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Origins

Correlation Risk—Hedging

Correlation risk most commonly arises in practice in hedging
simple illiquid positions with simple liquid positions.

- Stack-and-roll hedging (Temporal):

Long-tenor risk hedged with short-tenor instruments.

- Basis (Locational):

Hedging risks at illiquid delivery locations with liquid delivery

locations.

- Cross-commodity (Conversion):

Hedging commodities with limited liquidity in swaps markets with

closely related proxies having liquid markets.
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Origins

Correlation Risk—Assets and Structured Transactions

Most physical assets and structured commodities hedges of such
involve the concept of transforming one commodity/delivery
location/delivery time to another.

- Storage (Temporal):

Storing a commodity “now” for delivery “then.”

- Transport (Locational):

Moving a commodity from a supply source to a demand sink.

- Refining and Generation (Conversion):

Transforming one commodity to another commodity or set thereof.
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Origins

Correlation Risk—Customer Demand

Demand/Price Risk

- Demand for a quantity can vary over both short and long time-scales
creating inherent correlation risks to the commodities supply chain.

- Serving customers involves a settlement payoff of:X
n

ˆ
D̄n (pf − pn) +

`
Dn − D̄n

´
(pf − pn)

˜
where:

- Dn is the demand in time period n.

- D̄n is the expected demand;

- pn is the spot price for period n.

- pf is the fixed (contract) price.
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Origins

Correlation Risk—Customer Demand

Demand/Price Risk

- Correlation between demand and price is always against the holder of the
short position.

- The following plots shows hourly spot power prices versus demand in PJM.
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Origins

Correlation Risk—Commercial Operations

Liquidity and Credit Risk

- Whether exchange traded or OTC, hedging activities are usually
accompanied by colateral posting requirements.

- ”Macro” relationships between demand and price on long time scales can
cause substantial mismatches in colateral posting terms.

- Example: Retail energy companies

- Provide commodities to retail end-users (who typically are not

margined)

- Hedge this inherent short position via standard futures or OTC

swaps markets (which are margined)

- This mismatch in credit support can result in lethal colateral calls in

highly volatile times.
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Origins

Correlation Risk—Commercial Operations

Liquidity and Credit Risk

- The following plots shows the rolling cal strip for NYMEX WTI, NG and
PJM power prices.

- The colateral calls against entities with long energy hedges put on in

mid-2008 were onerous.
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Basic Concepts and Notation
Forward Curves

The primitive underlying for commodities valuation is the term
structure of prices for future delivery.

- This figure shows the forward curve for WTI on 15Jan2009.

- Each point represents the price for WTI delivered in subsequent months

as of this pricing date.
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Basic Concepts and Notation
Forward Curves

WTI forward curve at a variety of dates.
- Note the range of prices as well as the changes in the monotonicity
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Basic Concepts and Notation
Forward Curves

NG forward curve at a variety of dates.
- Seasonality is superimposed on macro structure.

- Note the breakdown from the WTI price levels in recent years.
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Temporal Correlation
Stack-and-Roll Hedging

Consider a long position established on 31May2011 of 2/day (2 lots
per calendar day) of Henry Hub natural gas for financial settlement
over the term Jan12 to Dec18.

The delta profile below is (arguably) the optimal Cal12 hedge.
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Temporal Correlation

Stack-and-Roll Hedging

Hedging long-tenor risk with short-tenor positions is referred to as
“stack-and-roll” hedging.

- The short-tenor hedge is “stacked” against the long-tenor positions.

- As circumstances permit the hedge is “rolled” forward by unwinding the

short-tenor position when long-tenor hedges can be established.

The situation in commodities is fundamentally different than in
rates.

- Rates: Liquidity spans tenors with highly liquid swaps or bonds in 2’s, 5’s,
10’s and 30’s.

- Commodities: Liquidity is always concentrated at short tenors.

It is hard to neutralize multiple-factors.
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Temporal Correlation
Stack-and-Roll Hedging

WTI open-interest by contract:
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Temporal Correlation

Stack-and-Roll Hedging

Why did we choose to sell -6.75/day of the Cal12 strip?

Notation:

- Denote the Cal12 strip by weights ~w corresponding to the exact volumes
per month of the calendar strip (1/day).

- Denote the original 2/day purchase over the seven-year strip by ~W .

- Let ~w∗ and ~W∗ denote these respective weights multiplied

component-wise by the discount factors to the contract settlement dates.

