
Robert Almgren

Option Hedging
with Market Impact

New York University
Courant Institute of Mathematical Sciences

Fields Institute,  October 2013



Outline
1. Background and previous work

2. The problem

3. Formulation

4. Solution

5. Examples and applications

2

Work with Tianhui Michael Li
Princeton: Bendheim Center and ORFE



3

...

Equity price swings on July 19 2012
(one day prior to options expiration)

http://www.bloomberg.com/news/2012-07-20/hourly-price-swings-whipsaw-investors-in-ibm-coke-mcdonald-s.html

Marko Kolanovic, global head of derivatives and quantitative strategy at JPMorgan & Chase Co

http://www.bloomberg.com/news/2012-07-20/hourly-price-swings-whipsaw-investors-in-ibm-coke-mcdonald-s.html
http://www.bloomberg.com/news/2012-07-20/hourly-price-swings-whipsaw-investors-in-ibm-coke-mcdonald-s.html


4

 
CA CHEUVREUX QUANTITATIVE RESEARCH 

  

QUANT NOTE 

 
 

28th of August, 2012

www.cheuvreux.com 

What does the saw-tooth pattern on 
US markets on 19 July 2012 tell us 
about the price formation process 
The saw-tooth patterns observed on four US securities on 19 July provide us with an opportunity to comment on 
common beliefs regarding the market impact of large trades; its usual smoothness and amplitude, the subsequent 
“reversal” phase, and the generic nature of market impact models. 
This underscores the importance of taking into account the motivation behind a large trade in order to optimise it 
properly, as we already emphasised in Navigating Liquidity 6. 
 
We used different intraday analytics to work out what happened: pattern-matching techniques, market impact 
models, order flow imbalances and PnL computations of potential stat. arb intraday strategies. After looking at open 
interests of derivatives on these stocks, we conclude that repetitive automated hedging of large-exposure derivatives 
lay behind this behaviour. This is an opportunity to understand how a very crude trading algorithm can impact the 
price formation process ten times more than is usually the case. 
 

FIGURE 1: SAWTOOTH PATTERNS ON COCA-COLA, 
MCDONALD'S, IBM AND APPLE ON 19 JULY 2012 
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The market impact is one of the main 
factors of the price formation process 
 

Strange patterns were observed on four large cap US 
stocks (Coca-Cola, McDonald's, IBM and Apple) on 19 July 
2012. A few days later the “Knight Algorithm Went Crazy” 
issue eclipsed this strange phenomenon, by raising the 
usual concerns about the current market microstructure, 
the integrity of the price formation process, etc. 
 

We have been hearing such complaints for years now 
(during the public hearing in MiFID Review in September 
2010, after the SEC issued a concept release seeking 
comment on the structure of equity markets in January 
2010). What has changed? Not much: we continue to 
observe glitches on US markets, and the MiFID review in 
Europe has been under discussion for months, with no 
clear agenda about elements as crucial as the tick size. 
 

We look at the events of 19 July to learn more about the 
price formation process. Our intention here is not to merely 
say that the way a (reputed) fair price is formed, thanks to 
matching of supply and demand, is simple. The roots of its 
mechanism are not very difficult to understand. Its 
complexity stems from the way they combine. 
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Q Repetitive delta hedging seems to be the most plausible explanation 

Options stucturers and market-makers need to delta hedge their positions in order to offset their market exposure. So-called 
"dynamic hedging" flows can create strong selling or buying pressure, which might impact market prices. These flows can 
reduce or increase stock volatility depending on the hedgers' positions. 
 
If market-makers are selling vanilla options to long-only managers, then dynamic hedging will tend to increase stock volatility. 
This phenomenon can be particularly strong when the options get close to maturity. Intuitively, this result can be understood by 
considering for example that a call option seller who delta hedges his position will have to buy stocks in order to deliver them to 
the option buyer. He will thus positively impact the underlying stock price. This behaviour cannot logically explain a price 
reversal. 
 
Conversely, when market makers buy vanilla options from long only managers (through call overwriting for example), then 
dynamic hedging tends to reduce stock volatility. This phenomenon is called "pinning" for short-term options. Nevertheless, 
when open interests and the gamma are very large, hedging flow impacts can be very significant. 
 
 

FIGURE 18: SAW-TOOTH ON COCA-COLA AND 77.50 CALL 
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19 July 2012: the derivative hedging scenario 

Consider Coca-Cola on 19 July (FIGURE 18 and FIGURE 19) the VWAP was 77.24. Large open interests (20 556) on the 77.5 
July Call and on the 75 July Put (13 477) were observed. For a 1% price change on Coca-Cola, delta hedging of the total 
number of open interests would imply a trading of 1.1 million shares, 12% of the volume on 19 July. This particularly high 
number was due to three elements: the size of the open positions, the fact that the stock trades next to the option strike, 
and the 1-day remaining maturity. 
 
On that particular day the price fluctuated 10 times, nearly every thirty minutes, with a 0.8% average move. Also, the traded 
volume amounted to 9.0 million shares. This means that the total hedging of those options would have represented nearly 100% 
of the total daily volume. This shows that delta-hedging can constitute a very large share of Coca-Cola's trading volume. 
It is important to note that the total open interest on listed options does not necessarily imply that delta hedging will occur on 
this total underlying notional. The net delta hedging notional will correspond to the net volatility positions of the long only 
players. Usually long only funds will sell volatility through call overwriting, they could also buy volatility through calls or puts to 
take advantage of their directional views.  
 
In qualitative terms, these counter-cyclical hedging flows can create a strong impact on prices. This situation has also been 
observed for McDonald's, IBM and Apple where sizes of open interests in listed options are large. 
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We present a more detailed explanation in the table below (FIGURE 21), which illustrates the delta-hedging pressure on the four 
stocks at each peak of the saw-tooth pattern. We assume that for the two strikes closest to the money Calls and Puts of July 
2012, the share of the delta hedged options stands at 100% of the open interest. This gives us theoretical maximum delta 
hedging flows. 
 
Thanks to the volume analysis carried out initially that showed a 20-30% volume participation, we estimate that the real fraction 
of the hedged options of the four stocks ranged from 30% to 50%. For Apple, dynamic hedging seems to constitute a smaller 
portion of the volumes. This is consistent with the Apple's less-pronounced saw-tooth pattern.  
 

FIGURE 21: PERIODIC DELTA HEDGING PROCESS ON 4 STOCKS ON JULY THE 19 

100% Option hedging Coke Mac Donald's IBM Apple
Sawtooth Timetable Price chg Gamma Price chg Gamma Price chg Gamma Price chg Gamma

From To (%) (Shares  to trade) (%) (Shares to trade) (%) (Shares to trade) (%) (Shares  to trade)

9:30 AM 10:00 AM -1.2% 1 277 419 -0.4% 172 786 -0.8% 535 032 -0.7% 653 595

10:00 AM 10:30 AM 0.8% -836 500 0.8% -303 688 1.0% -718 870 0.7% -657 895

10:30 AM 11:00 AM -0.8% 853 816 -0.6% 258 342 -1.0% 711 563 -0.3% 326 797

11:00 AM 11:30 AM 0.9% -1 003 911 0.8% -303 359 0.6% -449 294 0.3% -327 869

11:30 AM 12:00 PM -0.8% 852 713 -0.5% 215 054 -0.6% 446 429 -0.2% 163 399

12:00 PM 12:30 PM 0.9% -1 002 604 0.9% -345 946 0.9% -629 012 0.5% -490 998

12:30 PM 1:00 PM -0.8% 851 613 -0.8% 300 107 -0.8% 534 351 -0.3% 285 016

1:00 PM 1:30 PM 0.7% -715 215 0.6% -259 179 0.8% -538 462 0.4% -449 163

1:30 PM 2:00 PM -0.4% 426 357 -0.8% 300 429 -0.8% 534 351 -0.4% 406 504

2:00 PM 2:30 PM 0.5% -570 687 0.5% -216 216 0.8% -538 462 0.4% -408 163

2:30 PM 3:00 PM -0.4% 425 806 -0.4% 172 043 -0.8% 534 351 -0.4% 365 854

3:00 PM 3:30 PM 0.4% -427 461 0.3% -129 590 0.5% -358 974 0.4% -367 197

3:30 PM 4:00 PM -0.1% 141 935 -0.2% 86 114 -0.5% 357 143 -0.2% 162 602

Total  (Absolute nb of shares) 9 386 039 3 062 853 6 886 293 5 065 052

 Hedging / dai ly volume (%) 104% 41% 66% 32%
Source: Crédit Agricole Cheuvreux Quantitative Research 

When the gamma is very large and the hedging process very crude, stock pinning can even forge a saw-tooth effect 
 
On a very short-term maturity, large delta hedging concentrated around specific strikes can impact prices. When some delta 
hedgers represent a large share of the open interest, this phenomenon can be very significant. This is what academics call 
"pinning", it should drive prices back to their strikes. Nevertheless, when delta hedging is combined with a simplistic 
execution process "pinning" can degenerate into "saw-tooth" effects. 
 
