Introduction
00000

Optimal liquidation Latency Dynamic programming Backtesting on TAQ data
0000000 00000 0000 000000

Computational Finance 14
Time is Money: Estimating the Cost of Latency in Trading

Sasha Stoikov (joint work with Rolf Waeber)
Cornell University

October 28, 2013

Conclusions
o

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
©0000 0000000 00000 0000 000000 o

Optimal Liquidation

How to liquidate X shares of an asset?

® Macroscopic time scale:

e Horizon T > 0 over which the shares X need to be liquidated.
e Depends on long term variables: average daily volume,
strategic considerations, news events, ...
® Mesoscopic time scale:
e Tradeschedule 0 < tp <t;...<t<...<t,= T for the
“child” trades.
e Depends on medium term variables: volatility of the stock, risk
aversion of the trader, price impact considerations, ...
©® Microscopic time scale:
e Within a time interval (¢, t;1], what is the timing and the
type of order used to liquidate the “child” trade?
e Depends on short term variables: limit order book information.

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
0®000 0000000 00000 0000 000000 o

Mesoscopic Time Scale

The trade schedule (Almgren and Chriss (1998)):

1200 T
= lambda=0
=~ lambda=1
1000 4
= lambda=10
° ————— lambda=100
8 800 1
S
£
L
@
3
T 600 4
2
&
5
3
)
; 400 1
200 b
0 . . n
04 0.5 0.6 0.7 0.8 0.9 1

Time

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00®00 0000000 00000 0000 000000 o

Microscopic Time Scale

e We assume that the trade schedule is given.

e The goal is then to liquidate one lot (the shares x;) in the
time window (t;, tjy1], i.e., what is the optimal time 7 in
[0, T] to sell the lot, where T = tjy; —t; > 0.

e T is typically short, e.g., 1 minute.

e For such short time periods, observing the limit order book
can be very advantageous in identifying good liquidation
times.

e However, latency in the trade execution can diminish this
advantage!

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
000@0 0000000 00000 0000 000000 o

Latency

Latency arises in every trade execution:

@ Time of datafeed to travel from exchange to execution
machine;

@ The algorithm making a decision;

© The order being sent back to the market.

e Latency has no effect on deterministic trade schedules.

e In our model the algorithm will take into account that if a
market order is sent at time t it will actually be executed at
the best price available at time t + /, for latency / > 0.

e This worsen the performance of our optimal liquidation
algorithm, thus allowing us to quantify the cost of latency.

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data
[eelelol] 0000000 00000 0000 000000

Outline

@ Optimal liquidation:

e The top-of-book imbalance process.
e Optimal stopping problem.
e The trade and no-trade regions.

® Trading with latency.
©® Dynamic programming.
O Backtesting strategy on TAQ data.

©® Conclusions.

Conclusions
o

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data
00000 ©000000 00000 0000 000000

The Imbalance Process

e The imbalance process:
B(t)
I(t)= —F——
(t) A(t) + B(t)

B(t) is the bid size, A(t) is the ask size.
e We assume /(t) is a Markov process.
e Imbalance is a predictor of short term price moves

Conclusions
o

e As a consequence of a zero-intelligence model: Cont, Stoikov

and Talreja (2010)
e Empirically: Avellaneda, Reed and Stoikov (2011)

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0®00000 00000 0000 000000 o

Motivation

There is empirical evidence that selling on small imbalances can be
profitable:

e On each quote /, record the imbalance /; and the mid price 5"
e At a later quote in the future j, record the mid price 5"
o Take averages of (5 — S™) for I; in different buckets

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 00®0000 00000 0000 000000 o

Cost as a fraction of the spread

Bucket: 0.026515 Bucket: 0.088141 Bucket: 0.1787¢ Bucket: 029683 Bucket: 04305¢
0 0 0 0 —

