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We consider a filtered probability space (Ω,A,F,P) and a random time τ (i.e., a
positive finite A-measurable random variable).

We assume that the financial market where a risky asset with price S (an
F-adapted positive process) and a riskless asset S0 ≡ 1 are traded is arbitrage free.

More precisely, we assume w.l.g. that S is a (P,F) (local) martingale.
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We denote by G the progressively enlarged filtration of F by τ , i.e.,

Gt = ∩ε>0Ft+ε ∨ σ(τ ∧ (t + ε))

Our aim is to determine if, using G-predictable strategies, one can produce
arbitrages.

In the particular case where τ is an F-stopping time, the enlarged filtration and the
reference filtration are the same. In that case, there are no arbitrage opportunities
in the enlarged filtration.
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Arbitrages

Let K be one of the filtrations
{
F,G

}
.

For a ∈ R+, an element θ ∈ LK (S) is said to be an a-admissible K-strategy if
(θ ¦ S)∞ := limt→∞ (θ ¦ S)t exists and Vt(0, θ) := (θ ¦ S)t ≥ −a P-a.s. for all t ≥ 0.

We denote by AKa the set of all a-admissible K-strategies. A process θ ∈ LK (S) is
called an admissible K-strategy if θ ∈ AK :=

⋃
a∈R+

AKa .
An admissible strategy yields an Arbitrage Opportunity if V (0, θ)∞ ≥ 0 P-a.s.
and P

(
V (0, θ)∞ > 0

)
> 0. In order to avoid confusions, we shall call these

arbitrages classical arbitrages.

If there exists no such θ ∈ AK we say that the financial market
M(K) := (Ω,K,P; S) satisfies the No Arbitrage (NA) condition.
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No Free lunch with Vanishing Risk (NFLVR) holds in the financial market M(K) if
and only if there exists an Equivalent Martingale Measure in K, i.e. Q ∼ P so that
the process S is a (Q,K)-local martingale. If NFLVR holds, there are no classical
arbitrages.
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Enlargement of filtration results

Enlargement of filtration results

We define the right-continuous with left limits F-supermartingale

Zt := P
(
τ > t

∣∣ Ft

)
.

One can write
Z = m−Ao

where m is an F-martingale and Ao is the F-dual optional projection (an increasing
process) of A = 11[[τ,∞[[.

Note that m is non-negative: indeed mt = E(Ao
∞|Ft).
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Enlargement of filtration results

The F-supermartingale
Z̃t := P

(
τ ≥ t

∣∣ Ft

)

will play a particular rôle in the following. One has Z̃ = Z + ∆Ao, hence the
supermartingale Z̃ admits a decomposition as

Z̃ = m−Ao
− .

Note that Z− and Z̃ do not vanish on [0, τ ].
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Enlargement of filtration results

An important obvious remark

Assume that the financial market where (S0, S) are traded is complete.

If mτ ≥ 1 and P(mτ > 1) > 0, then, there are arbitrages before τ .

Due to the completion hypothesis, the positive martingale m satisfies
mt − 1 =

∫ t

0
ϕsdSs, hence ϕ is an admissible self-financing strategy, therefore ϕ

corresponds to a classical arbitrage.
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Enlargement of filtration results

The completeness of the F market seems to be an essential hypothesis to have
classical arbitrages:

Let W 1, W 2 be a standard 2-dimensional Brownian motion and

dSt = Stf(W 2
t )dW 1

t

Under regularity assumptions FS = F1 ∨ F2. Let τ be an F2 honest time (hence an
FS honest time). Since W 1 is an F1 ∨ σ(τ ∧ ·) martingale, there are no arbitrages in
the enlarged filtration.
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Some particular cases

Some particular cases

Density hypothesis

If there exists a positive Ft ⊗ B(R+)-measurable function (ω, u) → αt(ω, u) which
satisfies for any Borel bounded function ϕ,

E(ϕ(τ)|Ft) =
∫

R+

ϕ(u)αt(u)ν(du), P− a.s.

where ν is the law of τ , then NFLVR holds for G and there are no classical
arbitrages, before and after τ
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Some particular cases

