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Equity price swings on July 19 2012

(one day prior to options expiration)
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Investors Whipsawed by Price Swings in
IBM, Coca-Cola

By Inyoung Hwang, Whitney Kisling & Nina Mehta - Jul 20, 2012 5:22 PM ET

Investors in three of the biggest Dow Jones Industrial Average (INDU) stocks were
whipsawed by price swings that repeated every hour yesterday, fueling speculation the
moves were a consequence of computerized trading.

Shares of International Business Machines Corp. (IBM), McDonald's Corp. (MCD) and
Coca-Cola Co. (KO) swung between successive lows and highs in intervals that began near
the top and bottom of each hour, data compiled by Bloomberg show. While only IBM finished
more than 1 percent higher, the intraday patterns weren't accompanied by any breaking news
in the three companies where $3.42 billion worth of shares changed hands.
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Marko Kolanovic, global head of derivatives and quantitative strategy at JPMorgan & Chase Co
[ N

The four stocks with repeating price patterns yesterday had the biggest net long options
positions among S&P 500 Index companies, according to JPMorgan's calculations, Kolanovic
said in a note to clients today. The amount traded in the stocks was also consistent with what
traders would have had to buy or sell, indicating that the patterns could be “almost entirely
explained” by their need to hedge, he wrote.

“We believe that the price pattern of KO, IBM, MCD and AAPL yesterday was caused by
hedging of options by a computer algorithm,” Kolanovic said in the note that referred to the
companies by their ticker symbols. “It was likely an experiment in automatically hedging large
option positions with a time- weighted algorithm that has gone wrong for the hedger.”
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What does the saw-tooth pattern on
US markets on 19 July 2012 tell us
about the price formation process

The saw-tooth patterns observed on four US securities on 19 July provide us with an opportunity to comment on
common beliefs regarding the market impact of large trades; its usual smoothness and amplitude, the subsequent

“reversal” phase, and the generic nature of market impact models.

This underscores the importance of taking into account the motivation behind a large trade in order to optimise it

properly, as we already emphasised in Navigating Liquidity 6.

We used different intraday analytics to work out what happened: pattern-matching techniques, market impact
models, order flow imbalances and PnL computations of potential stat. arb intraday strategies. After looking at open
interests of derivatives on these stocks, we conclude that repetitive automated hedging of large-exposure derivatives
lay behind this behaviour. This is an opportunity to understand how a very crude trading algorithm can impact the

price formation process ten times more than is usually the case.
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Chevreux: sawtooths caused by options hedging

75 Coke: July Call 77.5 prices
’ Low bound Low bound
High Bound (77.5 $ Strike) 76.75 $ 77.50 §
50% delta ' !
77.3 7 ’ 0.50 - . :
771 ! Spot price :77.5 "
’ ! Option Delta :450%
: Position hedge: -50%
76.9 1 0.25 | :
Low Bound : 14% delta Spot price : 76.75,
- - R "/ Option Delta : +14% 1
76.7 - Position hedge: -14 From 76.75 to 77.5, hedgers
A sell -36% from -14% to -50%
0.00 — ‘ 1
76.5 ‘ ‘ ‘ ‘ ‘ > P P P 3 3 N 3 >
8 & 3 o 8 & 3 o 8
09:21 10:33 11:45 12:57 14:09 15:21 Stock
oC

Source: Credit Agricole Cheuvreux Quantitative Research Source: Crédit Agricole Cheuvreux Quantitative Research

For a very large open interest position encompassing a large gamma, a significant move in the stock price will have
disastrous effects for a basic rudimental hedger such as the one described above.

B Repetitive delta hedging seems to be the most plausible explanation

Simplistic hedging of large gamma options is a plausible explanation for the "saw-tooth" trading pattern. This
explanation is consistent with the main features of this phenomenon: timing, aggressiveness, impact, predictability and
information leakage which is what characterises those "saw-tooth" patterns. Fortunately, large option positions are most often
managed dynamically in a continuous way, and discrete archaic hedging processes have almost disappeared in modern-day
markets.

