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Basics of Tolling Deals

Deal Structure

Tolling deal is a derivative rendition of a power generator.

- Typically the fuel is natural gas.

The Basic Structure:

Ẽ

"X
t

d(0, t) max (FP(t, t)− H∗FG (t, t)− V , 0)

#

where:

- t denotes delivery day (this is discrete time).

- FP denotes the forward (or spot) price of power for a particular delivery

bucket (e.g. 5x16) and FG denotes the price of natural gas; both are

typically at liquid pricing hubs.

- H∗ is the heatrate (conversion rate between gas and power).

- V is VOM (variable operation and maintenance).

3 / 73



Basics of Tolling Deals

Deal Structure

The primary purpose of a toll is to annuitize the value of either a
soon to be purchased asset or a soon to be built asset in order to
facilitate borrowing.

The typical structure is:

- Daily day-ahead manual exercise into a standard power buckets.

- Monthly ”capacity payments” (as opposed to upfront premium).

- Monthly settlement.

so that the valuation is really:

V = Ẽ

24X
m

d(0,Tm)Qm

X
d∈B(m)

max (FP(d , d)− H∗FG (d , d)− V , 0)

35

- B(m) denotes the days in month m with delivery in the relevant power

bucket B.
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Power Market Mechanics
Linear Instruments

Fixed price swaps settle on the monthly average realized spot price
for a prescribed bucket.

Eastern US:

- Peak bucket is 5x16 (M-F 7AM to 11PM).

- Offpeak (the ”offpeak wrap”) is the complement.

- Often circumstances require trading (or at least viewing) the offpeak wrap

as 2x16 and 7x8. These are highly illiquid swaps.

- Standard contract size: 50MW.

Western US:

- Peak bucket is 6x16 (M-Sat 7AM to 11PM).

- Offpeak (the ”offpeak wrap”) is the complement.

- Standard contract size: 25MW.

Texas (ERCOT):

- Peak bucket is 5x16 (M-F 6AM to 10PM).

- Offpeak (the ”offpeak wrap”) is the complement.

- Standard contract size: 50MW.
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Power Market Mechanics

Linear Instruments: Heatrates

The term ”heatrate” refers to a ratio of power price to a natural gas
price.

- The ratio can pertain to market prices, either spot or forward (”market

heatrates”).

- It can also refer (as we’ll see shortly) to engineering specs of a generator.

Power swaps often trade as heat-rates:

- A power buy/sell is associated with a sell/buy of a specified volume of

natural gas, both over the same delivery period.

- The trade will be quoted in heatrate units: FP (t,T )
FG (t,T )

, where P and G

denote power and gas respectively.
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Power Market Mechanics
Linear Instruments: Heatrates

The following figure shows PJM forward prices and PJM/Henry
Hub forward heatrates.

- The seasonality in both arises from (well-founded) expectations that loads

will be higher in summer and to a lesser extent winter months.

- This forces expected clearing prices higher up the stack into more

expensive units.
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Power Market Mechanics
Options

Annual Swaptions

- Same structure as natural gas in mechanics/valuation.

Monthly options:

- Same structure as natural gas.

- Standard expiry: ’-2b’

Daily Fixed Strike

- Financially settling and usually manually exercised day-ahead (’-1b’)
- Example: Cash settled value of an auto-exercised call:X

d∈m

max [F (d , d)− K , 0]

- Example: Cash settled value of standard exercise:X
d∈m

1{Ed} [F (d , d)− K ]

where Ed denotes exercise events.

- Dominant vol exposure: daily (spot).
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Power Market Mechanics
Options

Monthly Options:

- Exercises at time (Te) before the beginning of the delivery month into

either:

- A physical forward with delivery during the contract month at a

price that is the strike K ;

- Cash settlement based on the value Fm(Te)− K .

- For example, the value of a call (in either case) is:

d(0,T )Ẽ (max [Fm(Te)− K , 0]).

Daily Options:

- A set of daily options usually exercising one business day before delivery.

- These are usually financial settling on the spread between spot price

and the strike: F (t, t)− K where t indexes the delivery day.

- For example, the value of a call is: d(0,T )Ẽ
`P

t∈m max [F (t, t)− K , 0]
´
.

- The notation t ∈ m denotes the active delivery days in the option during

month m. For peak (5x16) power options the sum would span the

(roughly 20-22) business days in the particular month.
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Valuing Tolls—A Monthly Example

Working Problem

Consider a tolling deal with monthly exercise with the following
terms:

Pricing date: 11Jan2010

Underlyings are PJM Western Hub 5x16 and Henry Hub natural gas.