The minimum variance problem becomes:

min
α

var
[
α
(
~w†∗d

~F
)

+ ~W †
∗ d
~F
]

(1)

The unknown α is the optimal quantity of the Cal12 hedge.
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Temporal Correlation

Stack-and-Roll Hedging

Defining the vectors obtained from component-wise multiplication:

~η ≡ ~w∗~F and ~ζ ≡ ~W∗~F

the solution is:

α = −~η
†A~ζ

~η†A~η
(2)

where:

- A is the matrix of the returns covariance between the set of contract
months spanning the problem.

- The numerator is the covariance between the risk that we want to hedge
~W †∗ d~F and the risk of the strip that we will use to effect the hedge ~w†∗d~F .

- The denominator is the variance of the hedge value.
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Temporal Correlation

Stack-and-Roll Hedging

Returns PCA:

r(t, T̄n) =
∑

j

λ
1
2

j Φj

(
T̄n − t

)
Zj(t)

where {λj ,Φj} are the eigenvalues/eigenvectors of the covariance
matrix of the returns series.

The next figure shows the results from PCA analysis of returns of
the first 36 nearby series 2002 through 2012.

- The top plot shows
p
λj to put things into factor standard deviations.

- The first two factors comprise over 99% of the variance.

- The first factor decays with tenor as expected; the second factor also

exhibits the standard structure of having one sign change, this occuring at

a tenor of approximately 1 year.
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Temporal Correlation
Stack-and-Roll Hedging
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Temporal Correlation

Stack-and-Roll Hedging

If we assume that the first PCA factor is the only driver, the
minimum-variance problem reduces to:

α = −
~ζ†~Φ1

~η†~Φ1

(3)

where ~Φ1 is the first PCA factor.

Equivalently:

0 =
[
α~η + ~ζ

]†
~Φ1

The result is a portfolio that is orthogonal to the first factor.

This was the approach that we used to calculate the hedge shown
earlier.
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Temporal Correlation
Stack-and-Roll Hedging

The PCA results used forwards with tenor of three years (liquid).

The stack-and-roll problem required extrapolation.
- Here we used a two-factor exponential fit with the results shown below

- The extrapolated values were then used for Φ1

Key questions:
- How much risk are we sustaining due to the unhedged higher factors?

- How stable are the covariance statistics?
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

This fiture shows the L2 error of a double-exponential fit of

empirical returns variance using 10-day returns for three different

non-overlapping 4 year intervals with starting dates: Jan2001,

Jan2005 and Jan2009.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

The following shows rolling 4 year estimate of the 1 year volatility
normalized by the 0 year vol, indexed by end date of estimation
interval.

As this and the previous figures show, the variation in estimated

backwardation is significant.
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Temporal Correlation

Forward Yields, Inventory and Forward Dynamics

The dynamics of the WTI forward curve has become increasingly
one-dimensional in nature.

In the next figure:

- The top plot displays the ratio of the rolling one-year realized volatility for
the 12th nearby contract returns to that of the 2nd nearby, with the
results plotted versus the mid-point of the calendar averaging window.

- The lower plot shows the ratio of higher order total volatility to the that

of the first factor:

“P24
j=2 λj

” 1
2

λ
1
2
1

from PCA analysis of the first 24 nearby

contracts, applied over the same rolling one-year windows.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

These phenomena have signficant consequences for hedging strategy

construction and model development.
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Temporal Correlation

Forward Yields, Inventory and Forward Dynamics

Forward curves can be viewed as yield curves.

Forward yield:

y(t,T ,T + S) =
1

S
log

[
F (t,T + S)

F (t,T )

]
The forward yield annualized rate implied by borrowing to buy the
commodity at time T and sell it at time T + S .

Negative forward yields imply that market participants are willing to
pay a premium for earlier delivery

- This is effectively lending at negative rates.

- This happens when supply is contrained.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

Yields often exhibit extreme values.
- The following is the WTI forward curve and forward yield for S = one

month in early Jan2009.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

Seasonality yields negative forward yields consistently for seasonal

commodities.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

For a consumption commodity arbitrage arguments yield an
inequality:

F (t,T ) ≤ F (t, t)e [r(t,T )+q(t,T )](T−t)

- r and q are funding and storage rates.

- One can always buy at the spot price and store to delivery at T .

- The convenience yield provides the comfort of an seeing an equality:

F (t,T ) = F (t, t)e [r(t,T )+q(t,T )−η(t,T )](T−t).