(we show how to do this better)
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Abstract

We propose a model to describe stock pinning on option expiration dates. We
argue that if the open interest on a particular contract is unusually large,
delta-hedging in aggregate by floor market-makers can impact the stock price
and drive it to the strike price of the option. We derive a stochastic
differential equation for the stock price which has a singular drift that
accounts for the price-impact of delta-hedging. According to this model, the
stock price has a finite probability of pinning at a strike. We calculate
analytically and numerically this probability in terms of the volatility of the
stock, the time-to-maturity, the open interest for the option under
consideration and a ‘price elasticity’ constant that models price impact.
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Avellaneda & Lipkin 2003
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Quantitative Finance, Vol. 8, No. 8, December 2008, 823-831
Modeling stock pinning

MARC JEANNIN*1i, GIULIA IORI§ and DAVID SAMUELY

TDepartment of Mathematics, King’s College London, The Strand, WC2Y 2LS London, UK
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§Department of Economics, City University, Northampton Square, EC1V OHB London, UK
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(Received 30 May 2006, in final form 30 November 2007)

This paper investigates the effect of hedging strategies on the so-called pinning effect, i.e. the
tendency of stock’s prices to close near the strike price of heavily traded options as the
expiration date nears. In the paper we extend the analysis of Avellaneda and Lipkin, who
propose an explanation of stock pinning in terms of delta hedging strategies for long option
positions. We adopt a model introduced by Frey and Stremme and show that, under the
original assumptions of the model, pinning is driven by two effects: a hedging-dependent drift
term that pushes the stock price toward the strike price and a hedging-dependent volatility
term that constrains the stock price near the strike as it approaches it. Finally, we show that
pinning can be generated by simulating trading in a double auction market. Pinning in the
microstructure model is consistent with the Frey and Stremme model when both discrete
hedging and stochastic impact are taken into account.
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Jeannin, lori, & Samuel 2008

2
dS(1) = nLS(z)— dS(1) + nLS(?) (aA %%d(é’(z)))

+ oS d W), \ 1

added relative to Avellaneda & Lipkin

The model further assumes that traders do not take into
account feedback effects when rebalancing their portfolio.

Thus the stock price still follows a diffusion process,
dS(z) = b(¢, S(2))S(t)dt + v(z, S(¢))S(t) dW(r),  (6)

but with a new drift and volatility given by

nl
b(t, S(1)) = .
(&, 5(0) 1 —nLS() (DA /dS)
A 1A o> S% (1)
“Var T20s2 - [
[1 —nLS(t)(aA/aS)] |
and
Wt S() = —— nﬁS((;)(aA/aS)' modified volatility
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Other academic work

Frey & Stremme 1997
Sircar & Papanicolaou 1998

Schonbucher & Wilmott 2000

ad hoc impact model (permanent)
modified volatility
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Closest related work

Mathematical Finance, Vol. 20, No. 4 (October 2010), 597-615
THE COST OF ILLIQUIDITY AND ITS EFFECTS ON HEDGING

Rogers & Singh 2010 L.C.G. Rooks

SURBJEET SINGH

te m PO I'a I")’ i m PaCt on Iy this leads us to consider the following candidate for a good control:
no global effects = fSti-0)

Ann. I. H. Poincaré — AN 24 (2007) 311-323
Large investor trading impacts on volatility

Pierre-Louis Lions ***, Jean-Michel Lasry ©

Lions & Lasry 2006,2007

the associated optimal strategy o; satisfies

permanent impact only G = _ap
k+w
and the induced price dynamics are given by
W
dSt =0 dBt

k+ W
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FRENY Econonic PoLicy REview /JUNE 1998 :
Dealers’ Hedging of Interest
Rate Options in the U.S. Dollar
Fixed-Income Market

Jobn E. Kambhu

Jobn E. Kambbhu is an assistant vice president at the Federal Reserve
Bank of New York.

we address two questions: First, are dealers’ hedge
adjustments large enough to affect trading volume and
liquidity in the most common hedging instruments?
Second, what effects might potential hedging difficulties
have on risk premia in options prices and the structure

of the market for over-the-counter interest rate options?

CONCLUSION

Our analysis suggests that transaction volume in underlying
markets is large enough for dealers to manage the price and
liquidity risks they incur through the intermediation of price

risk in selling interest rate options.
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2. Option hedging (version 1)

Asset price P;

P, = Py + cW; + (impact) E)

mark-to-market
value

M go(Pr) + X7 Pr + cash
e o X <h evaluate on
edge portiolio Ac shares mean and variance

T
Xt:XO_l_/ HSdS
0

>
T time t
option expiry
or
market close
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Option hedging (version 2)

Overnight
Asset price P; :

P, = Py + oW} + (impact)

Mark-to-market
value

Jo (PT/) -+ XTPT/ -+ cash

M ......... 1 X = X

Hedge shares X

T
Xt:XQ+/ Qsds
0

Close Open time t
T T

) quantitative | 4



Questions of this paper

|. What is a reasonable market model?
2. What are optimal hedge solutions!?