Indeed, under the positive density hypothesis, it can be proved that the probability
P∗, defined on F ∨ σ(τ) as

dP∗|Ft∨σ(τ) =
1

αt(τ)
dP|Ft∨σ(τ)

satisfies the following assertions

(i) Under P∗, τ is independent from Ft for any t

(ii) P∗|Ft = P|Ft

(iii) P∗|σ(τ) = P∗|σ(τ)

It is now obvious that NFLVR hold in the enlarged filtration (P∗ being a G-
e.m.m.).
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Some particular cases

Immersion setting

We recall that the filtration F is immersed in G if any F martingale is a G
martingale. This is equivalent to

P(τ > t|Ft) = P(τ > t|F∞)

Under the immersion assumption, all the three concepts of NA, NFLVR
and NUPBR hold.

Let S be an F local martingale, then it is a G local martingale as well.
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Some particular cases

Emery’s Example

Let S be defined through dSt = σStdWt, where W is a Brownian motion.

Let τ = sup {t ≤ 1 : S1 − 2St = 0}, that is the last time before 1 when the price is
equal to half of its terminal value at time 1.

In the above model NFLVR holds before τ . There are arbitrages after τ .
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Some particular cases

Note that

{τ ≤ t} = { inf
t≤s≤1

2
Ss

St
≥ S1

St
}

therefore
P(τ ≤ t|Ft) = P( inf

t≤s≤1
2Ss−t ≥ S1−t) = Φ(1− t)

where Φ(u) = P(infs≤u 2Ss ≥ Su). It follows that the Azéma supermartingale is a
deterministic decreasing function, hence, τ is a pseudo-stopping time, hence S

is a G martingale up to time τ and there are no arbitrages up to τ .

There are obviously arbitrages after τ , since, at time τ , one knows the value of S1

and S1 > Sτ . In fact, for t > τ , one has St > Sτ , and the arbitrage occurs at any
time before 1.
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Some particular cases

Honest times

A random time τ is honest if, for each t ≥ 0, there exists an Ft-measurable
random variable τt such that τ = τt on τ < t.
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Some particular cases

In the case where τ = sup{t ≤ T, St = sups≤T Ss}, one can find, in Dellacherie,
Maisonneuve, Meyer (1992), Probabilités et Potentiel, chapitres XVII-XXIV:
Processus de Markov (fin), Compléments de calcul stochastique, page 137 Par
exemple, St peut représenter le cours d’une certaine action à l’instant t,
et τ est le moment idéal pour vendre son paquet d’actions. Tous les
spéculateurs cherchent à connaître τ sans jamais y parvenir, d’où son
nom de variable aléatoire honnête.

For instance, St may represent the price of some stock at time t and τ is the
optimal time to liquidate a position in that stock. Every speculator strives to know
when τ will occur, without ever achieving this goal. Hence, the name of honest
random variable.
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Some particular cases

It is proved in Jeulin and in Jeulin and Yor that τ is honest if and only if
Z̃τ = 1. Moreover, Ao

t = Ao
t∧τ .

Let τ be a finite honest time and assume that the market (S0, S) is
complete. Then, if τ is not an F-stopping time, there are classical
arbitrages before and after τ .
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Some particular cases

Before τ

From m = Z̃ + Ao
− and Z̃τ = 1, we deduce that mτ ≥ 1.

Since τ is not a stopping time, P(Ao
τ− > 0) > 0.

The market being complete, the martingale m is the value of a self financing
portfolio, with initial value 1, and mτ = 1 +

∫ τ

0
ϕsdSs for a predictable ϕ. Since

mt ≥ 0, the strategy ϕ is admissible.
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Some particular cases

After τ : Here, t > τ

Using m = Z̃ + Ao
−, one obtains that mt −mτ = Z̃t − 1 + ∆Ao

τ .

Consider the (finite) G-stopping time

ν := inf{t > τ : Z̃t ≤ 1−∆Ao
τ

2
}.