Heatrate H∗ = 11.0

Delivery monthly Jul10

Exercise is standard penultimate settlement of NYMEX NG contract.

Note: for simplicity we will assume that PJM monthly options also

expire ’-4b’).

Notional: 400 MW
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Valuing Tolls—A Monthly Example
Relevant Data

Remark on Notional:

- The number of NERC business days in the Jul10 is 21.

- So the total notional of this toll is 21 · 16 · 400 = 134, 400 MWh.

The relevant forward prices are:

- X0 ≡ FP(0,T ) = 69.650

- Y0 ≡ H∗FG (0,T ) = 11.0 · 5.603 = 61.633

The discount factor is 0.999 .

Note: The market heatrate is: H = 69.650
5.603 = 12.431.

- This is higher than the deal heatrate H∗ = 11.0

- The option is in-the-money.

Vol Backwardation:

We do not have a vol backwardation issue as the respective legs are expiring (by

assumption) at their vanilla expiry.
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Valuing Tolls—A Monthly Example

Skew: What vols do we pick?

There is ambiguity as the vol skews for each underlying are defined
in terms of fixed strike options.

We have floating strikes in the sense that the ”other” leg is itself a
commodity price.

A common approach is to use the underlying price of the opposing
leg to define moneyness.

For an option on F1 − F2 − K view:

- F1 in reference to F2 + K : π1 ≡ F (0,T2)+K
F (0,T1)

.

- F2 in reference to F1 − K : π2 ≡ F (0,T1)−K
F (0,T2)

.

For this problem:

- πX ≡ H∗FG (0,T )
FP (0,T )

and πY ≡ FP (0,T )
H∗FG (0,T )

.

- In our working problem πX = 0.885 and πY = 1.130.

The results of this vol lookup are: σX = 0.393 and σY = 0.445.

12 / 73



Valuing Tolls—A Monthly Example
Skew: What vols do we pick?
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Valuing Tolls—A Monthly Example

Correlation

What correlation should we use?

- Monthly tolling deals are uncommon and there is no broker market from
which to calibrate this parameter.

- The following figure shows the returns correlation by contract month

estimated over a 1Y trailing window using several time-scales (lags) for

returns:

- Specifically returns on lag L are defined as log
h

F (d,T )
F (d−L,T )

i
.

- The purpose of considering returns for L > 1 is to both view returns

on time scales on which actual hedging activity may occur as well

as to smooth out possible anomalies in historical marks.
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Valuing Tolls—A Monthly Example
Correlation
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Valuing Tolls—A Monthly Example
Correlation

The results for the this working problem are shown in the figure

below for a range of correlations.
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Valuing Tolls—A Monthly Example
Delta and Gamma

Deltas—recall:
∂V

∂X
= N(d1)

∂V

∂Y
= −N(d2)

Converting to our forward tolling setting yields:

∂V

∂F
= d(τ)QN(d1)

∂V

∂G
= −d(τ)QH∗N(d2)

Gamma—similarly:

Γ = d(τ)Q
N′(d1)

σ̂

 1
F (0,T )

− 1
G(0,T )

− 1
G(0,T )

F (0,T )

G2(0,T )

!

Γ is positive-definite because:

ᾱtΓᾱ = d(τ)Q
N′(d1)

σ̂F (0,T )

»
α1 −

F (0,T )

G(0,T )
α2

–2

.

When ∆-hedged, all directions point up.
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Valuing Tolls—A Monthly Example
Delta and Gamma

It is useful to diagonalize the matrix to see where the convexity is:
- The eigenvalues are:

λ1 = 0

λ2 = d(τ)Q
N′(d1)

σ̂

»
1

F (0,T )
+

F (0,T )

G(0,T )2

–
- The eigenvector corresponding to λ1 = 0 is:

~v1 =

"
F (0,T )
G(0,T )

1

#
(1)

- There is no convexity when market heat rate H(t,T ) is constant.
- The second eigenvector is:

~v2 =

"
1

− F (0,T )
G(0,T )

#
(2)

- Convexity is maximal for price changes in which ∆G = −H∆F .
- This direction is not particularly relevant to empirical natural gas and

power dynamics.