Simplistic hedging of large gamma options is a plausible explanation for the "saw-tooth" trading pattern. This 
explanation is consistent with the main features of this phenomenon: timing, aggressiveness, impact, predictability and 
information leakage which is what characterises those "saw-tooth" patterns. Fortunately, large option positions are most often 
managed dynamically in a continuous way, and discrete archaic hedging processes have almost disappeared in modern-day 
markets. 
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FIGURE 19: LONG VOLATILITY DELTA HEDGING 
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The reverting dynamic explained by a periodic operational process 

While many farfetched explanations can be advanced for the "saw-tooth effect" on Coca-Cola, McDonald's, Apple and IBM. 
Adhering to the Occam's Razor principle, we favour this simple explanation: the sudden use of a rigid repetitive operational 
process for delta hedging these four stocks. 
 
Suppose a trader has to follow an existing option book without having full real-time access to his monitoring and execution tool, 
or that he cannot dedicate all his time to this task and therefore chooses to monitor this book every thirty minutes. 
 
Repetitive Delta hedging process 
 

x Step 1) t0 = (initial time) 

o Price the options, compute the delta on the new spot price 

o Evaluate the total amount of stocks needed for the delta hedge 

o Send the orders to the market. 

 

x Step 2): TWAP execution over 30 min 

 

x Back to Step 1) t1 = (initial time+30min)  
 
For a very large open interest position encompassing a large gamma, a significant move in the stock price will have 
disastrous effects for a basic rudimental hedger such as the one described above. 
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(we show how to do this better)
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Abstract
We propose a model to describe stock pinning on option expiration dates. We
argue that if the open interest on a particular contract is unusually large,
delta-hedging in aggregate by floor market-makers can impact the stock price
and drive it to the strike price of the option. We derive a stochastic
differential equation for the stock price which has a singular drift that
accounts for the price-impact of delta-hedging. According to this model, the
stock price has a finite probability of pinning at a strike. We calculate
analytically and numerically this probability in terms of the volatility of the
stock, the time-to-maturity, the open interest for the option under
consideration and a ‘price elasticity’ constant that models price impact.

1. Introduction
This paper analyses a phenomenon observed in equity options
markets known as ‘stock pinning’. Only minutes before
options expire, many stock prices are near or at option strike
prices. For some stocks, the subsequent evolution of the price
until expiration is remarkably different from a random walk.
Stock prices will experience a sudden rush to the vicinity of
the strike, coupled with the appearance of an unusually high
availability of stock offered just above the strike price and
similar large size bid just below the strike. Unless important
stock-specific news reaches the market, these stocks become
pinned, i.e. the closing price at expiration will be within a few
cents from the strike price.

Historically and, in particular, during the speculative
bubble of the late 1990s, traders saw frequent pinning in
technology stocks such as Microsoft and Intel. With open
interest being very high in several strikes, and with high stock
prices and high volatility, several strikes would be ‘visited’ in
a single day. Pinning became apparent only at the very end
of the option’s lifetime. Krishnan and Nelken (2001) present

significant statistical evidence of pinning of Microsoft stock
using historical data.

More recently, hedge funds have engaged in trades
consisting of selling thousands of put or call options on the
same strike in stocks that have normally a much smaller open
interest. One example of this activity occurred in the stock
J D Edwards (JDEC, option symbol QJD) in 2001. Typical
front-month open interests in JDEC are on the order of a
few hundred contracts. Nevertheless, over a period of six
expirations in 2001, the same hedge fund sold repeatedly more
than 25 000 contracts on a single strike in the front-month
expiration each time. The stock actually pinned at that strike
four out of the six times (see figure 1).

It is impossible to determine in advance which stocks
may become pinned. Nevertheless, certain conditions can be
associated with pinning. Foremost, the open interest, which
counts the number of outstanding contracts corresponding
to a particular strike, is often unusually large. These huge
open interests can be as high as 20 or 30 thousand contracts
in stocks that average less that 1000 open contracts on any
line. ln these circumstances, floor market-makers may act as

1469-7688/03/060417+09$30.00 © 2003 IOP Publishing Ltd PII: S1469-7688(03)61016-X 417
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Figure 4. Pinning probability as a function of the parameter β, with
α = 0. We display results corresponding to two different starting
points (z0 = 0.0, z0 = 0.5).
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Figure 5. Pinning probability as a function of z0 computed by
Monte Carlo simulation with the adaptive time-step. We use
β = 0.1.

of the graph is consistent with the fact that the distribution has
a discrete mass at z(1) = 0, i.e. to pinning. The size of the
jump corresponds to the pinning probability.

4. A closed-form solution for the pinning
probability

In this section, we show that the pinning probability can be
computed exactly if a = µ + 1

2σ 2 = 0. In the appendix,
we give an approximate expression for the pinning probability
which is valid for all values of a.

We consider the backward Fokker–Planck equation
associated with the stochastic differential equation (4). We
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Figure 6. Cumulative probability distribution function computed
by Monte Carlo simulation. The step corresponds to the fact that a
finite fraction of the paths is pinned at the strike.

Table 1. Pinning probability as a function of z0 for β = 0.1.

z0 p (%) z0 p (%)

0.1 17.6 1.1 10.0
0.2 17.4 1.2 9.2
0.3 17.0 1.3 8.0
0.4 16.7 1.4 7.0
0.5 16.5 1.5 6.1
0.6 15.2 1.6 5.2
0.7 14.7 1.7 4.5
0.8 13.6 1.8 3.7
0.9 12.5 1.9 3.3
1.0 11.1 2.0 2.6

assume that a = µ + 1
2σ 2 = 0. In this case, the equation is

∂F

∂t
+

1
2

∂2F

∂z2
− βz

τ 3/2
e− z2

2τ
∂F

∂z
= 0, τ = 1 − t. (5)

We seek solutions of the form

F(z, t) = eφ( z√
τ
)/

√
τ
,

where φ(ς) is an as yet unknown function. Substitution in
equation (5) gives rise to the following equation for φ(ς):

φ + ςφ′ + φ′′

2τ 3/2
+

(φ′)2 − 2βςφ′e− ς2

2

2τ 2
= 0.

The equation corresponding to the term of order τ−2 is the
eikonal equation

(φ′)2 − 2βςφ′e− ς2

2 = 0,

which admits the general solution

φ(ς) = −2βe− ς2

2 + c,

where c is an arbitrary constant. Substituting this expression
into the term of order τ−3/2 in the Fokker–Planck equation, we
find that

φ + ςφ′ + φ′′ = c.
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pinning probability associated with a large sale of options by
an institution.

Conclusions are presented in section 6. The appendix
contains the more technical mathematical considerations,
including rigorous proofs of pinning and estimates for the
pinning probabilities.

2. The model
We assume that the trade size impacts stock prices according
to the price elasticity equation

!S

S
= EQ, (1)

where Q represents the number of shares traded, S is the stock
price, !S is the change in stock price associated with a trade
of size Q and E is a stock-specific proportionality constant
(the price-demand elasticity). Here, Q is a signed quantity,
with positive Q representing excess demand and negative Q

representing excess supply of stock.
We apply this situation to the case in which the

supply/demand for stock is driven by dynamic hedgers having,
in aggregate, a long position in n straddles with the same strike
price and expiration. Let δ(S, τ ) represent the delta of a call
as a function of the current stock price and time to expiration.
The price impact over a small time interval of length !t caused
by the incremental supply/demand for deltas is, from (1),

!S

S
= −En

∂δ(S, τ )

∂t
!t = En

∂δ(S, τ )

∂τ
!t.

A first-order approximation for the value of the delta is given
by the Black–Scholes formula

δ(S, τ ) = 2N(d1)

with

d1 = 1
σ
√

τ

(
ln

(
S

K

)
+

(
µ +

1
2
σ 2

)
τ

)
,

where N(x) is the cumulative standard normal distribution
function, σ is the implied volatility, S is the spot price, K

is the strike price and µ is the rate of carry (interest rate minus
dividend rate). Differentiating δ(S, τ ) with respect to τ , we
obtain

∂δ(S, τ )

∂τ
= 1√

2π
e− d2

1
2

(
− 1

στ 3/2
ln

(
S

K

)
+

µ + 1
2σ 2

2σ
√

τ

)
.

This expression can be simplified by introducing the variable

y = ln
(

S

K

)
, (2)

and setting
a = µ + 1

2σ 2,

whereby

∂δ(S, τ )

∂τ
= − 1√

2π

y − aτ

στ 3/2
e− (y+aτ )2

2σ2τ .

We now derive a stochastic differential equation for y.
For this purpose, we assume that the changes in stock price
are driven by the price elasticity relation, with an additional
noise representing exogenous price fluctuations. Accordingly,
the instantaneous returns satisfy the stochastic differential
equation

dS

S
= nE

∂δ(S, τ )

∂τ
dt + σ dW

where W is a standard Brownian motion. Applying Ito’s
formula to expression (2) we conclude that

dy = − nE√
2π

y − aτ

στ 3/2
e− (y+aτ )2

2σ2τ dt + σ dW.