Then,

mν −mτ = Z̃ν − 1 + ∆Ao
τ ≤

∆Ao
τ − 1
2

≤ 0,

and, as τ is not an F-stopping time,

P(mν −mτ < 0) = P(∆Ao
τ < 1) > 0.

Hence − ∫ t∧ν

τ
ϕsdSs = mτ∧t −mt∧ν is the value of a self-financing strategy with

initial value 0 and terminal value mτ −mν ≥ 0 satisfying P(mτ −mν > 0) > 0.

From m = Z + Ao and the fact that Ao
t = Ao

t∧τ , one obtains that
mt −mτ = Zt − Zτ ≥ −2, hence the strategy is admissible.
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Some particular cases

Examples in a Brownian filtration

In this section, we assume that

St = exp(σWt − 1
2
σ2t), σ > 0 given.

• Consider the following random time (honest)

g := sup{t : St = a},

where 0 < a < 1. This time is well defined, since St goes to 0 when t goes to infinity.

Then Zt = 1− (1− St

a )+, and

dZt = 11{St<a}
1
a
dSt − 1

2a
d`a

t

Therefore,

ϕ :=
1
a
11{S<a}
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Some particular cases

• Let, S∗t = sup{Ss, s ≤ t} and

τ = sup{t : St = S∗∞} = sup{t : St = S∗t }

Then, Zt = St

S∗t
and dmt = 1

S∗t
dSt, therefore ϕt = 1

S∗t
.
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Some particular cases

Example in a Poissonnian filtration

Let dSt = St−ψdMt, S0 = 1 with ψ > 0, where M is the compensated martingale of
a Poisson process and τ given by

τ := sup{t : St ≥ b} = sup{t : Yt ≤ a}.

where Yt :=
λψ

ln(1 + ψ)
t−Nt, and 0 < b < 1. Note that St = e− ln(1+ψ)Yt . Then, the

process

ϕ :=
Ψ(Y− − a− 1)11{Y−≥a+1} −Ψ(Y− − a)11{Y−≥a} + 11{Y−<a+1} − 11{Y−<a}

ψS−
,

where
Ψ(x) = P(T x < ∞), with T x = inf{t : x + Yt < 0}
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Some particular cases

On the one hand

Zt = P(τ > t|Ft) = Ψ(Yt − a)11{Yt≥a} + 11{Yt<a} = 1 + 11{Yt≥a} (Ψ(Yt − a)− 1) .

On the other hand, setting θ =
µ

λ
− 1, one shows that the dual optional projection

Ao of the process 11[τ,∞) equals

Ao =
θ

1 + θ

∑
n

11[ϑn,∞),

where ϑn is the sequence of F-stopping times defined by ϑ1 = inf{t > 0 : Yt = a}
and ϑn = inf{t > ϑn−1 : Yt = a}.
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Some particular cases

Let (At, t ≥ 0) be an integrable increasing process (not necessarily F-adapted).
There exists a unique integrable F-optional increasing process (Ao

t , t ≥ 0), called the
dual optional projection of A such that

E

(∫

[0,∞[

YsdAs

)
= E

(∫

[0,∞[

YsdAo
s

)

for any positive F-optional process Y .

For any optional increasing process

E(Kτ ) = E(
∑

11τ=ϑnKϑn) = E(
∑

E(11τ=ϑn |Fϑn)Kϑn)

and E(11τ=ϑn |Fϑn) = P(T 0 = ∞) = 1−Ψ(0) = 1− 1
1+θ .
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Random times constructed with hitting times

Random times constructed with hitting times

Brownian filtration

Suppose that F is the filtration generated by a Brownian motion W and, for x > 0,

Tx = inf{t,Wt ≥ x}.

Let b > a > 0, and consider the random time

τ =
1
2
(Ta + Tb).

Then τ avoids F stopping times, and there are no classical arbitrages before τ .