3. How do they compare to Black-Scholes!?
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Applications

|. Broker execution algorithm:

Client specifies A and I (possibly varying)
Execute to achieve optimal hedge at close
one direction trading (buy or sell)

2. What does option hedging do to market!?
Seller must hedge
What does his hedging do to price process!?

q quantitative |6



Market impact models

Two types of market impact

(both active, both important):

e Permanent

due to information transmission
affects public market price

* Temporary
due to finite instantaneous liquidity
“private” execution price not reflected in market

Many richer structures are possible

q quantitative |7



Temporary vs. permanent market impact

price 4

Pre-trade

Post-trade

Execution
(sell)

Permanent impact

\

(information)
independent of

execution strategy

Temporary impact
(liquidity cost)
depends on rate

! of execution

\J

Instantaneous relaxation >
from temporary impact time
to permanent level

Jim Gatheral: richer time structures for decay



Large literature on market impact models:
optimal execution of given trade program

Time constant Efficient frontier
Imposed , Ao2 —
trade size K™= —— E 4
n Expected
cost
Shares
remaining VWAP
=
€O execute
High urgency Low urgency >
(immediate) (TWAP) Variance of cost  V
E large,V small| |E small,V large
Order Imposed
entry time Time end time

B
s
I

I,.
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Permanent impact

T
0
0; = instantaneous rate of trading
dpt = O'th + G(Qt)dt

Linear to avoid round-trip arbitrage (Huberman & Stanzl, Gatheral)
(Schonbucher & Wilmott 2000: knock-out option--also need temporary impact)

G(O) = v
Po = Py + oW + v(Xe = Xo) | "™
1
Cost to execute net X shares = 5V X?

" quantitative 20



Temporary impact

We trade at P, + P,

P; depends on instantaneous trade rate 6;
Pt = Py + H(Qt)

Require finite instantaneous trade rate
= imperfect hedging

" quantitative
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Example: bid-ask spread

A
buy at ask
Pt--_l S
sell at bid —— -+~
. 1 Qt
P; = P; + 5 ssgn(0;)

“Linear’” model: cost to trade 0; At shares

1 1
Essgn(Gt) . QtAt = ES‘Qt‘At

" quantitative
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Solutions with

|deal Black-Scholes hedge

bid-ask spread cost

Davis & Norman, Shreve & Soner,

N

\

Target band e

S

Cvitanic, Cvitanic & Karatzas
‘l Tn I ’/j
f /

=

(no-trade region)

Actual hedge holding

q quantitative

t
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Critique of linear cost model

independent of trade size
not suitable for large traders

in practice, effective execution near midpoint
spread cost not consistent with modern cost models
liquidity takers act as liquidity providers

q quantitative 24



Proportional temporary cost model

pt = Pt + H(Qt)

H(0;)
,A

\ concave

(empirical)
\ 0
H(0) =0
. . 1
Linear for simplicity H(0) = EAQ
— Quadratic cost: H(O) - O At = L A O At

) quantitative

2
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Our solutions with proportional cost

Garleanu & Pedersen:
|deal Black-Scholes hedge investment with proportional cost

\ )‘»'\,h \,\’
‘\‘r" \
V

=

/
Temporary impact: hedge strategy

1 /.
\w /
Permanent impact: effect on underlying

Actual hedge holding
t
Ot

—K h(k(T —t)) - (X; — target)
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3. Formulation
Market model
T
Hedge holding: X, = X, + J 0, ds
0

P() + O'Wt + V(Xt—X())

Public market price: P;

Py + 1A9t

Private trade price: P, >

‘F: = filtration of W;

strategies measurable in

J quantitative
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Black-Scholes option value

g(T,p) = go(p) Final value specified

Intermediate values defined by Black-Scholes PDE

Def: g(t,p), t<T,peR

1
g + EO'Zg” = 0

A(t,p) = —g,(t,p) (what you want to hold to hedge)

> Tt p) = —A(tp) = g"(tp)

