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Physical Storage
Context

Storage facilities resolve temporal imbalances between supply and
demand.

- Storage is to time as transportation/transmission is to pace.

Recall: In 2012 the U.S. had roughly 4.2 tcf of storage capacity

with annual consumption of approximately 25 tcf per year.
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Physical Storage
Context

Historically available storage capacity has been sufficient to resolve
the seasonal variations in demand and the structural changes in
supply.

- Recall the historical inventory and the ”normal” storage level obtained by

Fourier + drift.
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Physical Storage

Types of Storage

Types of storage:

- Aquifer storage—facilities consisting of large porous rock structures.

- Reservoir storage—depleted natural gas or oil production fields suitably
modified for natural gas storage.

- Salt caverns—salt dome formations that can be engineered to store

natural gas.

There is actually a total of roughly 8.7 tcf of natural gas storage.

- Of this roughly 4.5 tcf is ”base gas”—gas that must be injected once and
is required to maintain working pressure.

- The remaining inventory is referred to as ”working storage”.
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Physical Storage

Constraints

Operational constraints:

- Capacity constraints: Ensure that enough capacity exists to accommodate

a storage contract.

- This involves specifying bounds on contracted capacity:

S(t) ∈ [0,Smax] where S(t) denotes the inventory level at time t.

- Rate constraints: Ensure that contracted injection and withdrawal rates

can be achieved.

- This is accomplished by constraints on the rates: s(t) ∈ [s∗, s∗]
where s(t) ≡ dS

dt
is the injection rate with e s∗ < 0 and s∗ > 0.

- In practice, as inventory approaches the bounds 0 or Smax, these

constraints can change—as the tank gets full (empty) putting more

in (taking more out) becomes harder. Such constraints take the

form: s∗ = s∗(S(t)) and s∗ = s∗(S(t)).
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Physical Storage

Constraints

Operational constraints:

- Inventory constraints: All storage contracts specify initial and final

conditions.

- The most common structure: S(T ) = S(0) where T denotes the
term of the contract.

- Often the contract spans the start of the injection season 01Apr
and terminates at the end of the withdrawal season 31Mar of the
following year.

- Some structures constrain inventory to specified inequalities at

intermediate times: S~τ∗ ≤ ~L∗ and S~τ∗ ≥ ~L∗ for specific times ~τ

and limits ~L.
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Physical Storage

Constraints

Cyclability:

- The number of times it can fill and then empty, in the parlance “cycle” or

“turn”, in one year.

- In the case of constant limits, one cycle time is:

τ =
Smax

|s∗|
+

Smax

s∗

- The number of turns is 1/τ .

- Most aquifer and reservoir storage is effectively “one turn storage”, that is
one cycle per year.

- Salt cavern storage is much more flexible with some facilities able to turn

several times a year.
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Virtual Storage

CSOs

The simplest storage structure is a modified CSO.

- Consider options with the following payoff:

max
h
F (τ,T + U)− erUF (τ,T ), 0

i
where we are assuming constant interest rates.

- The owner of this option has the ability to:

- Purchase natural gas at exercise time τ for delivery at time T at
price F (τ,T );

- Funding the cost to time T + U;

- Selling the same quantity forward at time T + U.
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Virtual Storage

CSOs

Exercise of CSO:

- The holder of such an option will only exercise if the accrued cost of the
purchase is less than the forward price at withdrawal

y(τ,T ,T + U) =
1

U
log

»
F (τ,T + U)

F (τ,T )

–
> r

Storage value is driven by the difference between forward yields and

financing costs.
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Virtual Storage

CSOs

Consider a storage facility where the only constraint is
S(t) ∈ [0,Smax].

- There are no constraints on rates.

- This type of structure is sometimes referred to as virtual storage and is
clearly an idealization—the owner can toggle between empty and full
instantaneously.

- One purpose for considering virtual storage is that it is analytically
tractable.

- The value function does not depend on St since this can be changed

instantly.
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Virtual Storage

CSOs

Virtual storage is the sum of nearest-neighbor CSOs:

V [Tn,F (Tn, ·)] = SmaxẼTn

24 N∗X
m=n

e(Tm−Tn)r max
h
F (Tm,Tm+1)− er∆tF (Tm,Tm), 0

i35
where the problem is defined on the time grid T ∈ {n∆T}N∗n=1.

Evaluation of virtual storage is equivalent to CSO valuation.