Introducing the expiration time T , we obtain

dy = − nE√
2π

y − a(T − t)

σ (T − t)3/2
e− (y+a(T −t))2

2σ2(T −t) dt + σ dW. (3)

Notice that if n = 0, this equation reduces to dy = σ dW ,
which has solution y = ln( S0

K
) + σW(t). This corresponds to

the classical log-normal distribution.
If n > 0, the drift term

− nE√
2π

y − a(T − t)

σ (T − t)3/2
e− (y+a(T −t))2

2σ2(T −t)

becomes singular as t → T . The effect of this singularity is

that the numerator (y −a(T − t))e− (y+a(T −t))2

2σ2(T −t) must vanish as we
approach the expiration date. In order for this to happen, we

must have either e− (y+a(T −t))2

2σ2(T −t) $ 1, which means that the log-
price process ‘escapes’ the range of the force through diffusion
or, alternatively, that y − a(T − t) $ 1, which is consistent
with stock pinning. In the latter case, the price process is
‘trapped’ near the strike due to supply of stock above the strike
price and demand for stock below the strike price.

Before analysing the dynamics of the process further, it is
useful to express equation (3) in dimensionless variables. We
set

z = y

σ
√

T
, s = t

T
.

Rewriting the equation in these variables, we obtain

dz = −β(z − α(1 − s))

(1 − s)3/2
e− (z+α(1−s))2

2(1−s) ds + dW̃ ,

0 < s < 1,

(4)

where W̃ is a standard Brownian motion and α = a
√

T
σ

.
This shows that there are three parameters that determine the
pinning probability and the dynamics:

z0 = y0

σ
√

T
= 1

σ
√

T
ln

(
S0

K

)
, α = a

√
T

σ
,

and

β = nE√
2πσ 2T

.

The parameter z0 is the dimensionless logarithmic ‘distance’
between the price of the stock and the strike, the second
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This paper investigates the effect of hedging strategies on the so-called pinning effect, i.e. the
tendency of stock’s prices to close near the strike price of heavily traded options as the
expiration date nears. In the paper we extend the analysis of Avellaneda and Lipkin, who
propose an explanation of stock pinning in terms of delta hedging strategies for long option
positions. We adopt a model introduced by Frey and Stremme and show that, under the
original assumptions of the model, pinning is driven by two effects: a hedging-dependent drift
term that pushes the stock price toward the strike price and a hedging-dependent volatility
term that constrains the stock price near the strike as it approaches it. Finally, we show that
pinning can be generated by simulating trading in a double auction market. Pinning in the
microstructure model is consistent with the Frey and Stremme model when both discrete
hedging and stochastic impact are taken into account.

Keywords: Hedging strategies; Pinning effect; Microstrucutre modeling

1. Introduction

Financial mathematics models are typically based on the
assumption that markets are complete, frictionless and
perfectly liquid, the last implying that investors can trade
large volumes of stocks without affecting their prices.
Each of these assumptions has been questioned in the
literature. In particular, a number of papers (Frey and
Stremme 1997, 2000, Platen and Schweizer 1998,
Schonbucher and Wilmott 2000) have concentrated on
the feedback effects of dynamic hedging strategies in
illiquid markets. These papers focus on the impact of
options’ hedging strategies on the volatility of the
underlying asset and relate the smile pattern of implied
volatility to the lack of liquidity. In this paper we analyse
the impact of option hedging strategies on both the
drift and the volatility of the underlying asset price and
show that dynamic hedging can be responsible for the

pinning effect, i.e. the tendency of stock’s prices to close
near the strike price of heavily traded options (in the same
stock) as the expiration date nears.

A thorough analysis of the pinning effect has been
provided by Ni et al. (2005), who analyse data from the
Ivy DB dataset and from a second dataset obtained
from the CBOE, from 1996 to 2002. The authors show
that, over this period, optionable stocks (i.e. stocks with
listed options) close near the strike prices on expiration
dates, both when the likely delta hedgers have net
purchased option positions and net written option
positions. There is no corresponding effect for non-
optionable stocks.y Moreover, as the expiration date
approaches, the pinning effect increases when hedgers
have net long option positions, but it decreases when
delta hedgers have net short option positions. Thus the
authors conclude that when traders have net long
positions delta hedging does contribute to the pinning.z

*Corresponding author. Email: marc.jeannin@gmail.com
yThe CBOE database used by Ni et al. provides information, for each transaction, on whether the two parties trading are market
makers, public customers, or firm proprietary traders. By assuming that the public customers do not hedge their option portfolio,
Ni et al. infer from this database if the hedgers’ overall net position is long or short.
zNote that it is common practice for institutional investors to hedge both long and short option positions.

Quantitative Finance
ISSN 1469–7688 print/ISSN 1469–7696 online ! 2008 Taylor & Francis

http://www.informaworld.com
DOI: 10.1080/14697680701881763

D
ow

nl
oa

de
d 

by
 [N

ew
 Y

or
k 

U
ni

ve
rs

ity
] a

t 0
8:

29
 0

9 
Ja

nu
ar

y 
20

13
 

Quantitative Finance, Vol. 8, No. 8, December 2008, 823–831

Modeling stock pinning

MARC JEANNIN*yz, GIULIA IORIx and DAVID SAMUEL{

yDepartment of Mathematics, King’s College London, The Strand, WC2Y 2LS London, UK
zModels and Methodology Group, Nomura International plc, 1 St Martin’s-le-Grand, EC1A 4NP London, UK

xDepartment of Economics, City University, Northampton Square, EC1V 0HB London, UK
{Royal Bank of Scotland, Global Banking and Markets, 135 Bishopsgate, EC2M 3UR London, UK

(Received 30 May 2006; in final form 30 November 2007)

This paper investigates the effect of hedging strategies on the so-called pinning effect, i.e. the
tendency of stock’s prices to close near the strike price of heavily traded options as the
expiration date nears. In the paper we extend the analysis of Avellaneda and Lipkin, who
propose an explanation of stock pinning in terms of delta hedging strategies for long option
positions. We adopt a model introduced by Frey and Stremme and show that, under the
original assumptions of the model, pinning is driven by two effects: a hedging-dependent drift
term that pushes the stock price toward the strike price and a hedging-dependent volatility
term that constrains the stock price near the strike as it approaches it. Finally, we show that
pinning can be generated by simulating trading in a double auction market. Pinning in the
microstructure model is consistent with the Frey and Stremme model when both discrete
hedging and stochastic impact are taken into account.

Keywords: Hedging strategies; Pinning effect; Microstrucutre modeling

1. Introduction

Financial mathematics models are typically based on the
assumption that markets are complete, frictionless and
perfectly liquid, the last implying that investors can trade
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Schonbucher and Wilmott 2000) have concentrated on
the feedback effects of dynamic hedging strategies in
illiquid markets. These papers focus on the impact of
options’ hedging strategies on the volatility of the
underlying asset and relate the smile pattern of implied
volatility to the lack of liquidity. In this paper we analyse
the impact of option hedging strategies on both the
drift and the volatility of the underlying asset price and
show that dynamic hedging can be responsible for the

pinning effect, i.e. the tendency of stock’s prices to close
near the strike price of heavily traded options (in the same
stock) as the expiration date nears.

A thorough analysis of the pinning effect has been
provided by Ni et al. (2005), who analyse data from the
Ivy DB dataset and from a second dataset obtained
from the CBOE, from 1996 to 2002. The authors show
that, over this period, optionable stocks (i.e. stocks with
listed options) close near the strike prices on expiration
dates, both when the likely delta hedgers have net
purchased option positions and net written option
positions. There is no corresponding effect for non-
optionable stocks.y Moreover, as the expiration date
approaches, the pinning effect increases when hedgers
have net long option positions, but it decreases when
delta hedgers have net short option positions. Thus the
authors conclude that when traders have net long
positions delta hedging does contribute to the pinning.z
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have the opposite effect, thus pushing the stock price
away from the strike.

Frey and Stremme instead consider all the terms in the
delta expansion in equation (3) and obtain

dSðtÞ ¼ nL̂SðtÞ @!
@S

dSðtÞ þ nL̂SðtÞ @!
@t

dtþ 1

2

@2!

@S2
d SðtÞ
! "# $

þ !SðtÞ dWðtÞ,

or, equivalently,

dSðtÞ ¼ nL̂SðtÞ

1% nL̂SðtÞð@!=@S Þ
% & @!

@t
dtþ 1

2

@2!

@S2
d SðtÞ
! "# $

þ !SðtÞ dWðtÞ
1% nL̂SðtÞð@!=@S Þ

:

Thus the stock price still follows a diffusion process,

dSðtÞ ¼ bðt,SðtÞÞSðtÞ dtþ vðt,SðtÞÞSðtÞdWðtÞ, ð6Þ

but with a new drift and volatility given by

bðt,SðtÞÞ ¼ nL̂

1% nL̂SðtÞð@!=@S Þ

& @!