- In this direction, a $1 increase in forward power prices is associated with a

roughly $12 drop in natural gas prices; hardly an expected event.
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Valuing Tolls—A Monthly Example
Vega

The valuation above is identical to a call option on X struck at Y0
with the modification that the term volatility is given by the
modified form:

σ̂2 = T
ˆ
σ2

X + σ2
Y − 2ρσXσY

˜

As with a call option, ∂V
∂σ̂ is positive:

∂V

∂σ̂
= XN′(d1)

∂d1

∂σ̂
− YN′(d2)

∂d2

∂σ̂
= XN′(d1)

.

The chain rule clearly yields:

∂V

∂σX
=
∂V

∂σ̂

∂σ̂

∂σX

This means that:

sign

»
∂V

∂σX

–
= sign

»
∂σ̂

∂σX

–
= sign [σX − ρσY ]
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Valuing Tolls—A Monthly Example

Vega

By symmetry:

sign

»
∂V

∂σY

–
= sign [σY − ρσX ]

The implication is that vega with respect to one of the underlyings

will be negative if: min
[
σX

σY
, σY

σX

]
< ρ.

As we know from our working example, this situation is not
uncommon as σX and σY are often of comparable magnitude and ρ
is often very close to unity.

The intuition is simple: if the correlation of the two assets is high

and if σX > σY then any increase in σY ”chews into” the volatility

of the spread σ̂.
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Valuing Tolls—A Monthly Example

Vega

By implicit differentiation:

∂σ̂

∂σX
=

T
1
2 (σX − ρσY )`

σ2
X + σ2

Y − 2ρσXσY

´ 1
2

with a symmetric result for ∂σ̂
∂σY

.

Therefore:
∂V

∂σX
= XN′(d1)

T
1
2 (σX − ρσY )`

σ2
X + σ2

Y − 2ρσXσY

´ 1
2

which scales as T
1
2 .
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Valuing Tolls—A Monthly Example
Vega

In our working problem the correlation threshold for negative vega is
σX

σY
= 0.882.

We expect X-vega to be negative.

The following plot shows both vegas as a function of correlation.
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Hedging Frictions
Block-Size Impact on Hedging

This has implications for hedging.
- The fact that you can only trade 50MW limits your ability to capture the

modeled extrinsic value.

- This limitation is an issue in all markets, but particularly so for power and

natural gas.

- The following plot shows the change in delta (converted to MW) as a

function of a change in heatrate on the trade date.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−200

−150

−100

−50

0

50

100

150

200

Change in Heatrate

Ch
an

ge
 in

 P
ow

er 
De

lta
 (M

W
)

Change in Delta Versus Change in Heatrate

23 / 73



Hedging Frictions
Block-Size Impact on Hedging

How much do heatrates actually move?
- The following plot shows heatrate history for the Jul10 contract as well as

the distribution of 5 day heatrate changes.

- The conclusion is that delta hedging a 400 MW toll is not going to be a

very fruitful enterprise.

Jul08 Oct08 Jan09 Apr09 Jul09 Oct09 Jan10 Apr10
11

11.5

12

12.5

13

13.5

14

He
at

ra
te

PJM/HH Historical Heatrate: Jul10

−1.5 −1 −0.5 0 0.5 1 1.5
0

20

40

60

80

100

Heatrate Change

Fr
eq

ue
nc

y

PJM/HH Historical 5 Day Change in Heatrate: Jul10

24 / 73



Daily Tolls
Working Problem

Most tolls trade for tenors of 5-7 years.

- This is well outside the liquidity window at which individual contract

months trade.

- The impact on hedge performance can be non-trivial—but has yet to

estimated rigorously.

In what follows we will switch to the following toll:

- Pricing date: 11Jan2010

- Underlyings are PJM Western Hub 5x16 and Henry Hub natural gas.

- Heatrate: 8.0

- Delivery period: 01Jan11 to 31Dec11

- Standard exercise: ’-1b’.

- Notional: 400 .

Note: A 2-factor Gaussian exponential framework was used for each
with correlations specified to be roughly consistent with implied
correlations.
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Daily Tolls

Multi-Factor Approach

In the absence of quoted markets for heatrate options, one might
consider using estimated correlations as a benchmark.

In the two-factor framework:

dFk(t,T )

Fk(t,T )
=

2∑
j=1

[∫ t

0

σ
(k)
j (T )e−βj (T−t)dB

(k)
j (s)

]
where

- k = 1 corresponds to power.

- k = 2 corresponds to natural gas.

Factor correlations:

- corr
h
dB

(1)
1 , dB

(2)
1

i
= ρlong.