Bucket: 082122 Bucket: 070317 Bucket: 056344

X axis is time, y axis is cost

Introduction
00000

Optimal liquidation
000000

Latency
00000

Dynamic programming
0000

Backtesting on TAQ data
000000

Conclusions
o

Cost of trading on a given imbalance, for dt=20 seconds

Q4

a3

02

Q1

-01

-02

-03

-04

a1

02

03

04

Il
05
Imbalance

06

07

08

09

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 000000 00000 0000 000000 o

The Optimal Liquidation Problem

e Goal: Identify an optimal time 7 in [0, T] to sell the share, i.e.,

t

V(tx) = infEllr |l = x|

for x € [0,1] and t € [0, T], and 7 € T, where T is the set of
stopping times with respect to o(/(t))>0.

e In general we may solve

V(t,x) = S|7r_1£TE[g(IT)|/t = x],

t

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 0000 000000 o

Optimal Liquidation based on Minimizing Imbalance

Define
D={(t,x) €0, T] x[0,1): V(t,x)=x},
C={(t,x)€[0,T] x[0,1): V(t,x) < x}.
Proposition

There exists a non-decreasing function w* : [0, T] — [0, 1] with
w*(T) =1, such that D = {(x,t) € [0,1) x [0, T] : x < w*(¢t)}.

Optimal liquidation
©000000e

Trade/no Trade Regions

T =10000ms
Latency = Oms
Timesteps = 20

States: 20

o
o))

o
N

Imbalance

0.2}

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 ©0000 0000 000000 o

Trading with Latency

o A trade triggered at time t is executed at time t + L for L > 0.

e Consider

VE(t,x)= inf E[I(r- + L)|I(t) = x],
t<rl<T—-L

where 7L € T.

e This is equivalent to:

Vi(t,x) = inf E[GE(I(=H)]I(t) = x].

t<7L<T—-L

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data
00000 0000000 0®000 0000 000000
The function G
VL(t, x) is equivalent to
L _ : L L —
VLt,x)= inf E[GL(I(r1))|I(t) = x].
t<rL<T—1

where Gt(u) = E[/(L)|/(0) = u].

Payoff Function G*'(8(t))

[P
—1=0T
—1=0.002T
081 —1=002T
—1=01T
« 0.6
S
&
0.4
0.2
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

o(t)

Conclusions
o

Proposition

Fix t € [0, T],s € R, then VL(t, x) is increasing in L for L € [0, T].

«O>r «Fr «=>»

«E)»

DA

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 000®0 0000 000000 o

Trade/No-Trade Regions with Latency

The “trade region” is still connected, but the “no-trade” region
does not need to be connected anymore:

Proposition

There exists a non-decreasing function w; : [0, T] — [0,1] and a
non-increasing function v/ : [0, T] — [0, 1], with v/ < w/,
wi(t)=1fort e [T —L T]and v/ =0fort € [T — L, T], such
that

DL = {(t,u) € [0, T] x [0,1) : v} (t) < u < wj(t)}.

on TAQ data Conclusions

mic programming

liquidation Latency
o [elelelel]

Trade/No-Trade Regions with Latency cont.

T =60000ms
Latency = 500ms
Timesteps = 120

States: 20

Imbalance
o o
b [o)]

0.2

The no-trade region is split in two.

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 ©000 000000 o

Discretization Approximation

o Knowing V(t,x), is enough to identify good liquidation
times.

e Let N, E € N. Define,

k:[0,T] - K={0,...,N}

t— k(t) =sup{ne€{0,...,N}|nT/N < t},
h:[0,1) - H={1,...,E}

x+— h(x) = |Ex] + 1.

e These mappings transform the original state space
[0, T] x [0,1) into a discrete state space with (N + 1)E states.