We will work under the Gaussian exponential framework:

dF (t,T ) = F (t,T )
J∑

j=1

σj(T )e−βj (T−t)dB
(j)
t
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Virtual Storage

Valuation

Valuation proceeds in the usual CSO fashion:

- The mth option value is:

Vn,m = e−(Tm−Tn)r
h
F (Tn,Tm+1)Φ(d1)− er∆T F (Tn,Tm)Φ(d2)

i
where

d1,2 =
log
h

F (Tn,Tm+1)

er∆T F (Tn,Tm)
± 1

2
σ̃2
i

σ̃

where:

σ̃2 = (Tm − Tn)
ˆ
σ̄2

m,m+1 − 2ρm,m+1σ̄
2
m,mσ̄

2
m,m+1 + σ̄2

m,m

˜
- σ̄2

m,m and σ̄2
m,m+1 are the term volatilities of contracts Tm and Tm+1 over

the time interval [0,Tm] respectively;

- ρm,m+1 is the term correlation between the two contracts over the same

interval.
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Virtual Storage

Valuation

Taking the continuous time limit (∆T → 0) yields:

V (t, ~Yt) =

Z T∗

t
e−r(T−t)F (t,T )v(t,T ) [h(t,T )Φ(h(t,T )) + φ(h(t,T ))] dT

where:
- The variance term is:

v2(t,T ) =
X

j

"
βj −

σ′j

σj
(T )

#2
σ2

j

2βj

h
1− e−2βj (T−t)

i

- The “carry” term is:

h(t,T ) =
1

v(t,T )

»
∂log F (t,U)

∂U

˛̨̨
U=T

− r

–

- Note that ~Yt are the state-variables—the OU processes driving the

forward curve.
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Virtual Storage
Valuation

The previous formula is the closest to basic Black that you will find
in storage valuation.

The valuation formula permits fast exploration of basic attributes.

Example: Intrinsic value:

- Intrinsic value is generally not simple to calculate.

- Here the result can obtained directly.

- The optimal inventory path in the zero-vol case is:

SIntrinsic(t,T ) =

(
Smax if ∂log F (t,U)

∂U

˛̨̨
U=T

− r > 0

0 otherwise

- This yields an intrinsic value of:Z T∗

t
Smax

»
∂log F (t,U)

∂U

˛̨̨
U=T

− r

–+

dT
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Virtual Storage

Valuation

Simple case in which V (t, Ȳ (t)) does not depend on t is the infinite
horizon setting with initial forward curve of exponential form.

- T∗ =∞
- F (0,T ) = F∞e

P
j e
−βj T Yj (0).

The next slide shows results in the one-factor setting:

- The top figure is the value versus Y (0).

- Negative values of Y (0) correspond to contango—the value function
must be a decreasing function of Y (0) in order to be an increasing
function of the forward yield.

- The middle figure shows the change in value with respect to Y (0); as this
is a single factor model the plot shows ∆Y = ∂V

∂Y
versus Y (0).

- The bottom plot of Γ = ∂2V
∂Y 2 versus Y (0) illustrates an important point:

As with vanilla options, the convexity of the structure decreases at

extreme values of backwardation or contango.
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Virtual Storage
Valuation

Results in the one-factor case:
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Virtual Storage
Daily Forward Curves

To value natural gas storage for a ”high-turn” facility, daily forward
curve construction is required.

- Using a step function for each month results in massive (an unrealistic)
value at the monthly boundaries.

- The daily forward construction must be consistent with traded monthly

forwards—as shown in the figure below.
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Virtual Storage
Daily Forward Curves

This interpolate was constructed by calculating the cumulative
forward value of the commodity:

C(N̄M) =
MX

m=1

NmFm

- Nm is the number of days in month m;

- Fm is the month forward;

- N̄M =
PM

m=1 Nm is the number of delivery days through month m.

- T {N̄m,C(Tm)}Mmax
m=1 was interpolated using a cubic spline to obtain C(n)

for all delivery days n ∈ [1,Nmax].

- C(·) was then differenced to yield a daily forward price F (0, n).

- Consistency with the monthly forwards is guaranteed:

NmFm = C(Nm)− C(Nm−1) =
X
d∈m

F (0, d)
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Virtual Storage
Valuation

Working problem: Value a virtual storage contract from 01Apr2010
to 31Mar2011 as of pricing date 01Mar2010.

As default parameters we will use: ~β = [0.30, 40].

Effect of daily forward curves:

- This plot shows the value and ∆’s using the step function.