- corr
h
dB

(1)
2 , dB

(2)
2

i
= ρshort(t).
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Daily Tolls

Multi-Factor Approach

The terms ”monthly vol” (σ̄M) and ”daily vol” (σ̄D) will always
refer to implied vols pertaining to the fixed strike options.

Market dichotomy:
- Power: Monthly and daily fixed strike options are the vanilla options.

- Natural Gas: Monthly and the forward starter are the vanilla options.

Calibration of the model above for each commodity involves setting

{σ(k)
j (T )}2

j=1 to be consistent with σ̄
(k)
M and σ̄

(k)
D by contract month.
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Daily Tolls

Spot Volatility

Recall the caricature of spot (daily) prices processes with returns for
the daily spot prices i.i.d. normal:

F (t, t) = Fm(Tm)eζZt− 1
2 ζ

2

where

- Fm denotes the contract month containing day t

- Zt is standard normal.

- ζ is the spot volatility.
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Daily Tolls

Valuation

In this modeling framework each of the two underlying commodities
is log-normally distributed:

- Valuation eventually leads to Margrabe/quadrature.

- The term correlation can be explicitly calculated analytically directly from

the two-factor diffusions.

In the caricature model:

- Each underlying has a log-normal distribution with volatilities σ̄D,k which
satisfies:

σ̄2
D,kTD = σ̄2

M,kTM + ζ2
k

- The term-correlation is given by:

ρterm (TD) =
σ̄M,1σ̄M,2TMρL + ζ1ζ2ρS

σ̄D,1σ̄D,2TD
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Daily Tolls
Valuation

Note the seasonality:
- Higher correlation in winter months due to gas price spikes being the

driver of power prices.

- Weather drives summer price dynamics, independently of fuel prices.
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Daily Tolls
Valuation

Using ρS from statistical estimate yields the following term
structure of correlation.

Trading activity suggests implied values of ρS that are much higher
than these.

Why?
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Hedging Frictions
Impact of Strips

The following figure shows deltas by month as well as the total cal
strip delta, both in absolute terms as as a percentage difference for
our toll.

Note the nontrivial variation from the cal strip quantity.
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Hedging Frictions
Impact of Strips

The problem is exacerbated at higher heatrates, which ”pushes” the
delta into fewer months making the cal strip instrument an even
more blunt instrument.

The following figure shows the same results for an H∗ = 10 heatrate.
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Hedging Frictions

Mismatch in Greek Behavior

Hedging gamma and vega exposure for tolls is nontrivial:

- Since vanilla options have a single expiration convention, with expiry near

delivery, you have to choose between vega and gamma hedging.

- Typically you choose to control gamma at shorter tenors and vega and

longer tenors.

The behavior of vega arising from tolling structures is different than
that of the vanilla products.

- The following figures show vega for a sample 8HR toll with tenor 1Y.

- The underlying prices were $50/MWh and $5/MMBtu.

- The vols were .50 for each leg and correlation was set at .90.
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Hedging Frictions
Mismatch in Greek Behavior
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- The top figure shows the power and gas vegas for the toll across a range of gas

prices assuming that the power price remains at the market heatrate (10).

- The lower figure shows the same for ATM vanilla calls.

- Note the meaningfully different behavior both in slope and in magnitude.

- Costly rebalancings of vega hedges would be required to maintain neutrality.
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Hedging Frictions

Spurious Risks

Use of this approach results in exposures to volatility and
correlations that can large and unmanagable.

Are these induced by the choice of model?

Rephrased:

- Under this modeling paradigm are changes in volatilities and correlations
(if liquidity permitted observation and calibration) off-setting?

- Value is very dependent on the spot volatility which is driven by the
spread between σ̄D and σ̄M . Is this real?

- The absence implied correlation data of a quality analogous to implied

vols renders this unanswerable.

The hedging program that follows is highly questionable.
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Hedging Frictions

Spurious Risks

Vega exposure is not confined to σ̄D for the two commodities.

The resulting vegas with respect to σ̄M and σ̄D for each of the
commodities is largely driven by the implicit correlation effect.