@t
þ 1

2

@2!

@S2

!2S2ðtÞ

1% nL̂SðtÞð@!=@S Þ
h i2

8
><

>:

9
>=

>;
,

and

vðt,SðtÞÞ ¼ !

1% nL̂SðtÞð@!=@S Þ
:

Hence the dynamic hedging strategy generates not
only a change in the drift term, as suggested by
Avellaneda and Lipkin, but also a change in the volatility
term (which is constant in the Avellaneda and Lipkin
model).y

Furthermore, the drift term b(t,S(t)) incorporates both
the Delta time decay and the Delta convexity. This drift
term is plotted in figure 2 (right) as a function of y for

different values of L̂ . The denominator on the rhs of the
equation for b(t,S ) is always positive since we assume
that traders hedge a long option position. For L̂
sufficiently large, or sufficiently close to maturity, the
drift term changes sign around y¼ 1 and generates
pinning. When L̂! 0, v(t,S(t))! ! and

bðt,SðtÞÞ! @!

@t
þ 1

2

@2!

@S2
!2S2ðtÞ ¼ nðd1Þ!ffiffiffiffiffiffiffiffiffiffiffi

T% t
p 40,

in which case pinning does not arise. The volatility term
reaches its minimum value for y¼ 1, i.e. when S is close to
the strike, as shown in figure 2 (left). As L̂ increases, the
volatility term v decreases further, reducing random
deviation from the strike. Furthermore, as we approach
the maturity date the drift term becomes stronger close to
strike, while the volatility (figure 3 (left)) becomes smaller.
The combined effect of these terms is not only to drive the
price towards the strike, but also to keep it closer to the
strike as it approaches it.

To calculate the pinning probability we solve the Frey
and Stremme model numerically. Given equation (6), the
probability density function p(t, y) of being at y at time t
satisfies the forward Kolmogorov equation:

@pðt, yÞ
@t
¼ 1

2

@2pðt, yÞ
@y2

vðt, yÞ2 % @pðt, yÞ
@y

bðt, yÞ, ð7Þ

with initial condition the delta function "(#0, y0)¼ 1.
Equation (7) can be solved using an implicit scheme
with an adjusted mesh as we approach maturity due to the
singularity at y¼ 1 and #¼ 0.

Figure 4 shows the solution of the Kolmogorov
equation with initial conditions #0¼ 5 days before
maturity and y0¼ 1.04. On the left we plot the solution
for the Frey and Stremme model and on the right the
solution for the Avellaneda and Lipkin model. We see
that, in both cases, the solution becomes bimodal as nL
increases with a pronounced pick at y¼ 1. Hence both
models can explain pinning as driven by hedging long call
positions, but the effect is stronger in the Avellaneda
and Lipkin model (3.5%) than in the Frey and Sremme
model (1.8%). Ni et al. estimate that pinning affects 2%
of optionable stocks. Our choices of parameters give, in
both cases, values comparable to the empirical result.

A strong assumption behind the Frey and Stremme
model (as well as the Avellaneda and Lipkin model) is
that hedgers rebalance their positions continuously.
If hedging is discrete, the changes in ! on the rebalancing
dates would normally be larger than when rebalancing is
continuous. The price process in this case would be better
modelled as a jump diffusion process, which we write as

dSðtÞ ¼ $SðtÞdtþ nL̂SðtÞJðSðtÞ, tÞ þ !SðtÞ dWðtÞ, ð8Þ

where

JðSðtÞ, tÞ ¼ 1AðtÞ !ðSðtkÞ, tkð Þ %!ðSðtk%1Þ, tk%1ÞÞ, if tk2A,
ð9Þ
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y
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6
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 (y

,s
,t

)/∂
t

Figure 1. Time decay as a function of y¼S/K for #¼ 5 days,
!¼ 0.16 and a¼ 0.

yIn the Avellaned and Lipkin model, nonetheless, the pinning strength has the effect of reducing implied volatilities of options on
the same months, with adjacent strikes, and of those of adjacent months.
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added relative to Avellaneda & Lipkin

have the opposite effect, thus pushing the stock price
away from the strike.

Frey and Stremme instead consider all the terms in the
delta expansion in equation (3) and obtain

dSðtÞ ¼ nL̂SðtÞ @!
@S

dSðtÞ þ nL̂SðtÞ @!
@t

dtþ 1

2

@2!

@S2
d SðtÞ
! "# $

þ !SðtÞ dWðtÞ,

or, equivalently,

dSðtÞ ¼ nL̂SðtÞ

1% nL̂SðtÞð@!=@S Þ
% & @!

@t
dtþ 1

2

@2!

@S2
d SðtÞ
! "# $

þ !SðtÞ dWðtÞ
1% nL̂SðtÞð@!=@S Þ

:

Thus the stock price still follows a diffusion process,

dSðtÞ ¼ bðt,SðtÞÞSðtÞ dtþ vðt,SðtÞÞSðtÞdWðtÞ, ð6Þ

but with a new drift and volatility given by

bðt,SðtÞÞ ¼ nL̂

1% nL̂SðtÞð@!=@S Þ

& @!

@t
þ 1

2

@2!

@S2

!2S2ðtÞ

1% nL̂SðtÞð@!=@S Þ
h i2

8
><

>:

9
>=

>;
,

and

vðt,SðtÞÞ ¼ !

1% nL̂SðtÞð@!=@S Þ
:

Hence the dynamic hedging strategy generates not
only a change in the drift term, as suggested by
Avellaneda and Lipkin, but also a change in the volatility
term (which is constant in the Avellaneda and Lipkin
model).y

Furthermore, the drift term b(t,S(t)) incorporates both
the Delta time decay and the Delta convexity. This drift
term is plotted in figure 2 (right) as a function of y for

different values of L̂ . The denominator on the rhs of the
equation for b(t,S ) is always positive since we assume
that traders hedge a long option position. For L̂
sufficiently large, or sufficiently close to maturity, the
drift term changes sign around y¼ 1 and generates
pinning. When L̂! 0, v(t,S(t))! ! and

bðt,SðtÞÞ! @!

@t
þ 1

2

@2!

@S2
!2S2ðtÞ ¼ nðd1Þ!ffiffiffiffiffiffiffiffiffiffiffi

T% t
p 40,

in which case pinning does not arise. The volatility term
reaches its minimum value for y¼ 1, i.e. when S is close to
the strike, as shown in figure 2 (left). As L̂ increases, the
volatility term v decreases further, reducing random
deviation from the strike. Furthermore, as we approach
the maturity date the drift term becomes stronger close to
strike, while the volatility (figure 3 (left)) becomes smaller.
The combined effect of these terms is not only to drive the
price towards the strike, but also to keep it closer to the
strike as it approaches it.

To calculate the pinning probability we solve the Frey
and Stremme model numerically. Given equation (6), the
probability density function p(t, y) of being at y at time t
satisfies the forward Kolmogorov equation:

@pðt, yÞ
@t
¼ 1

2

@2pðt, yÞ
@y2

vðt, yÞ2 % @pðt, yÞ
@y

bðt, yÞ, ð7Þ

with initial condition the delta function "(#0, y0)¼ 1.
Equation (7) can be solved using an implicit scheme
with an adjusted mesh as we approach maturity due to the
singularity at y¼ 1 and #¼ 0.

Figure 4 shows the solution of the Kolmogorov
equation with initial conditions #0¼ 5 days before
maturity and y0¼ 1.04. On the left we plot the solution
for the Frey and Stremme model and on the right the
solution for the Avellaneda and Lipkin model. We see
that, in both cases, the solution becomes bimodal as nL
increases with a pronounced pick at y¼ 1. Hence both
models can explain pinning as driven by hedging long call
positions, but the effect is stronger in the Avellaneda
and Lipkin model (3.5%) than in the Frey and Sremme
model (1.8%). Ni et al. estimate that pinning affects 2%
of optionable stocks. Our choices of parameters give, in
both cases, values comparable to the empirical result.

A strong assumption behind the Frey and Stremme
model (as well as the Avellaneda and Lipkin model) is
that hedgers rebalance their positions continuously.
If hedging is discrete, the changes in ! on the rebalancing
dates would normally be larger than when rebalancing is
continuous. The price process in this case would be better
modelled as a jump diffusion process, which we write as

dSðtÞ ¼ $SðtÞdtþ nL̂SðtÞJðSðtÞ, tÞ þ !SðtÞ dWðtÞ, ð8Þ

where

JðSðtÞ, tÞ ¼ 1AðtÞ !ðSðtkÞ, tkð Þ %!ðSðtk%1Þ, tk%1ÞÞ, if tk2A,
ð9Þ
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Figure 1. Time decay as a function of y¼S/K for #¼ 5 days,
!¼ 0.16 and a¼ 0.

yIn the Avellaned and Lipkin model, nonetheless, the pinning strength has the effect of reducing implied volatilities of options on
the same months, with adjacent strikes, and of those of adjacent months.
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modified volatility

On the contrary, when traders have net short positions,
they suggest the pinning effect is driven by stock
manipulation. Evidence of pinning is provided also
by Krishnan and Nelken (2001) and Avellaneda and
Lipkin (2003).