Key Points:

- All that can be ascertained from market data is q − η.

- The cost of storage is not exogenous.

- Storage owners will charge what the market will bear.

- The cost of storage is in reality a function of forwards and vols as

opposed to an input.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

Incentives: The huge credit-crisis contango resulted in a massive
increase in the use of VLCCs store oil and refined products.

The figure shows the result outside of the Port of Singapore during

Jan2009. (Source: Google Maps)
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Temporal Correlation

Forward Yields, Inventory and Forward Dynamics

Facilities exist to dampen the effects of anticipated (seasonal) and
unanticipated demand fluctuations.

Natural gas is particularly interesting.

U.S. Natural Gas Markets

- Annual gas consumption is roughly 25 Tcf with roughly 4 Tcf of imports.

- Gas consumption is highly seasonal due to winter heating requirements.

- Approximately 4 Tcf of natural gas storage facilitates accommodation of

winter demand.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

North American demand is highly seasonal.

- High winter peak demand and the relatively mild summer peaks (air

conditioning power demand met with CC generation)

- Non-seasonal production profile.

- Recent increase in domestic production—shale gas glut.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

Roughly 4.2bcf of storage capacity resolves the production versus
consumption mismatch.

Compare historical inventory levels versus ”normal” .

- ”Normal” is a Fourier fit with the number of modes used determined by

an out-of-sample selection method with estimates of working capacity.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

Storage Residual: R(t) ≡ S(t)− S̄(t)

S̄(t) = α+ βt +
KX

k=1

[γk sin(2πkt) + δk cos(2πkt)] (4)
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

Forward yields are related to the storage residual R(t).

The figure shows salendar strip forward yields versus storage
residual.

- Calendar strips are used to “strip out” seasonal effects.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

A static view: Forward curves on January 2001 and January 2002.

- Note the higher prices, backwardation and greater seasonality in 2001.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

This is a commonly observed phenomenon:

- High forward yields (contango) incentivizes owners of storage to

inject—this occurs when there is a surplus.

- Negative forward yields (backwardation) encourages withdrawals—during

times of scarcity.

- The figure shows the forward yield between the first two cal strips of the

WTI forward curve yield versus OECD crude oil stocks.

3700 3800 3900 4000 4100 4200 4300 4400
−25

−20

−15

−10

−5

0

5

10

15

20

25

Millions of Barrels

An
nu

al
ize

d 
Ca

rry
 (%

)

WTI 1st/2nd Cal Strip Carry Versus Inventory

Backwardation (Carry<0)

Contango (Carry>0)

36 / 66



Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

This is a commonly observed phenomenon:

- High forward yields (contango) incentivizes owners of storage to

inject—this occurs when there is a surplus.

- Negative forward yields (backwardation) encourages withdrawals—during

times of scarcity.

- The figure shows the forward yield between the first two cal strips of the

WTI forward curve yield versus OECD crude oil stocks.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

Lessons from copper:
- A non-seasonal consumption commodity with credible inventory time

series (LME).
- The upper plot shows that copper inventories have spanned a considerable

range over the past decade.

- The lower is weekly averages of forward yields versus inventory.
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Temporal Correlation
Forward Yields, Inventory and Forward Dynamics

PCA on copper daily forward returns yields the usual factors.
- The figure shows the volatility of factors 2 and above over the volatility of

the first factor by month versus average inventory.

- Note the apparent increase in higher factor contributions at low inventory.

- This is one origin of the (apparent) non-stationarity of returns covariances.
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Common Modeling Approaches

Comment on Spread Options—Examples

Calendar Spread Options
- Example: A CSO straddle payoff takes the form:

[F (τ,T2)− F (τ,T1)]+

where τ denotes option expiry.

- In general the payoff is a function of the spread between two contracts at
expiry τ :

F (τ,T2)− F (τ,T1)− K .

- CSO are closely related to physical storage and hedges thereof.

Swaptions
- The option payoff references a strip of contract prices:
- For example a call swaption has the payoff:

max

"X
m

d(τ,Tm) (F (τ,Tm)− K) , 0

#
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Common Modeling Approaches

Comment on Spread Options—Examples

Tolling Deals/Heatrate Options
A spread-option between power and a fuel, typically natural gas with
payoff:

max [FB(τ, τ)− H∗G(τ, τ)− V , 0]

for a sequence of days indexed by τ , where:

- FB and G denote the prices of power (delivery bucket B) and

natural gas respectively.