∂V

∂σ̄D
=

∂V

∂σ̄D
|ρ +

∂V

∂ρ
|σ̄D

∂ρ

∂σ̄D

The term correlation effect for vega hedging results in substantial
positions:

- Long/short or (short/long) positions in monthly/daily vega depending on

relative values of the various component volatilities.
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Hedging Frictions

Spurious Risks

Note that the spread vol that enters Margrabe is:

σ̂2 =
[
σ̄2

M,1 + σ̄2
M,2 − 2ρLσ̄M,1σ̄M,2

]
TM +

[
ζ2

1 + ζ2
2 − 2ρSζ1ζ2

]
from which we see that:

1

2
σ̂

∂σ̂

∂σ̄M,1
= [σ̄M,1 − ρLσ̄M,2] TM +

∂ζ1

∂σ̄M,1
[ζ1 − ζ2ρS ]

The sign of the first term on the RHS is exactly like the monthly
vega terms in the previous monthly example.

We know that ∂ζ1

∂σ̄M,1
< 0 and ∂ζ1

∂σ̄D,1
> 0 and similarly for all other

permutations of vols and commodity leg.
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Hedging Frictions
Spurious Risks

The figure below shows initial vega exposures in our example.

- Implied vol hedging strategy involves substantial volume in monthly and

daily options in both commodities.

- Moreover, these hedges would also have to be unwound t ↑ T .
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Vol-Lookup Approximation

Simple Experiment

How much error is sustained in the vol-lookup approximation.

The following analysis considers a reasonable setup:

- A spread option with tenor of 1
4

of a year.

- Power and gas forwards of $100 and $10 respectively

- Heatrates H∗ are varied on the interval [8, 12].

The procedure:

- N=100,000 standard i.i.d normal deviates Z̄n where each Z̄n ∈ <2

- Poisson jumps with arrival rate 8/year and size 2 were added to Zn,1.

- The {Z̄n}Nn=1 were normalized to unit standard deviation and transformed

to yield X̄n with correlation .90.

- These were normalized to have a standard deviation corresponding to

implied vols of .50 and .60 respectively.
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Vol-Lookup Approximation
Simple Experiment

The following plot shows the skew for the two legs.
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Vol-Lookup Approximation
Simple Experiment

The qq-plot of the returns is shown below.
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Vol-Lookup Approximation

Simple Experiment

The following plot shows the results comparing exact (simulation)
valuation to the vol-lookup methods as a function of the deal
heatrate.

- The Monte-Carlo error is typically well under $0.10.

- The vol-lookup approximation is roughly 2% higher at low strikes.

- The third plot shows the ratios of extrinsic values which is more ominous,

with low heatrates seeing ratios above 1.5.
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Vol-Lookup Approximation
Simple Experiment
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Vol-Lookup Approximation
Simple Experiment

Vol Perspective:

- Converting this difference in extrinsic value into a σG equivalent move by
dividing the difference by the G -vega yields the following.

- The errors can be meaningfully outside of the volatility bid-offer.
- This has been a subject of some investigation (see C. Alexander and A

Venkatramanan 2011).

- However, a rigorous and efficient methods for bounding this error remain

undeveloped.
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Modeling Alternatives

Movitations

The substantial difficulties in hedging heat rate options calls into
question the entire modeling framework—arguably even the
relevance of risk-neutral pricing methodologies.

It is typical to proceed with methodologies similar to those discussed
above, simply cranking the correlation up to levels which either:

- Are consistent with what trading activity is observed.

- Result in realized payoffs that dominate theta bleed.

Is this a reasonable thing to do?
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Modeling Alternatives
Heatrate Distributions

Rolling calendar strip heatrates versus natural gas prices.

Note the systematic decrease in heatrates as NG prices increase.

- Bidding behavior of NG power generation:

pbid = H∗G(t, t) + K

which would suggest:

H(t,T ) = H∗ + K/G(t,T )

- Switching: G(t,T ) ↑ means cheaper sources of generation on the margin.

- It also explains why monthly power vols are lower than for natural gas.
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Modeling Alternatives

Heatrate Distributions

What are the implications of the two-factor modeling heatrate distributions?

For any fixed time t let:

σ̃F = σF t
1
2

σ̃G = σG t
1
2

where σF and σG are volatilities of the two underlying forward prices.

We know that:

H(t,T ) ≡
F (t,T )

G(t,T )
=

F (0,T )

G(0,T )
eσ̃F ZF− 1

2
σ̃2

F−σ̃G ZG + 1
2
σ̃2

G

where:

- The normal deviates corresponding to the two underlyings at time t are
ZF and ZG respectively.

- The correlation between the two deviates is ρ.