Avellaneda and Lipkin (2003) introduce the first
pinning model by suggesting that stock pinning can be
induced by delta hedging long option positions. In our
paper we extend their analysis following the approach of
Frey and Sremme (1997, 2000). Frey and Stremme (1997)
considered the case of investors who hedge a short
options position, which results in positive feedback and
hence a de-stabilizing effect around the option’s strike.
In contrast, Platen and Schweizer (1998) obtained a
feedback model that is consistent with pinning, but their
resulting equilibrium is highly unstable due to the
assumptions that the demand of non-hedgers is increasing
in price. Here, we adapt the Frey and Stremme formula-
tion of the problem to the case where investors hedge a
long options position.

Both the Frey and Stremme and Avellaneda and Lipkin
models make a number of assumptions on the dynamics
of prices, on continuous hedging and on the price impact
shape. We release some of the assumptions in the original
Frey and Stremme model and study pinning also when
hedging is discrete and liquidity is stochastic. We show
that while pinning may still arise, these two effects have
a strong impact on the volatility of asset returns and
on the pinning intensity. In order to investigate pinning
under more realistic market conditions we study the
impact of hedging strategies in a microstructure model,
by adapting a zero intelligence model introduced by
Daniels et al. (2003) and Smith et al. (2006)). We show
that the microstructure model generates pinning consis-
tently with the theoretical models and the experimental
findings.

The remainder of this paper is organized as follow. In
section 2 we revise the Frey and Stremme (1998) model,
highlight the mechanisms in the model that can induce
pinning, and study its generalization when hedging
is discrete and liquidity is stochastic. In this section we
also compare our analysis with that performed by
Avellaneda and Lipkin (2003). In section 3 we describe
the microstructure model and the results of numerical
simulations.

2. Stock pinning

Assume that the asset price behaviour is defined by a
diffusion equation of the form

dSðtÞ ¼ !SðtÞ dtþ "SðtÞ dWðtÞ, ð1Þ

where ! is a constant drift, " a constant volatility, and
W(t) a standard Brownian motion. Under this assump-
tion the value of a European vanilla call option is given by
the Black and Scholes formula,

C SðtÞ,T,K, ", rð Þ ¼ SðtÞNðd1Þ % Ke%rðT%tÞNðd2Þ,

with

d1,2 ¼
logðSðtÞ=KÞ þ ðr& 1=2"Þ2ðT% tÞ

"
ffiffiffiffiffiffiffiffiffiffiffi
T% t
p ,

where r is the risk-free rate, K the option strike price and
T the option maturity. N(') is the normal cumulative
distribution function. Moreover, the amount of stock to
hold in order to hedge a position is given by the option
delta defined as !¼ @C/@S. As time goes by the amount
of stocks to buy or sell to maintain a delta neutral
position is given by d!.

Delta hedging strategies create a feedback effect on the
stock price by inducing an additional drift term in the
diffusion equation given by equation (1), which becomes

dSðtÞ ¼ !SðtÞ dtþ nL̂SðtÞ d!ðS, tÞ þ "SðtÞ dWðtÞ, ð2Þ

where L̂ is a constant price elasticity and n is the
open interest on the call option. Hence, L̂ represents a
linear impact of the hedgers on the stock process.
The model further assumes that traders do not take into
account feedback effects when rebalancing their portfolio.
The hedging strategy is based on the assumption that the
stock price evolves according to the geometric Brownian
motion in equation (1). In this case the delta for a long
call is !¼%N(d1).

The dynamic of !(S, t) can be derived using Itô’s
lemma, which gives

d!ðS, tÞ ¼ @!ðS, tÞ
@t

dtþ @!ðS, tÞ
@S

dSðtÞ þ 1

2

@2!ðS, tÞ
@S2

dSðtÞ
" #

,

ð3Þ

where hdS(t)i denotes the quadratic variation of S(t).
Avellaneda and Lipkin (2003) assume that the price

dynamics is given by

dSðtÞ ¼ nL̂
@!

@t
SðtÞ dtþ "SðtÞ dWðtÞ: ð4Þ

This can be interpreted as taking only the delta time decay
term in equation (3). The model generates pinning when
traders hedge a long call position. The intuition behind
the pinning is clear. The term @!/@t in equation (4) is
given by

@!

@t
¼ % nðh1Þ

"
ffiffiffi
#
p log y% a#

2#
, ð5Þ

where #¼T% t, a¼ rþ "2/2, y¼S(t)/K and

h1 ¼
log yþ a#

"
ffiffiffi
#
p :

Equation (5) is positive for y5e%a# and negative
otherwise (figure 1). This suggests that when the price is
above the strike, d! is negative, inducing the hedger to
sell and, in doing so, he pushes the price towards the
strike. Similarly, when the price is below the strike, d! is
positive, inducing the hedger to buy and, in doing so, he
again pushes the price towards the strike. This argument
then suggests that pinning is possible when the trader
hedges a long position. Hedging a short position would
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Abstract

We begin with this paper a series devoted to a tentative model for the influence of hedging on the dynamics of an asset. We
study here the case of a “large” investor and solve two problems in the context of such a model namely the question of the fair
value (or liquidative value) of a “large” position and the question of pricing or hedging an option. In order to do so, we use a utility
maximization approach and some new results in stochastic control theory.
 2006 Published by Elsevier Masson SAS.

1. Introduction

This paper is the first of a series devoted to the effect of reconciling the classical Black–Scholes theory of option
pricing and hedging with various phenomena observed in the markets such as the influence of trading and hedging
on the dynamics of an asset. Assuming, for simplicity, that the price of an asset is modified by trading and hedging
through a linear “elastic” law, we shall prove that the optimal hedging strategy derived from a utility maximization
principle impacts upon the volatility of the asset.

More precisely, we shall consider here the case of a “large” investor whose trading influences the dynamics of an
asset price. And we study two related problems

(i) what is the “liquidation” value of a position? As is well known, this value that might be called the fair value is
not simply derived from the market price (as is natural, since selling a sizable number will immediately make the
price of the asset go down...). Our approach will, in some sense, allow to reconcile the notion of fair value with
market prices (mark to market). And we shall also see the impact on the volatility;

(ii) how is the fundamental F. Black and M. Scholes [5], R. Merton [14] theory for option pricing and hedging
modified by our basic assumption on the price dynamics?

At this stage, and before describing more precisely our main results, we wish to mention some previous related
works concerned with some “phenomenological” models of the influence factor we are investigating and we refer to
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terminal reward function U(C − W
2 α2): indeed, as soon as t is strictly smaller than T (and very close to T , t = T − ε,

we may use as possible controls uε ≡ µ
ε on [T − ε, T ] in which case we deduce easily that αT = α − µ, ST ≈ S − kµ

and CT ≈ C + µS − k µ2

2 . Therefore, we may “jump instantanously” (or almost) along the orbit of the flow and thus
we should only consider the supremum along the orbit of the flow of the final reward function which is precisely the
quantity we computed above.

And we are led to the

Theorem 2.1. Assume that σ is constant.

(1) The value function V given by (13) satisfies

V = U

(
C + αS − k

α2

2

)
for all C,S ∈ R. (15)

(2) The value function V given by (14) satisfies

V = U

(
C + S2

2(k + W)
+ W

k + W
αS − kW

k + W
− (T − t)

σ 2

2(k + W)

)
, (16)

the associated optimal strategy αt satisfies

dαt = − σ

k + W
dBt , (17)

and the induced price dynamics are given by

dSt = σ
W

k + W
dBt . (18)

Remark 2.1. Part (1) means that the fair value or liquidative value is given by αS − k α2

2 . Obviously, when k = 0, we
recover the usual “market ” value αS. As we shall see below, this is in fact the case for an arbitrary volatility σ (we
may already observe that it is independent of the constant σ ).

Remark 2.2. All the above explicit formulas are independent of the utility function.

Remark 2.3. It is not difficult to extend the above result to the case when we add a drift term to (1) i.e.

dSt = σ dBt + b dt − kut dt

(where b is a constant). We leave such easy extensions to the reader.

Conclusion of the proof of Theorem 2.1. There only remains to show that the value function V given by (14)
satisfies

V = U

(
P + X2

2(k + W)
− (T − t)

σ 2

2(k + W)

)
(19)

with an optimal strategy α given by: α = − X
k+W , since (16)–(18) then follow from (10), (1) and (2). Finally, (15) may

be, for instance, deduced from (16) upon letting W go to +∞ (or directly from (13) which yields easily, since U is
strictly concave, that V = U(P )).