The Azéma supermartingale associated with τ is

Zt = 11{Ta>t} + 11{Ta≤t}Φ(t− Ta, b−Wt)

where Φ(s, x) = 2√
2πs

∫ x

0
e−

y2

2s dy.
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Random times constructed with hitting times

Then, denoting Φ′(s, x) = ∂
∂xΦ(s, x)

mt = 1−
∫ t

0

11{Ta≤s}Φ′(s− Ta, b−Ws)dWs

It follows that, on t ≤ τ

Wt = Ŵt −
∫ t

0

11{Ta<s}
Φ′

Φ− 1
(s− Ta, b−Ws)ds

Since E
(∫ τ

0
11{Ta<s}

(
Φ′

Φ−1 (s− Ta, b−Ws)
)2

ds

)
< ∞, there exists an e.m.m. and

NFLVR holds.

It is not difficult to prove that (H′) hypothesis holds for that example, even if τ is
neither honest, has no density and immersion is not satisfied.
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Random times constructed with hitting times

Poissonnian Filtration

Consider the random time τ = 1
2 (T1 + T2) that avoids F-stopping times. Then the

following properties hold:
(a) τ is not an honest time.
(b) Z̃τ = Zτ = e−λ 1

2 (T2−T1) < 1,

(c) One can check that mτ > 1, hence there is a classical arbitrage before τ , given
by

ϕt := −e−λ(t−T1)
(
11{Nt−≥1} − 11{Nt−≥2}

) 1
ψSt−

.
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NUPBR

NUPBR

A non-negative K∞-measurable random variable ξ with P (ξ > 0) > 0 yields an
Unbounded Profit with Bounded Risk if for all x > 0 there exists an element
θx ∈ AKx such that V (x, θx)∞ := x + (θx ¦ S)∞ ≥ ξ P-a.s. If there exists no such
random variable we say that the financial market M(K) satisfies the No
Unbounded Profit with Bounded Risk (NUPBR) condition.

A strictly positive K-local martingale L = (Lt)t≥0 with L0 = 1 and L∞ > 0 P-a.s.
is said to be a local martingale deflator in K on the time horizon [0, %] if the
process LS% is an K-local martingale; here % is a K-stopping time. If there exists a
deflator, then NUPBR holds.

We recall that NFLVR=NA+NUPBR
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NUPBR

NUPBR before τ

To any F local martingale X, we associate the G local martingale X̂ (stopped at
time τ) defined as

X̂t := Xτ
t −

∫ t∧τ

0

1
Zs−

d〈X, m〉s
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NUPBR

Case of Continuous Filtration

If all F martingales are continuous, NUPBR holds before τ .

Let m̂ be the G-martingale stopped at time τ associated with m, on t ≤ τ

m̂t := mτ
t −

∫ t

0

d〈m,m〉Fs
Zs

and define a positive G local martingale L as dLt = −Lt

Zt
dm̂t. Recall that

Ŝt := Sτ
t −

∫ t∧τ

0

d〈S,m〉Fs
Zs

is a G local martingale. From integration by parts, we obtain

d(LSτ )t = LtdSτ
t + StdLt + d〈L, Sτ 〉Gt

G−mart= Lt
1
Zt

d〈S, m〉Ft +
1

Zt−
Lt−d〈S, m̂〉Gt

G−mart= Lt
1
Zt

(d〈S, m〉t − d〈S, m〉t) = 0

Since SL is a G-local martingale, NUPBR holds.
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NUPBR
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NUPBR

Case of a Poisson Filtration

We assume that S is an F martingale of the form dSt = St−ψtdMt, with ψ is a
predictable process, satisfying ψ > −1.

Let Zt = mt −A0
t be the optional decomposition of Z and m̂ the G-martingale part

of the G semi-martingale m. In a Poisson setting, from PRP, dmt = νtdMt for
some predictable process ν, so that, on t ≤ τ ,

dm̂t = dmt − 1
Zt−

d〈m〉t = dmt − 1
Zt−

λν2
t dt

In a Poisson setting, NUPBR holds before τ .