- For time-varying local volatility these are the implied volatilities for [0, t].
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Modeling Alternatives

Heatrate Distributions

Writing: ZF = ρZG +
p

1− ρ2W where W is independent of Z we have:

H(t,T ) =
F (0,T )

G(0,T )

»
eσ̃F

√
1−ρ2W− 1

2
(1−ρ2)σ̃2

F

– h
e(ρσ̃F−σ̃G )ZG− 1

2
(ρ2σ̃2

F−σ̃
2
G )
i

The heatrate H(t,T ) is not in general a martingale since the third term has an
expected value:

Ẽ
h
e(ρσ̃F−σ̃G )ZG− 1

2
(ρ2σ̃2

F−σ̃
2
G )
i

= e
1
2 [(ρσ̃F−σ̃G )2−(ρ2σ̃2

F−σ̃
2
G )]

= eσ̃G (σ̃G−ρσ̃F )

Using the fact that:

G(t,T ) = G(0,T )eσ̃G ZG− 1
2
σ̃2

G

we have:

ZG =
1

σ̃G
log

»
G(t,T )

G(0,T )

–
+

1

2
σ̃G
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Modeling Alternatives

Heatrate Distributions

Putting this all together we have:

H(t,T ) =
F (0,T )

G(0,T )

»
eσ̃F

√
1−ρ2W− 1

2
(1−ρ2)σ̃2

F

–
»
e

(ρσ̃F−σ̃G )
“

1
σ̃G

log
h

G(t,T )
G(0,T )

i
+ 1

2
σ̃G

”
− 1

2
(ρ2σ̃2

F−σ̃
2
G )
–

=
F (0,T )

G(0,T )

»
eσ̃F

√
1−ρ2W− 1

2
(1−ρ2)σ̃2

F

–
e

1
2
ρσ̃F (σ̃G−ρσ̃F )

»
G(t,T )

G(0,T )

–“ρ σ̃F
σ̃G
−1
”

This establishes that under the Margrabe paradigm H(t,T ) is related to
G(t,T ) functionally as:

H(t,T ) = cXG(t,T )

“
ρ
σ̃F
σ̃G
−1
”

where c is a constant and X is a unit mean log-normal random variable and
”returns” variance σ̃F

p
1− ρ2.
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Modeling Alternatives
Heatrate Distributions

For H(t,T ) to be a decreasing function of G(t,T ) requires that: ρ σ̃F
σ̃G

< 1.

Issues:

- In many months σF > σG .

- Increasing ρ to near unity causes a breakdown in ”known” behavior.

Note the potential problems with the H∗ = 10 toll.

Jan11 Feb11 Mar11 Apr11 May11 Jun11 Jul11 Aug11 Sep11 Oct11 Nov11 Dec11
0.8

0.9

1

1.1

1.2

1.3

Pr
ice

 ra
tio

 (π
)

Price Ratios By Month

 

 
PJM
HH

Jan11 Feb11 Mar11 Apr11 May11 Jun11 Jul11 Aug11 Sep11 Oct11 Nov11 Dec11
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Te
rm

 (d
ail

y) 
vo

l

Term Volatility By Month

 

 
PJM
HH

51 / 73



Modeling Alternatives

Heatrate Distributions

Key Points:

- Simply cranking the term correlation up does not result in realistic
distributions in many cases.

- The liquidity in daily options for power is highly concentrated
near-the-money.

- For natural gas, liquidity in daily options is very limited in both strike and
tenor.

- Using ”marked” vols is often little more than feeding ”Curious George

Draws a Vol Surface” into a multi-factor model.

Some practitioners and researchers have gravitated to alternatives.
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Modeling Alternatives

Econometric Models

The goal is to generate a physical measure of all related prices and
then either:

- Construct hedges and calculate value directly.

- Transform the distribution to be consistent with market tradables.

Consider at regression form:

log

»
p(d)

pNG(d)

–
= α+ γpNG(d) +

KX
k=1

θ(d)k + εd

where:

- The modified temperature is: θ(t) = eλ(t)

1+eλ(t) with λ(t) ≡ τ(t)−τref
w

.

- Here τref and w selected to be characteristic mean and width of
temperatures realized over the entire data set.

- The fact that θ ∈ [0, 1] results in regular behavior beyond the range of

historical data.
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Modeling Alternatives
Econometric Models

The result is shown below.

Coupled with:

- Temperature simulations (more on this later).

- Simulations for pNG

yields a joint distribution for: ~π ≡ [τ, pNG, p].
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Modeling Alternatives
Econometric Models

Expected values of simulated prices need not equal forward prices.

- The simulations are physical measure.