- Note the effects of discontinuities in the forward curve of value and

exposures at the daily level.
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Virtual Storage
Valuation

Effect of daily forward curves:

- This plot shows the value and ∆s using the cubic spline method.

- The results are more reasonable.

- However, the fact that a cubic spline has continuity up to only the first

derivative is clear in the kinks in value and ∆.
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Virtual Storage
Valuation

Effect of mean-reversion rates:

- This plot shows the value as a function of β2 holding β1 constant.

- The higher the mean-reversion rate the more value due to the higher

value of σ2 required to calibrate to daily vols.
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Physical Storage: Valuation

The General Problem

Optimization must now be phrased in terms of maximizing the
expected value of futures cash flows as one injects (spends cash) or
withdraws (receives cash).

Formally, the valuation problem is:

V [0, S(0),F (0, ·)] = sup
s(·)∈A

Ẽ
nZ T∗

0
d(0, t)[−s(t)F (t, t)−κ (s(t), S(t),F (t, t))]dt

o
where:

- d() and F () are the discount factor and forward curve respectively.

- S(t) is the current inventory level and s(t) = S ′(t).

- κ denotes costs associated with injection and withdrawal. For example, a
cost that is a fraction of the fuel charge would take the form
κ = k|s(t)|F (t, t).

- A denotes allowed controls (for example: 0 ≤ S(t) ≤ Smax).
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Physical Storage: Valuation
The General Problem

The constraints A on s(t) and S(t) are what make the valuation
problem challenging.

- In what follows we will work with the following constraints:

- 0 ≤ S(t) ≤ Smax

- s∗ ≤ s(t) ≤ s∗ with constant bounds.

- The value function now depends on St .

- Rephrased, your decision to change inventory by s(t)dt effects the
future value of the structure.

- Computationally this adds the S-dimension to the problem

rendering numerical analysis more challenging.

- In general the state-space is of very high dimension due to the forward

price curve: V (t,St ,F (t, ·))

- Most approaches are predicated on the Gaussian exponential
framework which reduce this space of Ȳt .

- Even two-factor implementations are computationally challenging.
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Physical Storage: Valuation

Intrinsic Value

The first step in storage valuation is establishing intrinsic value.

- Net of hedging costs this functions practically as a lower bound on a bid.

Intrinsic value is the zero-volatility solution; the value that can be
captured by a single static hedge placed at the time of pricing.

- Since there is no randomness, the value function takes the form:

VI = VI [S(0)] with implicit dependence on the forward curve F (0,T ).

There are two approaches to calculating intrinsic value

- Reduction of the problem to a linear programming task (when possible);

- Dynamic progamming which is more generally applicable but much slower.
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Physical Storage: Valuation
Intrinsic Value: Linear Programming

Linear progamming can be applied if the cost function is
independent of inventory level S and linear in the absolute rate:

κ =

(
−k∗s(t)F (t, t) if s(t) < 0

k∗s(t)F (t, t) if s(t) > 0.

The intrinsic value VI [S(0)] is the maximum value over portfolios of
forward spreads between all pairs of delivery days (i , j), subject to
the constraints of the storage facility:

VI [S(0)] = sup
~v∈A
~v≥0

X
i,j

vi,j

h
e−rTj Fj − e−rTi Fi − Ki,j

i

- The portfolio is defined by ~v , with vi,j the notional of the (i , j) spread.

- Ki,j denotes the discounted cost per unit notional of injection at time Ti

and withdrawal at time Tj .

By considering all pairs (i , j) with v̄ ≥ 0 the problem is amenable to
linear programming methods.
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Physical Storage: Valuation

Intrinsic Value: Dynamic Programming

Dynamic progamming is very general but more challenging.

The idea: In any possible state [t,S(t)] one should take the best
possible action.

- We will work on the discrete time grid:

t ∈ T ≡ [0,∆t, 2∆t, . . . ,T∗]

- Notation:
tn = n∆t and pn = F (0, tn)

- We will use typical terminal condition for a storage contract:

V (T∗, S) ≡ 0 for all S (you lose whatever inventory you injudiciously left

in the facility at the end of the contract)
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Physical Storage: Valuation

Intrinsic Value: Dynamic Programming

With the final condition as the “starting point” for a
back-propagation solution, the single-step optimization at each
state is:

V (tn, S) = max
x∈A∆t

h
c (tn, x ,S , pn) + e−r∆tV (tn+1, S + x)

i
where

c(t, x , S , p) = −xp − κ (x , S, p)

- We have accounted for the fact that the allowed set of transitions

depends on ∆t using the notation A∆t . For example, given ∆t the rate

constraint becomes: s∗∆t ≤ x ≤ s∗∆t.