Indeed,

L = E
(
− 1

Z− + ν
¦ m̂

)
= E

(
− ν

Z− + ν
¦ M̂

)

is a G-local martingale deflator for Sτ
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NUPBR

We are looking for a RN density of the form dLt = Lt−κtdm̂t (and ψtκt > −1) so
that L is positive and SτL is a G local martingale. Integration by parts formula
leads to (on t ≤ τ)

d(LS)t = Lt−dSt + St−dLt + d[L, S]t
G−mart= Lt−St−ψt

1
Zt−

d〈M,m〉t + Lt−St−κtψtνtdNt

G−mart= Lt−St−ψt
1

Zt−
νtλdt + Lt−St−κtψtνtλ(1 +

1
Zt−

νt)dt

= Lt−St−ψtνtλ

(
1

Zt−
+ κt(1 +

1
Zt−

νt)
)

dt.

Therefore, for κt = − 1
Zt−+νt

, one obtains a deflator. Note that

dLt = Lt−κtdm̂t = −Lt−
1

Zt− + νt
νtdM̂t

is indeed a positive martingale, since 1
Zt−+νt

νt < 1.
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NUPBR

Lévy processes

Assume that S = ψ ? (µ− ν) where µ is the jump measure of a Lévy process and ν

its compensator. Here, ψ ? (µ− ν) is the process
∫ ·
0

∫
ψ(x, s)(µ(dx, ds)− ν(dx, ds).

The martingale m admits a representation as m = ψm ? (µ− ν). Then, the G
compensator of µ is νG where

νG(dt, dx) =
1

Zt−
(Zt− + ψm(t, x)) ν(dt, dx)

i.e., S admits a G-semi-martingale decomposition of the form

S = ψ ? (µ− νG)− ψ ? (ν − νG)
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NUPBR

Our goal is to find a positive martingale L of the form

dLt = Lt−κtdm̂t

so that LS is a local martingale.

From integration by parts formula

d(SL) G−mart= −L−ψ ? (ν − νG) + d[S, L] = −L−ψ ? (ν − νG) + L−ψψmκ ? µ

G−mart= −L−ψ ? (ν − νG) + L−ψψmκ ? νG

= −L−ψ

(
1− (1 + ψmκ)

1
Z−

(Z− + ψm)
)

? ν

Hence the possible choice κ = − 1
Z−+ψm . It can be checked that indeed, L is a

positive martingale.

36



NUPBR

The positive G-local martingale

L := E
(
− ψm

Z− + ψm
I]]0,τ ]] ? (ν − νG)

)

G-local martingale deflator for Sτ , and hence Sτ satisfies NUPBR.

37



NUPBR

General case, before τ

Let τ be a random time. Then, the following assertions are equivalent:
(i) The thin set {Z̃ = 0 ∩ Z− > 0} is evanescent.
(ii) For any process S satisfying NUPBR(F), Sτ satisfies NUPBR(G ).
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NUPBR

After τ

We now assume that τ is a honest time, which satisfies Zτ < 1.

In Fontana et al. for a continuous filtration, it is proven that, if τ avoids F stopping
times, arbitrages of the first kind exist after τ . The condition τ avoids F stopping
times is equivalent to Zτ = 1
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NUPBR

Case of Continuous Filtration

We start with the particular case of continuous martingales and prove that, for any
honest time τ , NUPBR holds after τ .

Assume that τ is a honest time, which satisfies Zτ < 1 and that all F
martingales are continuous. Then, for any honest time τ , NUPBR holds
after τ . A deflator is given by dLt = − Lt

1−Zt
dm̂t.

The proof is based on Itô’s calculus and the fact that, for any F martingale X (in
particular for m and S)

X̂t := Xτ
t −

∫ t∧τ

0

d〈X, m〉Fs
Zs

+
∫ t

t∧τ

d〈X, m〉Fs
1− Zs

is a G local martingale. Looking for a deflator of the form dLt = Ltκtdm̂t, and
using integration by parts formula, we obtain that, for κ = −(1− Z)−1, the process
L(S − Sτ ) is a local martingale.
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NUPBR
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We start with the particular case of continuous martingales and prove that, for any
honest time τ , NUPBR holds after τ .

Assume that τ is a honest time, which satisfies Zτ < 1 and that all F
martingales are continuous. Then, for any honest time τ , NUPBR holds
after τ . A deflator is given by dLt = − Lt

1−Zt
dm̂t.