- The difference is an estimate of a risk premium.
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Modeling Alternatives
Econometric Models

Valuation process:

- Generate simulations for ~ζ(d) ≡ [τ, pNG, p](d).

- Compute the simulated payoffs of:

- The asset or trade in question: ΠA.

- The set of potential hedges: X̄

- Compute an optimal static (initial) hedge—for example:

~h∗ ≡ argmin
~h

var
h
Π + ~h†~X

i
- The resulting hedge portfolio: Π∗ ≡ Π + ~h†∗~X usually has a non-trivial

probability distribution.

- The mid-price of the structure Π is (arguably) the sum of the expected
residual and the market prices of the hedges ~pX .

E(Π∗) + ~h†∗~pX

- Bid/offer can be constructed from the probability distribution (e.g.

percentiles or standard deviations from the mean).
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Modeling Alternatives

Econometric Models

Valuation process:

- If the structure payoff Π is spanned by the hedges then the resulting value
is the usual mark-to-market.

- Example: Suppose Π is just the payoff of a power swap Π = Np(d).

- The optimal hedge is h∗ = [0, 0,−N] (“sell N of the power swap”).

- The resulting variance of Π∗ is zero (this is a perfect hedge).

- If the forward power price is F then the value of Π is N · F .

- This approach yields the proper mark-to-market value if Π can be

constructed from available hedging instruments.
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Modeling Alternatives
Econometric Models

Valuation process:

- Returning to our working problem, the following figure shows results using

forwards and forwards+ATM options as hedges by month.
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Modeling Alternatives
Econometric Models

Valuation process:

- The following figure shows the risk reduction in the various scenarios.

- The effect of options hedges on the residual risk was minimial.

- Fixed strike options are not particularly useful at hedging tolls.
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Modeling Alternatives

Econometric Models

Valuation process:

- The unit heatrate H∗ is relevant—the higher the heatrate the less
”swap-like” the toll.

- The results can differ meaningfully from “standard” methods.

Heat rate Financial Simulated Simulated Simulated
Unhedged Forwards Forwards & Options

H∗ = 8 10.37 11.28 10.01 9.27
H∗ = 10 4.06 4.16 3.24 2.43

60 / 73



Modeling Alternatives
Econometric Models

Strengths:

- Construction of (arguably) realistic price processes and effective static
hedges.

- The use of static hedges underestimates the value in theory, but given
hedge frictions discussed previously this is more of a ”feature” than a
”bug.”

- The residual post-hedging risk can be quantified and used to construct

bids and offers.

Weaknesses:

- Dynamic hedging reflected only implicitly if options structures are
included in the hedge basket.

- Vulnerable to systemic changes / nonstationarity; e.g. coal switching,

regulatory changes).

Structural (stack) models are an alternative.
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Modeling Alternatives
Stack Models: Motivations

Consider the following comparison of historical natural gas versus
coal prices.

- The structural drop in NG prices has put the traditionally more expensive
combined cycle generators near parity with coal plants.

- The traditional segregation of the two types of units, which are very

different in attributes, is no longer a given.
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Modeling Alternatives
Stack Models: Motivations

The change in the ”merit order” of the two sub-stacks for two price
regimes is shown below.

- The competition between the flexible natural gas units and the baseload
coal units is likely to have a meaningful effect on heatrate behavior and
correlation structure.

- How can/should this be modeled?
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Modeling Alternatives
Stack Models

The Stack: Marginal cost of generation versus total capacity:

- Capacities [C1, . . . ,CN ] sorted in increasing cost ($/MWh) [p1, . . . , pN ],
the stack is a plot of pn vs

P
1≤k≤n Ck .

- The result is pMC ≈ Φ
ˆ
C |F̄t

˜
.

- pMC is the marginal cost utilizing total capacity C .

- We have explicitly identified fuel dependence.
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Modeling Alternatives
Stack Models

The Basic Modeling Tenant:

Given a load (demand) Lt at time t and a version of the stack Φt at time
t the spot price is:

pt = Φt
ˆ
Lt(1 + δt)|F̄t

˜
+ εt

- δ are random variables reflecting uncertain availability (outages).

- ε are random variables reflecting randomness in bidding.

- Φt is time dependent and is probably not Φ (full availability).

Issues:

- Calibration without over parameterizing the problem.

- The power system is a grid with high-dimensional optimization

setting locational prices; stack models are ”stylized representations”

of such intending to capture the ”essence” of spot price phenomena.

