u∗ij = u2
ij ,∑

k

uik =∑
k

ukj = 1,uijukl = ukluij)

C(S+n ) ∶= As(n) ∶= C∗(uij ∣ uij = u∗ij = u2
ij ,∑

k

uik =∑
k

ukj = 1)
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Woronowicz’ Tannaka-Krein result [Woronowicz 88]:
Study intertwiner space of a compact matrix QG G (∀k , l ∈ N0).

HomG(k , l) = {T ∶ (Cn)⊗k → (Cn)⊗l linear ∣ Tu⊗k = u⊗lT}

Idea of indexing the maps T by partitions [Brauer 37].
Let p ∈ P(k, l) be a partition on k upper and l lower points.

Tp(ei1 ⊗ . . .⊗ eik ) ∶= n−
1
2
β(p) ∑

j1,...,jl

δp(i , j)ej1 ⊗ . . .⊗ ejl

We have:

HomOn(k, l) = span{Tp ∣ p ∈ Ppair(k , l)}
HomO+

n
(k, l) = span{Tp ∣ p ∈ NCpair(k, l)}

HomSn(k, l) = span{Tp ∣ p ∈ P(k , l)}
HomS+n (k , l) = span{Tp ∣ p ∈ NC(k, l)}
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Definition (Banica, Speicher 09)

A compact matrix quantum group Sn ⊆ G ⊆ O+
n is called easy (or:

partition quantum group), if

HomG(k , l) = span{Tp ∣ p ∈ C(k , l)}, for all k , l ∈ N0

for a collection C of subsets C(k , l) ⊆ P(k , l), k, l ∈ N0.

The set C is a category of partitions (since HomG is a tensor cat.):

p,q ∈ C ⇒ p ⊗ q ∈ C (horizontal concat., Tp ⊗Tq = Tp⊗q)

p,q ∈ C ⇒ pq ∈ C (vertical concat., TpTq = n−γ(p,q)Tpq)

p ∈ C ⇒ p∗ ∈ C (upside-down, (Tp)∗ = Tp∗)

⊓ ∈ P(0,2) and ∣ ∈ P(1,1) are in C
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Why are easy quantum groups interesting (in free prob.)?

Their combinatorics is given by partitions (all: group case,
noncrossing: free case; but: more than P vs. NC )

Give rise to appropriate symmetries (de Finetti theorems etc.
[Köstler, Speicher, Banica, Curran])

envelopping von Neumann algebras are somehow related
to LFn (G = O+

n ,U
+
n [Vaes, Vergnioux, Banica, Brannan,

Freslon, Isono,...])

stochastic aspects (Diaconis-Shahshahani type results,
distributions of characters etc. [Banica, Curran, Speicher,
Belinschi, Capitaine, Collins,...])
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Classification of easy QG’s

∃! 7 free easy QG’s (categories noncrossing)
[Banica, Speicher 09, W. 13; (Banica, Bichon, Collins 07)]

∃! 6 easy groups (categ. containing // ∈ P(2,2), uijukl = ukluij)
[Banica, Speicher 09]

∃! 3 half-liberated easy QG’s & one infinite series (categories
containing ⨉∣∣ ∈ P(3,3), uijuklust = ustukluij)
[Banica, Curran, Speicher 10, W. 13]

∃! 13 non-hyperoctahedral easy QG’s (∼ categories containing
singletons as blocks) [Banica, Curran, Speicher 10, W. 13]

hyperoctahedral case: [Raum, W. 12 & 13]
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Details on the hyperoctahedral case (joint with Sven Raum)

Let: G easy QG, C associated categ. of partitions, no singletons.
Case 1. [Raum, W. 12]

⊓/−⊓ ∈ C, i.e. uiju
2
kl = u2

kluij .
Obtain a group structure out of C:

Label the blocks of the partitions p ∈ C by letters a1, a2, . . .

Need only those p whith mutually different neighbouring
letters

Obtain a subgroup F (C) ⊆ Z∗∞2 , invariant under certain
endomorphism actions (gh ≃ p ⊗ q, g−1 ≃ p∗, end. actions ≃
pq and others)

Yields lattice isomorphism F between class of such categories
of partitions and certain subgroups of Z∗∞2

⇒ Classification of easy QG = Classif. of those subgroups
(huge class)
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In particular: Lattice injection of the class of non-empty
varieties of groups (uncountably many) into easy QG’s
⇒ easy QG’s form a rich class!

Link to quantum isometry groups/ symmetric reflection
groups: Let H be an “appropriate” subgroup of Z∗∞2 and
consider C∗

max(Z∗n2 /(H)n). The maximal quantum subgroup

of H
[∞]
n (corresponding to the category generated by

⊓/−⊓)
acting faithfully and isometrically on this C∗-algebra is exactly
imposed by the category F−1(H).

Case 2. [Raum, W. 13, coming soon]

⊓/−⊓∉ C, but ////∈ C, i.e.
u2
iju

2
kl = u2

klu
2
ij . (Almost) purely combinatoric.
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Fusion rules of easy QG’s (joint with Amaury Freslon)

Repr.: (uαst) ∈Mnα(C)⊗ C(G) unitary s.t. ∆(uαst) = ∑r u
α
sr ⊗ uαrt

Woronowicz: (uαst) decomposes into a direct sum of irr. rep.’s
uα, uβ irr. rep’s ⇒ uα ⊗ uβ = ∑γ uγ fusion rules (= “group law”)

Fusion rules for S+n and O+
n are known [Banica 90’s], but we can

now treat all easy QG’s uniformly, using partitions!
[Freslon, W. 13, coming soon]

p = p∗ = pp ∈ C(k, k) projective partition ⇒ Tp projection
up ∶= (id⊗ Pp)u⊗k , where Pp ∶= Tp −⋁Tq and q ∈ C(k , k) runs
through all projective partitions s.t. pq = q ≠ p (i.e. q ≺ p)
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In general, up is not irreducible, but Aut(up) ≅⊕α∈J(p)Mnα(C),
where C[SymC(p)] =⊕α∈J(p)∪I(p)Mnα(C), and SymC(p) ⊆ Sm.
S+n ,O

+
n : SymC(p) is trivial, hence up irred.

up ⊗ uq = ∑m um, where m runs through all partitions p ∗h q ∈ C
S+n ,O

+
n : partitions h ∈ NC only of two/one kind

up,uq unitarily equivalent iff p = r∗r ,q = rr∗ for some r ∈ C
iff #{through-blocks(p)} = #{thr.-blocks(q)} ⇒ indexed by N0

S+n : uk ⊗ ul = u∣k−l ∣ ⊕ u∣k−l ∣+1 ⊕ . . .⊕ uk+l−1 ⊕ uk+l
O+

n : uk ⊗ ul = u∣k−l ∣ ⊕ u∣k−l ∣+2 ⊕ . . .⊕ uk+l−2 ⊕ uk+l
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Summary/ work in progress

[W. 13]: On the classification of free (noncrossing partitions),
half-liberated (uijuklust = ustukluij) and non-hyperoctahedral
(“containing singletons”) easy QG’s

[Raum, W. 12]: classification in the hyperoctahedral case I
(uiju

2
kl = u2

kluij , subgroups of Z∗∞2 )

[Raum, W. 13, coming soon]: hyperoctahedral case II
(u2

iju
2
kl = u2

klu
2
ij), completing the classification

[Freslon, W. 13, coming soon]: Fusion rules for all easy QG,
using partitions

[Tarrago, W., work in progress]: Unitary easy QG (uij ≠ u∗ij ,
using colored partitions)
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