The proof is based on Itô’s calculus and the fact that, for any F martingale X (in
particular for m and S)

X̂t := Xτ
t −

∫ t∧τ

0

d〈X, m〉Fs
Zs

+
∫ t

t∧τ

d〈X, m〉Fs
1− Zs

is a G local martingale. Looking for a deflator of the form dLt = Ltκtdm̂t, and
using integration by parts formula, we obtain that, for κ = −(1− Z)−1, the process
L(S − Sτ ) is a local martingale.

41



NUPBR

Case of a Poisson Filtration

We assume that S is an F martingale of the form dSt = St−ψtdMt, with ψ is a
predictable process, satisfying ψ > −1.

The decomposition formula reads, after τ as

Ŝt = St +
∫ t

t∨τ

1
1− Zs−

d〈S,m〉s = St + λ

∫ t

t∨τ

1
1− Zs−

νsψsSs−ds

Let F be a Poisson filtration and τ be an honest time satisfying Zτ < 1.
Then, NUPBR holds after τ .
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NUPBR

We are looking for a RN density of the form dLt = Lt−κtdm̂t (and ψtκt > −1) so
that L is positive G local martingale and (S − Sτ )L is a G local martingale.
Integration by parts formula leads to

d(L(S − Sτ ))t = Lt−d(S − Sτ )t + (St− − Sτ
t−)dLt + d[L, S − Sτ ]t

G−mart= −λLt−St−νtψt
1

1− Zt−
11{t>τ}dt + Lt−St−κtψtνt11{t>τ}dNt

G−mart= −λLt−St−νtψt
1

1− Zt−
11{t>τ}dt

+λLt−St−κtψtνt11{t>τ}(1−
1

1− Zt−
νt)dt

= λLt−St−ψtνt11{t>τ}

(
− 1

1− Zt−
+ κt(1− 1

1− Zt−
νt)

)
dt.

Therefore, for κt = 1
1−Zt−−νt

, one obtains a deflator.
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NUPBR

Note that
dLt = Lt−κtdm̂t = Lt−

1
1− Zt− − νt

νt11{t>τ}dM̂t

is indeed a positive martingale, since 1
1−Zt−−νt

νt∆Nt > −1.
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NUPBR

L = E
(

1
1− Z− − ν

11]τ,∞[ ¦ m̂

)
= E

(
ν

1− Z− − ν
11]τ,∞[ ¦ M̂

)

is a G deflator
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NUPBR

Lévy Processes

Assume that S = ψ ? (µ− ν) where µ is the jump measure of a Lévy process and ν

its compensator.

Then, after τ , the G compensator of µ is νG where

νG(dt, dx) =
(

1 + 11{t≤τ}
1

Zt−
ψm(t, x)− 11{t>τ}

1
1− Zt−

ψm(t, x)
)

ν(dt, dx)

i.e., S admits a G-semi-martingale decomposition of the form

S = ψ ? (µ− νG)− ψ ? (ν − νG)

Assume that τ be an honest time satisfying Zτ < 1 in a Lévy framework. Then,
S − Sτ satisfies NUPBR.
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NUPBR

Our goal is to find a positive martingale L of the form

dLt = Lt−κt11{t>τ}dm̂t

so that L(S − Sτ ) is a local martingale.

From integration by parts formula

d(L(S − Sτ )) G−mart= −L−d(S − Sτ ) + d[S, L]

= −L−ψ
ψm

1− Z−
11]τ,∞[ ? ν + L−κψψm11]τ,∞[ ? µ

G−mart= −L−ψ
ψm

1− Z−
11]τ,∞[ ? ν + L−κψψm11]τ,∞[ ? νG

= −L−ψψm11]τ,∞[

(
− 1

1− Z−
+ κ(1− ψm

1− Z−
)
)

? ν

Hence the possible choice κ = 1
1−Z−−ψm .
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NUPBR

Consider the positive G-local martingale

L := E
(

ψm

1− Z− − ψm
I]]τ,∞[[ ? (ν − νG)

)

L is a G-martingale density for S − Sτ .
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General case after τ

General case after τ

Let τ be an honest time satisfying Zτ < 1. Then, the following assertions are
equivalent:
(i) The thin set {Z̃ = 1 ∩ Z− < 1} is evanescent.
(ii) For any process S such that S − Sτ satisfies NUPBR(F), S − Sτ satisfies
NUPBR(G ).