This optimization is nothing more than:

“Make the most money you can (inclusive of future value) given the constraints

on your actions.”
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Physical Storage: Valuation

Intrinsic Value: Dynamic Programming

Dynamic programming problems are usually solved on a discretized
state-space for storage:

S ∈ S ≡ [0,∆S, 2∆S , . . . , Smax]

Optimization becomes:

V (tn, Sk ) = max
k̂∈A∆t,∆S

h
−(k̂ − k)∆Spn − κ

“
(k̂ − k)∆S , Sk , pn

”
+ e−r∆tV

`
tn+1, Sk̂

´i

- Iterating yields the value function V (tn, Sk ) and the optimal control at
each state: k∗(n, k)

- Starting at an initial storage level S0 = k0∆S , the optimal injection and
withdrawal path is then obtained by iterating forward in time:

kn+1 = k∗ [n, kn]
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Physical Storage: Valuation
Intrinsic Value

Continuing with our working problem using:

- Smax = 106 MMBtu ( 1bcf)

- [s∗, s∗] = [−α, α] ∗ Smax

- κ (s(t),Su ,F (t, t)) = 0.01F (t, t)

Below is the optimal instrinsic inventory trajectory indexed by turns.

- Turn number N and α are related via: α(N) = 2SmaxN.

- Note the anticipated change in profile with change in injection rate,

ultimately yielding profiles that do not utilize the full capacity.
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Physical Storage: Valuation

General Valuation

The dynamic programming approach is easily extended to the fully
stochastic problem in which forward curves are driven by discrete set
of random factors.
In the setting of the Gaussian factor models this becomes:

V
“
tn, S , ~Y

”
= max

x∈A∆t

“
c
“
tn, x , S, pn(~Y )

”
+ e−r∆tE

h
V
“
tn+1, S + x , ~Ytn+1

” ˛̨̨
Ftn

i”
Now the interpretation is make the most ”expected money” given
the state you are in.

This is solved on discrete lattices (usually) and can be very time
consuming.

In the one-factor results that follow the lattice-size was roughly

6× 106 (Time x Storage x Y).
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Physical Storage: Valuation
General Valuation

Parameters:
- For any β we will fix the stationary variance at σ2

2β
≡ C = .5.

- Default paramters r = .05 and β = 1.

The following figure shows V (S0,Y0).
- Value increases with Y0—more backwardation means that you can sell

inventory at higher prices.

- Value increases with S0—more inventory is better than less.
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Physical Storage: Valuation
General Valuation

A more interest picture is afforded by purely the extrinsic value.
- Extrinsic value is highest for values of Y0 near zero—when the forward

curve is flat.

- Extrinsic value decreases (slightly) with S0.
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Physical Storage: Valuation
General Valuation

This plot shows expected storage levels varying S0 with Y0 = 0
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Physical Storage: Valuation
General Valuation

This plot shows expected storage levels varying Y0 with S0 = 0.5.
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Physical Storage: Valuation
General Valuation

This plot shows expected storage levels varying interest rates for
Y0 = 0 with S0 = 0.5.

The higher the rate, the more expensive to fund inventory and the

lower the expected inventory level.
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Physical Storage: Valuation
General Valuation

The value of storage versus turns exhibits a similar profile as was
seen for intrinsic value.

The asymptotic value is the virtual storage value.
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Physical Storage: Valuation
General Valuation

Distributional features vary with the flexibility of the facility.

This shows the expected inventory and one standard deviation
envelopes around it for one and five turn storage.

- The drop in expected inventory in the July time-frame for the high-turn
facility, shows that it is able to exploit relatively nuanced changes in
forward yields.

- The standard deviation of the inventory is meaningfully higher for the

high turn facility—manifestation of the greater response to local

fluctuations in spot forward yields.
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Physical Storage: Alternative Methods

Numerical challenges

The results above were in a one-factor setting.

Even in a two-factor the numerical challenges are daunting.

Moreover, it is not clear just how realistic the multi-factor Gaussian
exponential framework is (more on this later).