J quantitative
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g(t,p) = option payout to position holder
A(tsp) — _g,(t!p) r(tjp) — _A,(tsp) :g”(tsp)

g . g,
= > P > P
Short A>0 Short A < O
“ NO P‘/ [ <0
EA gA
A >0
~ong %O LO:\ >0
call >0 put —
> p —> P
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[ = sign and size of hedger’s option position

[ >0 (long the option)
g’ increasing in P
A decreasing in P
Permanent price impact pushes P toward you
Hedging is easy (unless you over-control)

[ <O (short the option)
g’ decreasing in P
A increasing in P
Permanent price impact pushes P away from you
Hedging is hard

q quantitative 30



Final portfolio value

T
Rt = g(T,PT) + X7tPr — J pt Qt At
/ N
Option value Portfolio value Cash spent

Mark to market
without transaction costs

Should include permanent 1 2
impact in liquidation cost: 2
We neglect: gives manipulation opportunities
dominated by risk aversion

J quantitative 31



Integrate by parts

T T
Rt = Ry + J (Xt -|—g/(t,Pt))dPt — %AJ Qtz At
0 0

T 1 T

Ry + J Y; dPt — —AJ Qtz dt
0 2 Jo

T

T
Ry + J YtO'th + J
0 0

oooooooooooooooooooooooooooooooooooo

positive when
Y¢, O same sign

Initial value: Ro = g(0,Py) + XoPy (constant)

Mis-hedge: Y =X; —A(t,P) = X + g (&, Pt)

" quantitative 3?2



Mean-variance evaluation

T T 1 T
Rt = Ry + J YtO'th + VJ Y; Qt At — zAJ Qtz dt
0 O 0

mis-hedge 1t = Ar + g (t,P) # 0

infinite

smooth o
variation

R7 1s random: optimize expectation and variance

T
ERT

T
Ry + V[EJ Ytgtdt — %A[EJ Qtzdt
0

0
Var R = complicated

) quantitative 33




Variance of Rt

Neglect uncertainty of market impact term
in comparison with price uncertainty

T T
VarRr = V = VarJ oY dW; = UZ[EJ Y,” dt
0 0

price impact of

Sma” pOI‘th|IO SiZe, or AX/ T e trading whole position
€¢ 99 —
market power == |
\ h
(Almgren/Lorenz 2007, Almgren 2012) O T ffgfwevilzgﬁfy

(“‘Mean-quadratic-variation” Forsyth et al 2012)
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Mean-"variance” objective

inf [
UG,

1
Risk aversion 5 %
1 ZJT , JT
'_')/()- }/i Cit:'_' A %
2 0 0
Running Permanent
mishedge impact

J quantitative

(T = option expiration)

1 T
Y; 0, dt + EAJ 07 dt
0

Temporary
Impact




Version 2: Overnight risk

T = market close today
T’ = market open tomorrow

T
RT' ZQ(T,,PTI) + XTPT/ — J Pt Qt dt
0

T
= Rr + Y7 (Pr — Pr) L [g,(t,Pt) - g’(T,PT)] AP
=Rt + Yr AP — E

APr, & have mean zero

" quantitative 36



Version 2 objective function

Random variables

& distribution depends only on Py
APr mean 0, independent of Fr

Terminal
¢ .~ mishedge

_ 1
nte| (1783
1 T T 1 T
+—y(72J Ytzdt—vJ Ythdt+—2\J 07 dt
2 0 0 2 Jo
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4. Solution

Value function: time {, price p, mis-hedge y

1

2
J(tp,y) = inf € 5y (Yo -g)

1 T T 1 T
+—;y02J Yszds—vf Y595d5+—)\J 0:ds
2 ' t 2 Jt

Pr=p, Y =Y

" quantitative



Dynamic programming

HJB PDE:
0 = jxglf{ %yazyz — yvO + %2\92 + Jr + (1+vD)0J, + v@],g}
+ %O'prp + 0T ],y + %O'Zrzfyy
— Ey(f o ﬁ[V(J’—JP) - (1 +Vr)fy]
+ Jr + %O'prp + 0T ],y + %(r?r?Jyy

optimal control

1

0 = 3 (vy = (L+vD)Jy = vJy)

" guantitative
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Ansatz: quadratic in y
1

J(t,p,y) = §Az(T—t)y2 + A(T—t,p)y + Ao(T — t,p)

\Az independent of price

not consistent unless A constant in p

/
Ay =yo? — S[v(1- A - (14 vD)Ao|
2
A=Ay + %[v(l A7) = (14T) Ay |
: [VA6 + (1 + vF)Al]
. 1 , 2
Ay = —ﬁ[mo +(1+vI)A, |