Finally, in order to prove the above claims, we may simply use HJB equations which, here, take the following form

∂V

∂t
+ 1

2
σ 2 ∂2V

∂X2 + sup
α∈R

{
σ 2 α2

2
∂2V

∂P 2 + σ 2α
∂2V

∂X∂P

}
= 0

with V |t=T = U(P + X2

2(k+W)). The above claims then follow from a simple verification that we skip. !

We now check that the formula (15) is in fact valid for an arbitrary σ (S).
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4. ESTIMATING THE OPTIMAL SOLUTION

The route we take here is to suppose that the illiquidity losses are small and find an
approximation to the optimal hedging policy. This will then be used to bound the optimal
solution. We still suppose that l(h) = 1

2εh2.
For small ε, if we may assume that the term LV in the HJB equation (3.15) will be

small, then the only way that the whole expression can be zero is if

VH√
εS

! σ S(H − θ ).

In view of (3.14) this leads us to consider the following candidate for a good control:

h̄ ≡ −σ

√
S
ε

(H − θ ).(4.1)

REMARKS.

(i) There is at this point no need to justify the assumption that we can neglect
LV; this was only used to suggest the form (4.1) for the control. This control
is suboptimal, and so using it will provide an upper bound for the value of the
original problem. We find that the resulting bounds are effective.

(ii) Observe that this control h̄, a choice for the rate of change of the holding H of
the asset, has natural properties: it will pull H toward the Black–Scholes hedge
θ , and will pull more strongly as ε gets smaller. For large S, it is more important
to get the hedging number of units of asset correct, because this corresponds to
a larger sum invested in the asset. Thus we find that h̄ pulls H harder to θ for
large S, but not proportional to S.

(iii) We are going to estimate the value of using h = h̄ and show that this is small in
a sense to be made precise in Theorem 4.1. This analysis gives an estimate of the
liquidity costs (and the mishedging costs) incurred, so it gives a bound for the
“liquidity premium” to be charged for selling this option written on a slightly
illiquid asset.

Let v denote the value of using the policy h̄: this solves the PDE

Lv − σ S(H − θ )√
εS

vH + σ 2S2(H − θ )2 = 0, v(T, ·, ·) = 0.(4.2)

There is the probabilistic (Feynman–Kac) representation of the solution as

v(t, H, S) = E
[∫ T

t
σ 2S2

u(Hu − θ (u, Su))2du
∣∣Ht = H, St = S

]
,(4.3)

where the expectation (4.3) is calculated under the assumed dynamics (3.2), (3.4), taking
h = h̄. The Ornstein–Uhlenbeck dynamics of H under control h̄ imply a solution of the
form

v(t, H, S) = a(t, S)(H − θ (t, S))2 + b(t, S)(H − θ (t, S)) + c(t, S)(4.4)
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Though liquidity is commonly believed to be a major effect in financial markets,
there appears to be no consensus definition of what it is or how it is to be measured.
In this paper, we understand liquidity as a nonlinear transaction cost incurred as a
function of rate of change of portfolio. Using this definition, we obtain the optimal
hedging policy for the hedging of a call option in a Black-Scholes model. This is a more
challenging question than the more common studies of optimal strategy for liquidating
an initial position, because our goal requires us to match a random final value. The
solution we obtain reduces in the case of quadratic loss to the solution of three partial
differential equations of Black-Scholes type, one of them nonlinear.
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1. INTRODUCTION

After credit risk, liquidity risk is probably the next most important risk faced by the
finance industry; and yet the study of liquidity is far less advanced. This may be in part
due to the fact that there is no agreed definition of what liquidity is, even in qualitative
terms. Everyone would agree that the effect of illiquidity is to make it difficult or costly
to trade large volumes of the underlying asset in small times, but there are different
approaches to modelling this.

There is a growing literature on such effects: Bertsimas and Lo (1998), Almgren and
Chriss (2001), Almgren (2003), Obizhaeva and Wang (2005), Huberman and Stanzl
(2005), Schied and Schöneborn (2007), and other papers referred to therein provide
a sample of what is currently known. These papers study two effects, referred to as
temporary price impact and permanent price impact. Roughly speaking, the first of these
arises on short time scales as the result of trading, and can be thought of as an agent
having to work through the limit-order book to acquire his desired change of holding.
The second is some lasting impact on price, presumed to have been caused by the fact
that an agent has just traded some quantity of the asset.1 In Almgren and Chriss (2001),
the permanent price impact is fully incorporated in the (discrete) period immediately
after the trade; in Obizhaeva and Wang (2005), the permanent price impact is established
gradually as the order book refills the space emptied by the original trade. In all the
literature cited above, the aim is to optimally unwind an initial position by some fixed
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Sircar (1998), Schönbucher and Wilmott (2000) are studies of this effect.
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Dealers’ Hedging of Interest
Rate Options in the U.S. Dollar 
Fixed-Income Market
John E. Kambhu

s derivatives markets have grown, the

scope of financial intermediation has

evolved beyond credit intermediation to

cover a wide variety of risks. Financial

derivatives allow dealers to intermediate the risk man-

agement needs of their customers by unbundling customer

exposures and reallocating them through the deriva-

tives markets. In this way, a customer’s unwanted risks

can be traded away or hedged, while other exposures

are retained. For example, borrowers and lenders can

separate a loan’s interest rate risk from its credit risk

by using an interest rate swap to pass the interest rate

risk to a third party. In another example of unbun-

dling, an option allows an investor to acquire exposure

to a change in asset prices in one direction without

incurring exposure to a move in asset prices in the

opposite direction.

The derivatives markets’ rapid growth has been
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cant net exposure to price risk that must be hedged in

the underlying fixed-income markets.

Until now, the scale of hedging across all dealers

in the over-the-counter interest rate options market has

not been studied in the literature. The concentration of

sold options among dealers, however, makes it an ideal

place to explore how dealers’ hedging of options affects

underlying markets. Using data from a global survey of

derivatives dealers and other sources, this article esti-

mates the volume and potential impact of such hedging

by U.S. dollar interest rate options dealers. In our analysis,

we address two questions: First, are dealers’ hedge

adjustments large enough to affect trading volume and

liquidity in the most common hedging instruments?

Second, what effects might potential hedging difficulties

have on risk premia in options prices and the structure

of the market for over-the-counter interest rate options?

In addressing these questions, we also consider whether

dealers’ dynamic hedging transactions have the potential

to amplify price shocks.

We find that, on the whole, transaction volume in

the underlying fixed-income markets is large enough to

enable dealers to manage the risks incurred through

their intermediation of price risk in the interest rate

options market. Indeed, at shorter maturities, turnover

volume in the most liquid hedging instruments is more

than large enough to absorb the transaction volume gen-

erated by dealers’ dynamic hedging. For medium-term

maturities, however, an unusually large interest rate shock

could cause the hedging of exposures in this segment of

the yield curve to generate trading demand that is high

relative to turnover volume in the more liquid trading

instruments. Dealers then face a risk management trade-

off between reducing price risk or incurring the liquidity

costs of immediately rebalancing their hedge positions.

However, only very large interest rate shocks, such as

those occurring during a currency crisis or a period of

high inflation, are likely to present dealers with this

hedging problem.

In addition to analyzing hedging volume, we

examine the term structure of options premia to assess

whether option prices show any sign of potential hedging

difficulties. We find an apparent risk premium in

options prices at the medium-term segment of the yield

curve that corresponds to the maturity range where our

analysis of trading volume suggests that hedging difficulties

might occur. This pattern in the term structure of

options premia suggests that the liquidity risk in

dynamic hedging may influence options pricing.

Table 1
OVER-THE-COUNTER INTEREST RATE OPTIONS DATA

NOTIONAL AMOUNTS REPORTED BY DEALERS, IN BILLIONS OF U.S. DOLLARS

Bought Options Sold Options
Contracts with U.S. Dollar Interest Rates Other Interest Rates Total U.S. Dollar Interest Rates Other Interest Rates Total
Other dealers 529.4 726.5 1,255.9 576.1 681.9 1,258.1
Customers 431.6 340.6 772.2 690.4 398.1 1,088.4

Total 961.1 1,067.1 2,028.1 1,266.5 1,080.0 2,346.5

MARKET VALUES REPORTED BY DEALERS, IN BILLIONS OF U.S. DOLLARS

Bought Options Sold Options
Contracts with U.S. Dollar Interest Rates Other Interest Rates Total U.S. Dollar Interest Rates Other Interest Rates Total
Other dealers — — 22.4 — — 21.6
Customers — — 15.2 — — 14.6

Total 20.8 16.7 37.6 19.4 16.8 36.2

MATURITY DISTRIBUTION OF U.S. DOLLAR INTEREST RATE OPTIONS, IN PERCENT

Bought Options Sold Options
Up to one year 30 29
More than one year and up to five years 58 56
More than five years 12 15

Source: Bank for International Settlements (1996).
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remaining excess returns would offset the higher volatility

risk from the options book. Such offsetting risks may

explain why large interest rate options dealers also are

market makers in a broad array of fixed-income products,

and, for that reason, are willing to bear volatility risk at a

smaller premium than other investors.

