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NEF versus CSK families

The talk will switch between two examples of kernel families
K(n) ={Po(dx): 0 € ©}

» Natural exponential families (NEF) :

1 0x
Py(dx) = @e w(dx)
w is a o-finite measure, © = (0_,0.).
» Cauchy-Stieltjes kernel families (CSK):

1 1

Po(dx) = @mﬂ(dx)

1 is a probability measure with support bounded from above.
The " generic choice” for © is © = (0,6,).
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A specific example of CSK

Noncanonical parameterizations

Let p = %(50 + %51 be the Bernoulli measure
» "Noncanonical” parametrization:
> Py = %50 + ﬁél, 0 e (—OO, 1)-

v

"Canonical” parametrization: p = ﬁ
Qp = 'szi =(1—p)do + pd1, p€(0,1)

Bernoulli family parameterized by probability of success p.

v

v

v

p = [ xQp(dx) (parametrization by the mean)
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Parametrization by the mean

m(6) = / xPy(dx) =

CSK

» For non-degenerate measure p, function 6 — m(6) is strictly

increasing and has inverse 6 = ¢ (m).

» 0 — m(0) maps (0,6+) onto (mg, m4), "the domain of

means’” .

» Parameterizations by the mean:

K(1) = {Q@m(dx) : m € (mo, m. )}

where Qm(dx) = Py(m)(dx)
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Variance function

V(m) = /(x — m)2Qm(dx)

» Variance function always exists for NEF.

» Variance function exists for CSK when u(dx) has the first
moment.

» Variance function V(m) (together with the domain of means
m € (m_, m,)) determines NEF uniquely (Morris (1982)).

» Variance function V(m) (together with my = m(0) € R, the

mean of 1) determines measure p uniquely (hence determines
CSK uniquely).
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Example: a CSK with quadratic variance function

» Bernoulli measures Qn, = (1 — m)dp + md; are parameterized
by the mean, with the "domain of means” m € (0,1).

» The variance function is V(m) = m(1 — m)

» The generating measure y = %(50 + %51 is determined uniquely
once we specify its mean my = 1/2.
That is, there is no other x that would have mean 1/2 and
generate CSK with variance function V(m) that would equal
to m(1 —m) forall me (1/2—-46,1/2+9)
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All NEF with quadratic variance functions are known

Morris class. Meixner laws

» The NEF with the variance function V(m) = 1 + am + bm?
was described by Morris (1982), Ismail-May (1978)

» Letac-Mora (1990): cubic V(m)

» Various other classes Kokonendji, Letac, ...
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All CSK with quadratic variance functions are known

Suppose mg =0, V(0) = 1.
Theorem (WB.-Ismail (2005))

1. w is the Wigner's semicircle (free Gaussian) law iff V(m) =1

K () are the (atomless) Marchenko-Pastur (free Poisson)
type laws

2. p is the Marchenko-Pastur (free Poisson) type law iff
V(m)=1+am witha#0

3. u is the “free Gamma" type law iff V(m) = (1 + bm)? with
b>0

4. u is the free binomial type law (Kesten law, McKay law) iff
V(m) =1+ am+ bm? with -1 < b <0
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Reproductive properties of NEF and CSK

Theorem (NEF: Jorgensen (1997))

If u is a probability measure in NEF with variance function V(m),
then for r € N the r-fold convolution u, := p*", is in NEF with
variance function rV(m/r).

Theorem (CSK: WB-Ismail (2005), WB-Hassairi (2011))

If a probability measure u generates CSK with variance function
V,.(m) , then the free additive convolution power i, := p5"
generates the CKS family with variance function rV,(m/r).

Note
» If rV(m/r) is a variance function for all r € (0,1) then p is
infinitely divisible.
» The domains of means behave differently.

» The ranges of admissible r > 1 are different.
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Pseudo-Variance function for CSK

» The variance
B 1 (x — m)? .
V(m) = s | 1 st @)

is undefined if mg = [ xu(dx) = —oco. (This issue does not
arise for NEF)
» When V(m) exists, consider

» It turns out that

vl =m (s = m) W)

where 1(-) is the inverse of 8 — m(0) = [ xPp(dx) on (0,6 ).

» Expression (1) defines a " pseudo-variance” function V(m)
that is well defined for all non-degenerate probability measures
1 with support bounded from above.
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Properties of pseudo-variance function

» Uniqueness: measure p(dx) is determined uniquely by V
» Explicit formula for the CSK family:

1

) = T (m) A~ (m)

p(dx)

» Reproductive property still holds

Theorem (WB-Hassairi (2011))

Let V,, be a pseudo-variance function of the CSK family generated
by a probability measure 1 with support bounded from above and
mean —oo < mg < co. Then for m > rmq close enough to rmg,

V & (m) = rV,(m/r). (2)



Example: CKS family with cubic pseudo-variance
function

Measure  generating CSK with V(m) = m3 has density

v—1—4x

2mx2

f(x) = 1(—oo,—1/2)(%) (3)
From reproductive property it follows that p is 1/2-stable with
respect to H, a fact already noted before: [Bercovici and Pata, 1999,
page 1054], [Pérez-Abreu and Sakuma, 2008]

°2/—-1—-4
{Qm(dx) - 27r£7r7772 T ;)x2 1(—oo_1/0)(x)dx - m € (=00, m+)}

What is m?
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Domain of means: {Q,: m & (my, m.)}

For V(m) = m3 the domain of means is (—oco, my), where:

1. 6+ m(0) is increasing, so my = limg g, . m(0). This gives
my = -1

2. ﬁl(_w_l/zl)(x) is positive for 6 € (0,00) U (—oo, —4).
The domain of means can be extended to
m = limg ~_4 m(6). This extends the domain of means up
tom = —1/2

3. #;(1(700,71/4)(@ is positive for m # —1/2.

» But [ Qm(dx) <1form>1/2

> Qu(dx) = Gy (ax) + 206, e i well defined

and parameterized by the mean for all m € (—o0, 00).
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Summary
Kernels e and 1/(1 — 6x) generate NEF and CSK families
Similarities
> parameterizations by the mean
» Quadratic variance functions determine interesting laws

» Convolution affects variance function for NEF in a similar way
as the additive free convolution affects the variance function
for CSK

Differences

» The generating measure of a NEF is not unique.

» A CSK family in parameterizations by the mean may be well
defined beyond the “domain of means”

» For CSK family, the variance function may be undefined.
Instead of the variance function [Bryc and Hassairi, 2011] look
at the " pseudo-variance” function m — mV(m)/(m — mp)
which is well defined for more measures .



Thank you
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