-2
2

+ 0 °T A A [FZAZ + A{)’]

" quantitative 40



Solvable in 2 special cases

(A) Constant gamma

g,(tspt) — g,(t!PO) r(Pt_PO)
[ measures position size and size

(B) No permanent impact

v = 0
(no feedback)

J quantitative 4|



(A) Constant [

Ay =0, AT -t,p) = Ao(Ty)
0 = —kh(k(1+VI)(T -1))Y,
/ ............................ e '\
| \
rate function of |
. , s nstantaneous
coefficient time remaining .
mishedge
time _[yor risk / temporary impact
constant K T A P 7 1imp

" quantitative

same as for optimal execution
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Gyof — v

(;' — ]_ + \}If ll{) — 2\
K

Need G =0 and ho = -
Permanent impact V not too big

tanh(x + tanh ' (hg)), -1 < ho <1
Iq,(:Xf) — ]—5 }l() — :1
coth(x + coth™ (hy)) ho > 1

A

hOH\
trade rate

| mishedge |
10L///”’———7
>
10 \ When h<0,trade K (1+VI) (T-t)

| to increase mishedge
q (near expiration when risk is low)
quantitative
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Summary of hedge strategy

Far from expiration,h=1 0t = —«kY,

Near expiration O = —khY;
h increases if overnight risk large
h decreases if overnight risk small
h becomes negative (!) if no overnight risk

q quantitative
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What happens to price process?

constant [
A(t,P;) = Ao —T'(P; — Py)

Y = Xt — A
= Xt — Xo +I'(Pr — Pp)

dynamic hedge 0; = —-kY; (h=1)

dX: = 0:dt
dPt = O'th + V@tdt

J quantitative
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Mis-hedge Jy, = dX, + I'dP;
= —k(1+vD)Yedt + ol dW;

t
Y, = OTJ o~ KL+VD)(L=5) gy

Y2y — 02T s A
O 2k(1+vD) 20 +vD) N yo?

Mean mis-hedge oc (temporary impact A)!/*

T T
Total liquidity cost = J AOFdt = J AK°Y,dt
0 0

0-21"2
K

As A—0, perfect hedge, cost—0

~ AKST ~ To3T2yl2 L2

) quantitative



What happens to price process!?
def: Zt — _V(Xt o XO) + (Pt o PO)
Az = odW; same as in P;

1
= Py A Y + 7/
0 1+VF(Vt t)

~
|

L
= Py A (Wt + er eK(“Vr)(tS)dWS)
0

\

modified / stationary
volatility o< 1/V/K

[ <0: hedger is short the option
| +VI <I|: overreaction, increased volatility
[ >0: hedger is long the option
q |+Vv[>1: underreaction, reduced volatility
quantitative
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“Signature plot”

unconditional (Fo)

1

2
E(P. — P
S—t(S t)
_< o
- \1 4T

Volatility measured
on time interval

At

q quantitative
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) (

(2

K = (1 +vIl)K

1 — e—k(s—t)
vI)vl
) K(s —t) )

1+ vl (<0

Ty >0

At
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Nondimensional parameter

1 + vI

price change due to market impact

shares executed

shares needed to adjust hedge
market price change

Problems unless |VI| =1

J quantitative
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Extensions

(B) General I, no permanent impact

0 = —kh(T —-1t)Y; + bias term

Restriction on sign of trading

0cO

solve numerically

" quantitative
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Restricted sign

I
[,
[’
y ’ "" 0.0 ’
Unrestricted Restricted
strategy strategy

q quantitative S|




5.Applications

Price pinning to strike near expiration

if hedgers are net long I

local asymptotics near strike and expiry

Intraday volume patterns
hedge near open and close

40000

30000

20000 |

10000 | It

0
q 9:30 AM
quantitative
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Discrete-time hedging

o|f evaluate at start of interval At

v—(1+vD)GA>

trade rate —
0 A

leads to overshoot and sawtooth pattern

*Full optimization gives “implicit” scheme

v—(1+vD)GA>

0 = A+ (1 +vID)2ArAL Y

J quantitative
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Conclusions

Simple market impact model
temporary/permanent
linear model

Explicit solution (at least for constant [)
hedge position tracks toward Black-Scholes

Large hedger can change volatility
market impact on implied and realized volatility

q quantitative
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