The evidence that market making in options and

other products provides dealers with offsetting exposures

to changes in volatility is not strong, however. For

instance, even though the turnover volume of derivatives

grew rapidly during 1994, dealers’ trading income suffered

from the bond market turbulence that occurred in that

year. It has been reported that a significant part of the

1994 earnings decline occurred in dealers’ bond and pro-

prietary trading positions and not in their market-making

activity.16 Nevertheless, we lack detailed data on market-

making income that would enable us to resolve with any cer-

tainty the question of offsetting exposures to volatility.

CONCLUSION

Our analysis suggests that transaction volume in underlying

markets is large enough for dealers to manage the price and

liquidity risks they incur through the intermediation of price

risk in selling interest rate options. With the possible

exception of the medium-term segment of the term struc-

ture, turnover volume in the most liquid hedging instruments

is large enough to absorb dealers’ dynamic hedging.

In the case of an unusually large interest rate shock

at the medium-term segment of the term structure, the full

rebalancing of hedge positions would generate hedging

transactions that would be large relative to daily transaction

volume in the most liquid medium-term instruments. In

this case, dealers’ risk management decisions would appear

to be driven by a trade-off between price risk and the

liquidity costs of immediate hedge rebalancing. For interest

rate shocks of the size experienced in the last five years,

dealers’ hedge adjustments would be a small proportion of

only a few days’ worth of turnover volume, and dealers

would need to manage the trade-off between liquidity and

price risks only for a short period of time. For large interest

rate shocks, however, such as those experienced by a country

in the midst of a currency crisis or a period of high infla-

tion, the hedging of exposures in the medium-term

segment of the yield curve could lead to trading demand

that is large relative to turnover volume in the more liquid

trading instruments.

The ratios of estimated hedge adjustments to

transaction volume in trading instruments at different

maturities are consistent with the pattern we find in the

term structure of option premia. The term structure of

implied volatility shows an apparent risk premium for

options at the medium-term segment of the yield curve, a

segment that corresponds to the maturity range where

hedging difficulties might occur. The structure of the over-

the-counter interest rate options market is also consistent

with the hypothesis that such hedging problems may exist.

Despite investors’ willingness to hold a wide variety of

financial assets and risks, they choose to leave interest rate

options exposures in the hands of dealers. This preference

suggests that interest rate options sellers are exposed to

risks that are not present in the returns of underlying

assets. These risks are likely volatility and hedging-related

risks, which may be managed more effectively by dealers

than by other market participants.

The results presented in this article provide a pre-

liminary assessment of the impact of dynamic hedging on

market liquidity and price dynamics in the fixed-income

market. As the appendix makes clear, limitations of the

data make further investigation worthwhile. In addition,

an estimate of the market excess demand function and the

relationship between prices and quantities would be useful.

Such an analysis, however, would require data that do not

currently exist on investors’ demands in addition to deal-

ers’ hedging demands. Nonetheless, comparing potential

hedging demand with transaction volume in typical

hedging instruments is useful in assessing the likelihood

of positive feedback.



2. Option hedging (version 1)

13

time tT

Asset price Pt

Pt = P0 + �Wt + himpacti

Hedge portfolio Xt shares

Xt = X0 +

Z T

0
✓s ds

Final
mark-to-market

value
g0(PT ) +XTPT + cash

evaluate on
mean and variance

option expiry
or

market close



Option hedging (version 2)

14

time tClose
T

Asset price Pt

Pt = P0 + �Wt + himpacti

Hedge shares Xt

Xt = X0 +

Z T

0
✓s ds

Mark-to-market
value

Open
T’

XT 0 = XT

Overnight

g0(PT 0) +XTPT 0 + cash



Questions of this paper

1. What is a reasonable market model?

2. What are optimal hedge solutions?

3. How do they compare to Black-Scholes?

15



Applications

1. Broker execution algorithm:
Client specifies ∆ and Γ (possibly varying)
Execute to achieve optimal hedge at close
one direction trading (buy or sell)

2. What does option hedging do to market?
Seller must hedge
What does his hedging do to price process?

16



Market impact models

Two types of market impact
(both active, both important):
• Permanent

due to information transmission
affects public market price

• Temporary
due to finite instantaneous liquidity
“private” execution price not reflected in market

Many richer structures are possible

17



Temporary vs. permanent market impact
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price

time

Pre-trade

Post-trade

Execution
(sell)

Temporary impact
(liquidity cost)

depends on rate
of execution

Permanent impact
(information)

independent of
execution strategy

Instantaneous relaxation
from temporary impact

to permanent level

Jim Gatheral: richer time structures for decay



Large literature on market impact models:
optimal execution of given trade program

19

Time

Shares 
remaining 
to execute

Order
entry time

Imposed
end time

High urgency
(immediate)

E large, V small

Low urgency
(TWAP)

E small, V large

E

V

VWAP

Fast

Variance of cost

Expected
cost

Efficient frontier

⇥2 = ⇤⌅ 2

�

Time constant
Imposed 
trade size



Permanent impact
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✓t = instantaneous rate of trading

Xt = X0 +
Z T

0
✓s ds

Linear to avoid round-trip arbitrage (Huberman & Stanzl, Gatheral)
(Schönbucher & Wilmott 2000:  knock-out option--also need temporary impact)

Pt = P0 + � Wt + ⌫(Xt �X0)

G(✓) = ⌫ ✓

dPt = � dWt + G(✓t) dt

Cost to execute net X shares = 
1
2
⌫ X2

(independent
of path)



Temporary impact
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We trade at P̃t 6= Pt

P̃t depends on instantaneous trade rate ✓t

Require finite instantaneous trade rate
⇒ imperfect hedging

P̃t = Pt + H(✓t)



Example: bid-ask spread
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✓t

buy at ask

sell at bid

P̃t

Pt s

P̃t = Pt +
1
2
s sgn(✓t)

1
2
s sgn(✓t) · ✓t �t =

1
2
s|✓t|�t

“Linear” model:  cost to trade          shares✓t �t



Solutions with bid-ask spread cost
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Ideal Black-Scholes hedge

Target band
(no-trade region) Actual hedge holding

Davis & Norman, Shreve & Soner,
Cvitanic, Cvitanic & Karatzas



Critique of linear cost model

independent of trade size
not suitable for large traders

in practice, effective execution near midpoint
spread cost not consistent with modern cost models
liquidity takers act as liquidity providers

24



Proportional temporary cost model

25

✓t
H(0) = 0

concave
(empirical)

Linear for simplicity

⟹ Quadratic cost: 

H(✓t)

H(✓) = 1
2
�✓

H(✓) · ✓�t = 1
2
�✓2�t

P̃t = Pt + H(✓t)



Our solutions with proportional cost
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Ideal Black-Scholes hedge

Actual hedge holding

pursuit

Gârleanu & Pedersen:
investment with proportional cost

✓t = � h
�
(T � t)

�
·
�
Xt � target

�

Temporary impact: hedge strategy
Permanent impact: effect on underlying



3. Formulation

Market model

27

Xt = X0 +
Z T

0
✓s ds

Pt = P0 + � Wt + ⌫(Xt �X0)

P̃t = Pt +
1
2
�✓t

Hedge holding:

Public market price:

Private trade price:

Ft = filtration of Wt

strategies measurable in Ft



Black-Scholes option value

28

g(T ,p) = g0(p)

g(t, p), t < T ,p 2 R

ġ + 1
2
� 2 g00 = 0

Final value specified

Intermediate values defined by Black-Scholes PDE

Def:
�(t, p) = �g0(t, p)
�(t, p) = ��0(t, p) = g00(t, p)

Def:

(what you want to hold to hedge)
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Short
call

g(t,p) = option payout to position holder

�(t, p) = �g0(t, p) �(t, p) = ��0(t, p) = g00(t, p)

Long
call

Short
put

Long
put

� > 0
� < 0

� < 0
� < 0

� < 0
� > 0

� > 0
� > 0

p p

pp

g

gg

g



Γ>0 (long the option)
g’ increasing in P
Δ decreasing in P
Permanent price impact pushes P toward you
Hedging is easy (unless you over-control)

Γ<0  (short the option)
g’ decreasing in P
Δ increasing in P
Permanent price impact pushes P away from you
Hedging is hard

30

Γ = sign and size of hedger’s option position



Final portfolio value

31

RT = g(T , PT ) + XTPT �
Z T

0
P̃t ✓t dt

Option value Portfolio value Cash spent

Mark to market
without transaction costs

�1
2
⌫X2Should include permanent

 impact in liquidation cost:

We neglect:  gives manipulation opportunities
dominated by risk aversion



Integrate by parts
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RT = R0 +
Z T

0

�
Xt + g0(t, Pt)