- H∗ is the heatrate and V is as strike (unit cost of running).

Crack-Spread Options:
Options on the spread between refined product and a reference crude oil
prices:

max [FProduct(τ,T )− Fcrude(τ,T ), 0]

- Product is usually heating oil or gasoline.

- Both forwards in common units (e.g. $/Barrel).
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Common Modeling Approaches

Comment on Spread Options—Margrabe

The spot prices of two assets X and Y under the money-market
EMM are modeled as two standard GBMs:

dXt = rXtdt + σXXtdB
(X )
t

dYt = rYtdt + σY YtdB
(Y )
t

where the correlation between the two BMs is ρ

Consider the following spread option with value:

d(T )Ẽ [max (XT − YT , 0)]

- d(T ) is the discount factor (assume that interest rates are deterministic).

- Note that all of the options just mentioned are of this form for zero strikes.
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Common Modeling Approaches

Comment on Spread Options—Margrabe

The standard valuation approach is via change of numeraire.1

- In the Y -measure ẼY in which Yt is the numeraire, all assets discounted

by Y must be martingales.

- Denote the value of the option by V (t,Xt ,Yt).

- V must be an ẼY martingale:

V (0,X0,Y0)

Y0
= ẼY

»
V (T ,XT ,YT )

YT

–
- This implies:

V (0,X0,Y0) = Y0ẼY

»
max

„
XT

YT
− 1, 0

«–

1See Carmon and Durrleman, Pricing and Hedging Spread Options, 2003
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Common Modeling Approaches
Comment on Spread Options—Margrabe

We know that the ratio:

RT ≡
XT

YT
=

X0

Y0
eσX BX (T )−σY BY (T )+”DriftTerms”

Also: σXBX (T )− σY BY (T ) is a normal random variable with:

σ̂2 ≡ var [σXBX (T )− σY BY (T )] = T
[
σ2

X + σ2
Y − 2ρσXσY

]
.

Finally, a fact about log-normals

- If R is log-normal with variance σ̂2 then:

E [max(R − K , 0)] = E(R)N(d1)− KN(d2)

- where:

d1,2 =
log
h

E(R)
K
± 1

2
σ̂2
i

σ̂
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Common Modeling Approaches

Comment on Spread Options—Margrabe

Assembling the facts we have:

V (0,X0,Y0) = Y0

[
ẼY

(
XT

YT

)
N(d1)− N(d2)

]
= X0N(d1)− Y0N(d2)

where:

d1,2 =
log
(

X0

Y0

)
+± 1

2 σ̂
2

σ̂

Note: This is (arguably) intuitive:

- The value of the option is as if we used Black with X as the underlying

and strike K replaced with Y0.

- There is no discounting as funding is embedded in the Y asset.

- The implied vol σ̂ is obtained from the returns variance of X − Y .
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Common Modeling Approaches

Comment on Spread Options—Margrabe

In our context forwards are not spot assets and the result must be
discounted.

- Let Xt = F (t,T1) and Yt = F (t,T2).

- The previous valuation formula must include discounting:

V (0,F (0,T1),F (0,T2)) = d(T ) [F (0,T1)N(d1)− F (0,T2)N(d2)]

- This can be verified by direct integration (more later).

- Note that if all vols are set to zero then the value of the option is intrinsic:

V (0,F (0,T1),F (0,T2)) = d(T ) max [F (0,T1)− F (0,T2), 0]

Analogous formulas hold for other standard European option payoffs.
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Common Modeling Approaches

Comment on Spread Options—Margrabe

Greeks have similarly analogous forms:

∂V

∂X
= N(d1)

∂V

∂Y
= −N(d2)

and

Γ =
N ′(d1)

σ̂

(
1
X − 1

Y

− 1
Y

X
Y 2

)
Γ is positive-definite because:

ᾱtΓᾱ =
1

X

[
α1 −

X

Y
α2

]2

.

The spread option payoff is an option:

When ∆-hedged, all directions point up.
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Common Modeling Approaches

Reduced Form Models

The term “reduced-form” refers to modeling frameworks which posit
price dynamics in the absence of “fundamental” considerations.

In commodities there are two meta-classes of reduced form models:

- Spot/Convenience yield models: Model the joint behavior of spot price
and convenience yields (and perhaps other variables).

- Factor models: The HJM framework applied to commodities.