49



General case after τ

Optional Integral

We recall the definition of the optional integral that will be of paramount
importance in the last part of this paper. Let K be one of the filtrations

{
F,G

}
.

Let X be a K-martingale and H a (bounded) K-optional process.

The compensated stochastic integral M = H ¯X is the unique K-local martingale
such that, for any K-local martingale Y ,

E ([M, Y ]∞) = E
(∫ ∞

0

Hs d[X, Y ]s

)
.

The process [M, Y ]−H ¦ [X, Y ] is an K-local martingale.

In other terms, the compensated stochastic integral of H with respect to X is the
unique local martingale, M , such that

M c = p,KH ¦ Xc and ∆M = H∆X − p,K(H∆X)

where p,KU denotes the K-predictable projection of the process U .
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General case after τ

The Case of Quasi-Left Continuous Processes

NUPBR before τ

We assume that m is quasi continuous on left and that Z̃ > 0.

We prove that, in this case, NUPBR is preserved under random horizon.
Define the process

Ñ := − 1

Z̃
¯ m̂ = − 1

Z̃
11]0,τ ] ¯

(
m− 1

Z−
11]0,τ ] ¦ 〈m〉F

)
.

(a) The process E(Ñ) is a positive G-martingale.
(b) The process E

(
Ñ

)
Sτ is a G-local martingale.
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General case after τ

NUPBR after τ

Assume that Zτ < 1, 0 < Z̃ < 1 and the martingale m is quasi left continuous. We
define the process

Ñ := 11]τ,∞[
1

1− Z̃
¯ m̂ =

1

1− Z̃
11]τ,∞[ ¯

(
m− 1

1− Z−
11]τ,∞[ ¦ 〈m〉F

)
.

Then,
(a) The process E(Ñ) is a positive G-martingale.
(b) The process E

(
Ñ

)
(S − Sτ ) is a G-local martingale.
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General case after τ

A (finite) random time τ is a strict honest time (i.e., [[τ ]] ∩ [[T ]] = ∅ for any
F-stopping time T ) if and only if Zτ = 1 a.s. on (τ < ∞).

Assume that τ is a strict honest time. From Z̃τ = 1 and using the continuity of Ao,
the relation Z̃ = m−Ao

− leads to the result.
Assume now that Zτ = 1. We have 1 = Zτ ≤ Z̃τ ≤ 1, so Z̃τ = 1 and τ is an honest
time. Furthermore, as ∆Ao

τ = Z̃τ
τ − Zτ

τ = 0, for each F stopping time T we have

P(τ = T < ∞) = E(11{τ=T}11{∆Ao
τ=0}11(T<∞)) = E(

∫ ∞

0

11{u=T}11{∆Ao
u=0}dAo

u) = 0.

So τ is a strict honest time.
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A (finite) random time τ is a strict honest time (i.e., [[τ ]] ∩ [[T ]] = ∅ for any
F-stopping time T ) if and only if Zτ = 1 a.s. on (τ < ∞).

Assume that τ is a strict honest time. From Z̃τ = 1 and using the continuity of Ao,
the relation Z̃ = m−Ao

− leads to the result.
Assume now that Zτ = 1. We have 1 = Zτ ≤ Z̃τ ≤ 1, so Z̃τ = 1 and τ is an honest
time. Furthermore, as ∆Ao

τ = Z̃τ
τ − Zτ

τ = 0, for each F stopping time T we have

P(τ = T < ∞) = E(11{τ=T}11{∆Ao
τ=0}11(T<∞)) = E(

∫ ∞

0

11{u=T}11{∆Ao
u=0}dAo

u) = 0.

So τ is a strict honest time.
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