Perceived advantages:

- The distribution of pt depends upon fuel prices in a sensible way.

- Changes to the stack (new builds or retirements) are sensibly

extrapolated into changes in the the distribution of pt .
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Modeling Alternatives

Stack Models

Create and maintain a detailed database of the ”region” in question.

Calibration:

- Assume parametric forms for δ and ε.

- Generate the historical stack on a daily basis using prevailing fuel prices.

- Assume a functional form for the seasonal availability of generation; e.g;

Cactual
i (t) = Ci Ψ(t)

where

Ψ(t) =
KX

k=1

[γk sin(2πkt) + δk cos(2πkt)]

- Assumes all generation types sustain the same seasonal availability.

- The form is then:

Φt
ˆ
C |F̄t

˜
= Φ

»
C

Ψt
|F̄t

–
- Set the free parameters via MLE.
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Modeling Alternatives
Stack Models

You now have a model under ”physical” measure for spot price
dynamics:

pt = Φ

»
Lt(1 + δt)

Ψt
|F̄t

–
+ εt

Why incorporate Ψ(t)?

- The following figure shows available U.S. nuclear capacity.

- Maintenance follows lower seasonal demand in ”shoulder” months.
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Modeling Alternatives

Stack Models

Two approaches: (as with econometric models)

- Risk neutral: Create a risk-neutral measure by adjusting parameters

and/or the distribution of Lt to hit market forwards and options prices.

- Pricing is via Monte Carlo and is believed (by some anyway) to
yield realistic distributions.

- This does not resolve the issue of limited ability to hedge (recall

peaking options).

- Physical: Use the physical measure to construct minimum-variance hedges

using instruments that trade now (t = 0).
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Modeling Alternatives

Stack Models

Simplified Stack Models:

- The approach above requires extensive data—arguably too much detail.

- An alternative: Each type of generation is its own ”sub-stack” which can
be represented analytically.

- Stack Arithmetic:

- Suppose that we group each generation by input fuel and represent
the ”sub-stacks” by Φj (C |Fj ). Then:

Φ−1 [p] =
X

j

Φ−1
j

»
p

Fj

–

- To see this note that Φ−1 [p] is the total capacity with cost ≤ p.

- The above simply totals all generation with cost ≤ p.

- Judicious choices of functional forms for Φj (notably exponential) can

yield analytical tractability and enhanced numerical efficiency.1

1
See, for example, Carmona, Coulon and Schwarz: ”A Structural Model for Electricity Prices.”
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Modeling Alternatives
Stack Models

Summary of Stack Model Implementation:

- Build a stack:

- Unit by unit from a database.

- Via parametric forms invoking: Φ−1 [p] =
P

j Φ−1
j

h
p
Fj

i
- Generate simulations:

- Temperature τd .
- Hourly loads L̄d conditional on τd .
- Simulations for the input fuel prices F̄ (t,T ).
- The resulting spot price distribution is obtained from:

p̄d = Φ

»
L̄d (1 + δd )

Ψt
|F̄ (d , d)

–
+ ε̄d

- This yields a join distribution of [τ, L, F̄ , p̄].

- Calibration:

- Physical measure: Deploy the above historically adjusting free
parameters to hit realized spot prices.

- Risk neutral: Adjust free parameters to “hit” market data.

- Simulation: The joint distribution is used to to price and hedge.
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Modeling Alternatives

Stack Models

State-of-Affairs:

- Building stack models from actual generation databases in a given

region/ISO/zone yields models that:

- Are difficult to calibrate.

- Ignore the network nature of actual power systems.2

- “Caricature” stack models have substantial advantages:

- The relative tractability renders calibration potentially viable.

- Arguably remains a “work in progress.”

2
The computational requirements for models that attempts to capture the entire system currently preclude

calibration to historical weather, load and price data or forward market data.
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Conclusions

Multi-factor models applied to daily tolls in the risk-neutral setting
have issues:

- Spurious risk due to spot correlation effects.

- Hedging programs that are difficult to affect.

- Dependence on volatilities and correlations that are often not traded.

This has spawned development alternatives:

- Econometric models:

- Calibrated to historical price behavior

- Ostensibly more realistic price distributions.

- Valuation can yield estimates of hedging slippage.

- Difficult to embed anticipated systemic changes.

- Structural models:

- Intended to accommodate anticipated systemic changes.

- Challenging to implement—still a work in progress.
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On Deck

Variable Quantity Swaps

Natural Gas Storage
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