These approaches are effectively functionally identical.
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Common Modeling Approaches

Reduced Form Models—Spot/Convenience Yield Models

”Schwartz-type” models and descendants.2

Explicit modeling of spot price dynamics with additional processes
added.

- These additional processes are typically convenience yields or long term
price levels.

- The original two-factor incarnation (Gibson and Schwartz):

dSt = (rt − δt) Stdt + σStdB
(1)
t

dδt = κ (θ − δt) dt + γdB
(2)
t

- Here we let St ≡ F (t, t).

- δt is the instantaneous convenience yield. When δt > 0 the spot

price has a negative drift (net of financial carry rt).

Calibration to forwards requires finding time-varying drifts.

2See Carmona and Ludkovski: ”Spot Convenience Yield Models for the
Energy Markets.”
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Common Modeling Approaches

Reduced Form Models—Gaussian Exponential Models

Gaussian exponential framework:

dF (t,T ) = F (t,T )
J∑

j=1

σj(T )e−βj (T−t)dB
(j)
t

- We have for now the form σj (T ).

- Often the BMs are assumed independent for simplicity.

Intuition (2-factor):

- If σ2 ≡ 0, this is a one-factor model identical to that described in the first
section:

σ(T − t) = αe−β(T−t)

- The second factor will typically have β2 ≫ β1 and is intended to

represent shorter time-scale forward returns.
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Common Modeling Approaches

Reduced Form Models—Gaussian Exponential Models

This is “HJM” for commodities introduced by Clewlow-Strickland.

Some useful facts:

- The integral of the returns for factor j on contract T over [0, t] is:

σj (T )

Z t

0
e−βj (T−s)dB

(j)
s = σj (T )e−βj (T−t)

Z t

0
e−βj (t−s)dB

(j)
s

= σj (T )e−βj (T−t)Yj (s)

where we have defined: Yj (t) =
R t

0 e−βj (t−s)dB
(j)
s .

***This means that the distribution of returns for all tenors are
simultaneously described by the processes Yj (t).

***This means that the dynamics of the entire forward curve are

prescribe by a J-dimensional stochastic process.
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Common Modeling Approaches

Reduced Form Models—Gaussian Exponential Models

Some useful facts: (cont)

- Returns are normally distributed since any integral of the formR t
0 φ(u)dBu is normally distributed with mean zero.

The variance is obtained by the Ito isometry:

E

"„Z t

0
φ(s)dBs

«2
#

=

Z t

0
φ2(s)ds.

Therefore, the returns variance for F (t,T ) is:

V (t,T ) ≡
JX

j=1

σ2
j (T )

Z t

0
e−2βj (T−s)ds
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Common Modeling Approaches

Reduced Form Models—Gaussian Exponential Models

Some useful facts: (cont)

- Recalling that Yj (t) =
R t

0 e−βj (t−s)dB
(j)
s , differentiating with respect to t

yields:

dYj = −βj

»Z t

0
e−βj (t−s)dB

(j)
s

–
dt + dB

(j)
t

or
dYj = −βjYjdt + dB

(j)
t

The Y ’s mean-revert toward a mean of zero with mean-reversion rates
specified by the β’s.

Diffusions of this form are called Ornstein-Uhlenbeck processes.

Properties:

- E [Yt |Y0] = Y0e−βt

- var[Yt |Y0] = 1−e−2βt

2β

- var[Y∞] = 1
2β
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Common Modeling Approaches

Reduced Form Models—Gaussian Exponential Models

Some useful facts: (cont)

- The resulting form for F (t,T ) is:

F (t,T ) = F (0,T )e
PJ

j=1

h
σj (T )e

−βj (T−t)
Yj (t)

i
− 1

2
V (t,T )

- To see this note that F (t,T ) is a martingale and that for any normal

random variable Z : E
ˆ
eZ
˜

= e
1
2
σ2

Z .

- Note that the previous calculation is nothing more than the exponential
equivalent of the previous GBM integration:

Ft = F0 e−
1
2
σ2t+σBt

with σ2t replaced by the appropriate exponential integrals.
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Common Modeling Approaches

Reduced Form Models—A Caricature Model

A simple caricature of spot (daily) prices processes is for the returns
of the daily spot prices to be i.i.d. normal:

F (t, t) = Fm(Tm)eζZt− 1
2 ζ

2

where

- Fm denotes the contract month containing day t

- Zt is standard normal.