These considerations have spawned a variety of approaches to
approximate methods of valuation, such as:

- Longstaff-Schwartz type methods.1

- Rolling Intrinsic2

- CSO subordination

1
See F.A. Longstaff and E.S. Schwartz, “Valuing American Options by Simulation: A Simple Least-Squares

Approach”, The Review of Financial Studies, 2001 and A. Boogert and C. de Jong, ”Gas Storage Valuation Using

a Monte Carlo Method”, The Journal of Derivatives (2008)
2

See, for example, Breslin, Clewlow, Elbert, Kwok and Strickland, “Gas Storage: Overview and Static

Valuation”, Energy Risk (2008)
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Physical Storage: Alternative Methods

Rolling Intrinsic

The approach is simulation-based and very robust.

The algorithm:

- Consider a storage transaction spanning [T∗,T∗].

- The intrinsic value of the storage transaction at time t = 0 < T∗ is:

VI (0) = max
w∈A

Z T∗

T∗
e−rT w(T )F (0,T )dT

with the minimizing volumes w∗0 (·).

- Note: w(T ) > 0 corresponds to a forward sale of natural gas at time T .

- The actual forward hedge required to “lock in” intrinsic value is −w∗0 (T )

for delivery time T .
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Physical Storage: Alternative Methods

Rolling Intrinsic

The algorithm: (cont)

- At a later time t > 0, the same calculation results, in general, in a
different solution w∗t (T ) with value VI (t).

- If VI (t) > VI (0), then it makes sense to rebalance the IV hedge,
extracting the difference:

Z T∗

T∗
e−r(T−t) [w∗t (T )− w∗0 (T )] F (t,T )dT

- Note that when t exceeds the first flow date T∗ of the transaction, the current intrinsic

value refers only to the forward (unrealized) value.
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Physical Storage: Alternative Methods
CSO Subordinators

Calendar spreads were useful for computing intrinsic value.

In a similar train of thought CSO’s could be used to establish
bounds on storage value.

- Denote the present value of the forwards spreads and CSOs as:

Si,j = e−rTj Fj − e−rTi Fi − Ki,j

Ci,j = Ẽ

»“
e−rTj Fj − e−rTi Fi − Ki,j

”+
–

Pi,j = Ẽ

»“
e−rTi Fi − e−rTj Fj − Kj,i

”+
–

(1)

assuming that i < j .

- A lower bound on the value of a storage asset is:

V [S(0),F (0, ·)] = sup
~v∈A

~α,~β,~v≥0

0@ X
1≤i<j≤J

ˆ
αi,jCi,j + βi,jPi,j

˜
+

X
1≤i<j≤J

vi,jSi,j

1A
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Physical Storage: Alternative Methods

CSO Subordinators

The hard part is define A—the allowed set of spread options.

While each option may or may not be exercised, it must be assumed
to be exercised in order to ensure that the constraints are satisfied
under all realizations of forward prices and all possible option
exercise events.

The set of constraints is lengthy but constructable and the

optimization problem is amenable to linear programming once you

know the values of the pairwise CSOs.
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Physical Storage: Alternative Methods
CSO Subordinators

While compelling in simplicity the solution can change suddenly.
- Condensing our notation above into the values of the tradables involved

and the parameters over which optimization occurs:

~π ≡
h
~α, ~β,~v

i
~V ≡

h
~C , ~P, ~S

i
the optimal holding ~π∗ [F (t, ·)] implies a lower bound on the value:

V∗ [F (t, ·)] ≡ ~π†∗ [F (t, ·)] ~V [F (t, ·)]

- Many implementations calculate Greeks on the static portfolio:

∂V∗

∂F (t,T )
= ~π†∗ [F (t, ·)]

∂~V
∂F (t,T )

- The proper calculation should be:

∂V∗

∂F (t,T )
= ~π†∗ [F (t, ·)]

∂~V
∂F (t,T )

+
∂~π∗

∂F (t,T )

†
[F (t, ·)] ~V

The second term above is not a smooth function of the market data.

44 / 51



Physical Storage: Alternative Methods
Structural Models

Inventory-based models have been around for awhile.3

Following Pirrong:

- Spot price formation occurs through a market equilibrium based upon
information about supply and demand drivers and storage capacity.

- Supply and demand functions pt = S(qS
t ) and pt = D(qD

t ) are specified.

- The equilibrium price is at the intersection of these two functions.