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 0®00 000000 o

The transition matrix

The probability p;; that the imbalance will transitions from state i
to state j in 500ms

10

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 00e0 000000 o

Dynamic Program

e Bellman’s recursion:

VEn(n, 1) = max { GH(7), BIVE y(n + 1, 1(n+ 1))]1(n) =]}

e Conditional probability:

E

E[VEn(n+1,1(n+1))|I(n) = i] = p VEn(n+1, k).
k=1

Introduction Optimal liquidation Dynamic programming Backtesting on TAQ data Conclusions
C (o] DO [eJele]) O) o
Jump Process, A(T) = 500, K = 0.4, o = 0.01 Jump Process, (T) = 500, K = 0.4, o = 0.01 Jump Process, A(T) = 500, K = 0.4, o = 0.01
1 1
Latency = 0T Latency = 0T Latency = 0T
0.8 0.8
Timesteps: 100 Timesteps: 1000 Timesteps: 10000
States: 20 States: 50 States: 500

As N — oo and E — oo the boundary between trade and no-trade
region converges to a smooth curve.

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 0000 ©00000 o

Overview

Backtesting on TAQ data for 5-years US treasury bonds for 21
days (July 2010).
@ The time-weighted average price (TWAP) strategy liquidates

one share per minute independently of the state of the limit
order book.

® Our imbalance-based algorithm will have T equal to 1 minute.
For each day we backtest,

e we compute the optimal execution region, using the empirical
transition matrix from the previous day's data

e we walk through each quote, decide whether we are in the
trade region or not

o if we are in the trade region submit a sell order which will be
executed at the bid L milliseconds later

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 0000 0®0000 o

Optimal Stopping vs. TWAP Strategy

e Consider residuals K = Sh— 5%’-, where 7 is the stopping time
from the optimal stopping problem V/(t, x).

e Compare 5,649 intervals of length 1 minute.

e Without latency the optimal liquidation strategy saves on
average 31 $§ per share, i.e., 1/3 of the spread (Spread is 78%
for 5 yrs US-treasury bonds):

A

ER] o(R) |
Optimal policy vs. TWAP | 31.26 § 49.14 § |

Introduction

00000

Optimal liquidation

0000000

Latency
00000

Realized Imbalances

Realized Imbalances TWAP

Dynamic
0000

0.2

0.4

o(t)

0.6

0.8

Backtesting on TAQ data Conclusions
00®000 o

programming

Realized Imbalances Optimal Stopping

4000

3000

2000

Counts

1000

o(t)

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 0000 000800 o

Empirical evidence for trading on low imbalances

Empirical observed imbalance /(t) conditioned a trade occurs
on the next quote.

en before trade (trade size = 1)

0.5

Frequency
o o
w ES

o
o
.

o
-
L

0 0.25 0.5 0.75 1

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data
00000 0000000 00000 0000 0000®0

Cost of Latency

e Cost of latency:
COL = E[Sp(7) — Sp(7 + L)],

where 7 is the stopping time induced by V/(t, x).

e Note, we calculate the COL with respect to the optimal
strategy with no latency.

Conclusions
o

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 0000 00000e o

The Cost of Latency cont.

40

30
>
o
c
[
E 20
k]
z
8 10

0 [~ ——not adjusted
—— adjusted
10’ 10° 10° 10*
Latency

e 10ms latency ~ 10% per share.

e For latencies > 2000ms (i.e., 2 secs) the advantage of
observing the limit order book diminishes (performance
becomes similar to TWAP).

e Adjusting the liquidation policy brings only minor
improvement in the performance.

Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions
00000 0000000 00000 0000 000000 °

Conclusions

We consider an optimal stopping problem that depends on:

e Information found in the order book;
e Latency;
e The time left to catch up with the TWAP algorithm.

e The solution comes in the form of a trade/ no-trade regions in
the imbalance process.

e We estimate model parameters with level-l trades and quotes
data.

e We find that our optimal liquidation algorithm significantly
outperforms a TWAP algorithm.

e We quantify the cost of latency.

e Reference: Optimal Asset Liquidation Using Limit Order Book
Information

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2113827
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2113827

	Introduction
	

	Optimal liquidation
	

	Latency
	

	Dynamic programming
	

	Backtesting on TAQ data
	

	Conclusions
	