�
dPt �

1
2
�
Z T

0
✓ 2
t dt

= R0 +
Z T

0
Yt dPt �

1
2
�
Z T

0
✓ 2
t dt

= R0 +
Z T

0
Yt � dWt +

Z T

0
Yt ⌫✓t dt �

1
2
�
Z T

0
✓ 2
t dt

R0 = g(0, P0) + X0 P0Initial value:

Mis-hedge:

(constant)

Yt = Xt ��(t, Pt) = Xt + g0(t, Pt)

positive when
 Yt, θt same sign



Mean-variance evaluation
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infinite
variationsmooth

Yt = Xt + g0(t, Pt) 6= 0

RT = R0 +
Z T

0
Yt � dWt + ⌫

Z T

0
Yt ✓t dt �

1
2
�
Z T

0
✓ 2
t dt

ERT = R
0

+ ⌫ E
Z T

0

Yt ✓t dt �
1

2

�E
Z T

0

✓ 2

t dt

VarRT = complicated

RT is random: optimize expectation and variance

mis-hedge



Variance of RT

34

Small portfolio size, or
“market power”
(Almgren/Lorenz 2007, Almgren 2012)

µ = �X/T
⇤
�
T

price impact of
trading whole position

price change
from volatility

Neglect uncertainty of market impact term
in comparison with price uncertainty

�

(“Mean-quadratic-variation” Forsyth et al 2012)

VarRT ⇡ V ⌘ Var
Z T

0
�Yt dWt = � 2E

Z T

0
Y 2
t dt



Mean-“variance” objective

35

Risk aversion
1
2
�

Running
mishedge

Permanent
impact

Temporary
impact

(T = option expiration)

inf
✓2⇥

E

"
1
2
�� 2

Z T

0
Y 2
t dt � ⌫

Z T

0
Yt ✓t dt +

1
2
�
Z T

0
✓ 2
t dt

#



Version 2:  Overnight risk

T = market close today
T’ = market open tomorrow

36

RT 0 = g(T 0, PT 0) + XTPT 0 �
Z T

0
P̃t ✓t dt

= RT + YT
�
PT 0 � PT

�
+
Z T 0

T

h
g0
�
t, Pt

�
� g0

�
T , PT

�i
dPt

= RT + YT �PT � ⇠

�PT ,⇠ have mean zero



Version 2 objective function

37

Random variables

Terminal
mishedge

⇠ distribution depends only on PT
�PT mean 0, independent of FT

inf
✓2⇥
E

"
1
2
�
⇣
YT �PT � ⇠

⌘2

+ 1
2
�� 2

Z T

0
Y 2
t dt � ⌫

Z T

0
Yt ✓t dt +

1
2
�
Z T

0
✓ 2
t dt

#



4. Solution
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J(t, p,y) = inf
✓s :tsT

E

"
1
2
�
⇣
YT �PT � ⇠

⌘2

+ 1
2
�� 2

Z T

t
Y 2
s ds � ⌫

Z T

t
Ys ✓s ds +

1
2
�
Z T

t
✓ 2
s ds

����� Pt = p, Yt = y
#

Value function:  time t, price p, mis-hedge y



Dynamic programming

39

0 = inf
✓

⇢
1
2
�� 2y2 � y⌫✓ + 1

2
�✓2 + Jt +

�
1+ ⌫�

�
✓Jy + ⌫✓Jp

�

+ 1
2
� 2Jpp + � 2�Jpy +

1
2
� 2� 2Jyy

= 1
2
�� 2y2 � 1

2�

h
⌫
�
y � Jp

�
�
�
1+ ⌫�)Jy

i2

+ Jt +
1
2
� 2Jpp + � 2�Jpy +

1
2
� 2� 2Jyy

HJB PDE:

✓ = 1
�

⇣
⌫y �

�
1+ ⌫�

�
Jy � ⌫Jp

⌘
optimal control
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not consistent unless A1 constant in p

Ansatz: quadratic in y

A2 independent of price

J(t, p,y) = 1
2
A2(T � t)y2 + A1(T � t, p)y + A0(T � t, p)

Ȧ2 = �� 2 � 1
�

h
⌫
�
1�A01

�
�
�
1+ ⌫�

�
A2

i2

Ȧ1 =
� 2

2
A001 +

1
�

h
⌫
�
1�A01

�
�
�
1+ ⌫�

�
A2

i

·
h
⌫A00 +

�
1+ ⌫�

�
A1

i

Ȧ0 = �
1

2�

h
⌫A00 +

�
1+ ⌫�

�
A1

i2

+ � 2�A01 +
� 2

2

h
� 2A2 +A000

i



Solvable in 2 special cases

(A) Constant gamma

(B) No permanent impact

 (no feedback)

41

g0(t, Pt) = g0(t, P0) + �
�
Pt � P0

�

⌫ = 0

Γ measures position size and size



(A) Constant Γ
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A1 = 0, A0(T � t, p) = A0(Tt)

Instantaneous
mishedge

rate
coefficient

function of
time remaining

 =
s
�� 2

�
time

constant
risk / temporary impact

✓t = � h
⇣
(1+ ⌫�)(T � t)

⌘
Yt

same as for optimal execution
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G = 1+ ⌫�

Need  G ≥ 0  and  h0 ≥ -1
Permanent impact ν not too big

trade rate
/ mishedge

κ (1+νΓ) (T-t)

h0

h0 =
G�� 2

T � ⌫
�

h(x) =

8
>><
>>:

tanh

�
x + tanh

�1

(h

0

)

�
, �1 < h

0

< 1

1, h

0

= 1

coth

�
x + coth

�1

(h

0

)

�
h

0

> 1

h0

h0

1

-1

When h<0, trade
to increase mishedge

(near expiration when risk is low)



Summary of hedge strategy

Far from expiration, h=1
Near expiration

h increases if overnight risk large
h decreases if overnight risk small
h becomes negative (!) if no overnight risk

✓t = � Yt

44

✓t = � hYt



What happens to price process?
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constant Γ
�(t, Pt) = �0 � �(Pt � P0)

Yt = Xt ��
= Xt �X0 + �(Pt � P0)

dXt = ✓t dt
dPt = � dWt + ⌫ ✓t dt

✓t = � Yt (h = 1)dynamic hedge
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dYt = dXt + � dPt
= �(1+ ⌫�) Yt dt + � � dWt

hY 2
t i =

� 2� 2

2(1+ ⌫�) =
� 2� 2

2(1+ ⌫�)

s
�
�� 2

Mis-hedge

Mean mis-hedge / (temporary impact �)1/4

As λ→0, perfect hedge, cost→0

Total liquidity cost =
Z T

0

�✓ 2

t dt =
Z T

0

�2 Y 2

t dt

⇠ �2 T �
2� 2


⇠ T � 3 � 2 �1/2 �1/2

Yt = � �
Z t

�1
e�(1+⌫�)(t�s)dWs



47

stationarymodified
volatility

Γ<0:  hedger is short the option
1+νΓ<1:  overreaction, increased volatility
Γ>0:  hedger is long the option

1+νΓ>1:  underreaction, reduced volatility

Zt = �⌫(Xt �X0) + (Pt � P0)
dZt = � dWt

def:

What happens to price process?

same as in Pt

Pt = P0 +
1

1+ ⌫�
�
⌫Yt + Zt

�

= P0 +
�

1+ ⌫�

 
Wt + ⌫�

Z t

0
e�(1+⌫�)(t�s)dWs

!

/ 1/
p




“Signature plot”
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̃ = (1+ ⌫�)

Δt

Volatility measured
on time interval

Δt
�

�
1+ ⌫� (� > 0)

�
1+ ⌫� (� < 0)

1/

unconditional (F0)

1
s � tE

�
Ps � Pt

�2 =

=
✓ �

1+ ⌫�

◆2
 

1+ (2+ ⌫�)⌫� 1� e�̃(s�t)
̃(s � t)

!



Nondimensional parameter
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1 + ⌫�

⌫ = price change due to market impact

shares executed

� = shares needed to adjust hedge

market price change

Problems unless    |νΓ| ≲ 1



(B) General Γ, no permanent impact
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✓t = � h(T � t) Yt + bias term

Restriction on sign of trading

inf
✓2⇥+

(
· · ·

)

solve numerically

Extensions



Restricted sign

51

Unrestricted
strategy

Restricted
strategy



5. Applications
Price pinning to strike near expiration

if hedgers are net long Γ
local asymptotics near strike and expiry

Intraday volume patterns
hedge near open and close
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Empirical Model



Discrete-time hedging
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•If evaluate at start of interval Δt

    trade rate

    leads to overshoot and sawtooth pattern

•Full optimization gives “implicit” scheme

✓ = ⌫ � (1+ ⌫�)GA2

�
y

✓ = ⌫ � (1+ ⌫�)GA2

�+ (1+ ⌫�)2A2�t
y



Conclusions

Simple market impact model
temporary/permanent
linear model

Explicit solution (at least for constant Γ)
hedge position tracks toward Black-Scholes

Large hedger can change volatility
market impact on implied and realized volatility
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