- An alternative characterization is that the equilibrium price maximizes the
sum of the consumer and producer surpluses defined respectively as:

D∗(q) =

Z q

0
D(q̂)dq̂ − qD(q)

S∗(q) = qD(q)−
Z q

0
S(q̂)dq̂ (2)

- The consumer surplus D∗(q) can be interpreted as the value which would
be obtained by all consumers, when quantity q is consumed at the
demand curve price D(q).

3
See Deaton and Laroque (1991), Routledge, Seppi and Spatt (2000) and Pirrong, “Commodity Price

Dynamics” (2012)
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Physical Storage: Alternative Methods
Structural Models
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Physical Storage: Alternative Methods
Structural Models

When agents make inter-temporal decisions involving inventory of a
commodity that is produced and consumed, it is the present value
of integrated future total surplus that must be maximized.

- Denote the level of inventory at time t by It .

- Assume that the demand and supply functions are functions of stochastic
processes ~Xt and ~Yt .

- The optimization problem is:

V
“
It , ~Xt , ~Yt

”
≡ sup

[qD (·),qS (·)]∈A
Ẽ

»Z ∞
t

e−r(T−t)
h
D∗(qD (T ), ~XT )− S∗(qS (T ), ~YT )

i ˛̨̨
Ft

–
dT

- Constraints A on the allowed actions qD and qS always include:
- Bounds on inventory: I (t) ∈ [0, Smax] for all t.

- Conservation of commodity: dI
dt

= qS (t)− qD (t).

- In some cases this last constraint is modified to have losses of inventory while in storage.

- Consistency of spot price formation also requires:

pt = D
h
qD(t), ~Yt

i
pt = S

h
qS (t), ~Xt

i
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Physical Storage: Alternative Methods

Structural Models

Various authors have studied models of this form, or closely related
variations.

The results of such these studies suggest that models of this form
can generate many of the expected results, notably:

- The instantaneous variance of returns (spot or forward) decreases with
inventory It .

- This effect decreases (in general) with tenor, with the ratio of spot to
forward returns variances greatest at high demand and low inventory.

- Returns correlation between spot and forward contracts is low at high
demand and low inventory, and high at low demand and high inventory.

- In some cases (see Routledge, Seppi and Spatt) contango of implied
volatilities at short tenors—a phenomenon occasionally observed in
market data.

The main problem: Numerical efficiency, which currently precludes

effective calibration to historical and forward market data.
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Practical Considerations
Limited Market Data

Consider the NG forward curve on 10Nov2010.

- Seasonality puts the intrinsic value primarily by injecting in the summer
and withdrawing in the winter.

- Extrinsic value is primarily intra-seasonal.

- This is where correlation information is particularly important.
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Practical Considerations

Limited Market Data

Now consider the following broker chat on the same date:

What’s wrong with this picture?

Insert: CSO Broker Chat (10Nov2010)
MARKET LOG FOR MARKET ID:—
11/10/10 8:19 AM v11/f12 -.50 call cso .0825-.095
11/10/10 8:34 AM V/F -50call CSO .075 / .10
11/10/10 8:37 AM V/F -50call CSO .075 @ .09
11/10/10 10:57 AM v11/f12 -.50 call cso @ .0875
11/10/10 10:58 AM v11/f12 -.50 call cso .075-.0875
11/10/10 1:43 PM v11/f12 -.50 call cso 6.5/8.25
11/10/10 1:44 PM v11/f12 -.50 call cso 7/8
11/11/10 8:46 AM v1/f2 -.50 call cso: .07 / .085
11/11/10 1:47 PM v11/f12 -.50 call cso .07-.085
11/11/10 1:52 PM v1/f2 -.50 call cso: .07 / .075
11/11/10 1:52 PM v1/f2 -.50 call cso: .07 / .075
11/11/10 1:59 PM v11/f12 -.50 call cso .07-.075
11/11/10 2:11 PM v11/f12 -.50 call cso .0725-.075
11/12/10 10:16 AM
V/F -1.00/-1.25 1x2 put spr CSO .01/.03 to the 2
V/F -.1.25 put CSO .0675/.075
V/F -1.00 put cso .115/.135
V/F -.50 call CSO .065/.075

50 / 51



Practical Considerations
Conclusion

All of the valuation methods described boil down in essence to CSO
valuation.

- Absence of CSO data makes calibration and hedging challenging.

- In the absence of such market data models must accurately represent

correlation structure.

The core (and largely unresolved) problem:
- Correlation structure depends upon inventory.

- Inventory depends on the actions of storage owners.

- Recall this figure showing copper PCA results versus inventory.
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