- ζ is the spot volatility.
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Common Modeling Approaches
Reduced Form Models—A Caricature Model

Spot volatility is implied by the monthly and daily vols

ζ2 = σ̄2
DTd − σ̄2

MTm

where:
- Td ≈ Tm + 1

24
.

- σ̄M and σ̄D are implied vols for monthly and daily options.

- The following figure shows the ATM spot vol by contract month for PJM.
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Common Modeling Approaches
Reduced Form Models—A Caricature Model

For comparison the following figure shows historical spot volatility
for PJM and TETM3.

- The reference price is the BOM contract fixing so that spot returns are

defined as log
h

pd
Fm(Te )

i
.
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Common Modeling Approaches

Reduced Form Models—Advantages

- A “good” reduced form model is tractable by construction-and
captures some features of forward dynamics.

- Models such as the GEM models above can match observed
covariance structures reasonably well.

- Allowing for the BMs to be correlated the two factor model implies a
correlation surface:

ρ(T ,S) =
σ2

1e−β1(T+S) + σ1σ2ρ
ˆ
e−(β1T+β2S) + e−(β2T+β1S)

˜
+ σ2

2e−β2(T+S)

σ(T )σ(S)

- Since the returns of the T contract can be written as:

σ1e
−β1T

»
dB

(1)
t +

σ2

σ1
e(β1−β2)T dB

(2)
t

–
the free parameters in ρ(T ,S) are:

- The difference in the decay rates β2 − β1.
- The volatility ratio λ = σ2

σ1

- The correlation ρ
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Common Modeling Approaches

Reduced Form Models—Advantages

Example: WTI returns from Jan2007 to Dec2010:

- Minimizing the Frobenius norm of the difference of the empirical and

model covariance matrices yields:

- The optimal decay rates are: β̄ = [0.106, 1.528]

- The estimated correlation between the factors is ρ = 0.119
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Common Modeling Approaches

Reduced Form Models—Advantages

Separation of time-scales:

- In natural gas and power common tradeables reference annual, monthly
and spot prices at the daily or hourly level daily.

- This is commonly handled by a large range of mean-reversion rates (β’s)
in models.

- Typically β1 ∈ [.1, .5] and β2 ≫ 10 for a two-factor model.

- Spot returns statistics give us some guidance to β2.

- A useful definition for spot returns: log
h

pd
Fm(Te )

i
where Fm(Te) denotes

the forward price for the contract month at expiration.
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Common Modeling Approaches
Reduced Form Models—Advantages

What are spot returns for a non-storable commodity?

- The plot below shows both the ACF as well as the implied β by lag.

- The implication is that very high mean-reversion rates are required for
some factors.

- This is easily handled in the reduced-form framework.
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Common Modeling Approaches
Reduced Form Models—Disadvantages

Production implementations are almost always predicated on
constant correlation parameters.

- Covariances may evolve with local time t due to term structure of volalitiy

but underlying correlation parameters between the BMS are usually

assumed to be constant.

Correlation parameters are not static.

- Inventory affects covariance structure and forward yield affect inventory.

- In the case of power many input fuels effect market clearing prices and

ultimately should effect forward correlation structure.

There is rarely enough liquidity in vol and correlation tradables to
facilitate a “robust” calibration of reduced-form models.

- Statistical estimation is used to set many parameters.

- Models are designed with tractability as a dominant consideration

diminishing empirical relevance and limiting their utility as valuation

extrapolators.
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Common Modeling Approaches
Econometric and Structural Models

Major Theme: Severe limitations in liquidity and spectrum of
market tradables will render rote application of reduced form
models problematic in many circumstances.

Econometric and structural models are intended to produce more
realistic price processes which in theory should function better for
pricing and hedging given limited market data.

Structural Models:

- In the case of some energy commodities, a great deal is known about

supply and demand and market mechanics.

- Generator stacks and load dynamics in power.

- Weather-driven demand dynamics and inventory in natural gas.

- Models that start with a caricature of the underlying market mechanics,

are referred to as structural models.

- Stack models: In which power prices are set via load (often weather
driven) clearing through a generator stack.

- Inventory models: In which price clearing occurs in the presence of

an inventory process.
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Common Modeling Approaches
Econometric and Structural Models

Econometric Models:

- Craft regressions tailored to individual markets, often using similar stylized
facts as for structural models.

- The following figure shows:
- Historical peak spot heatrates (the ratio of power to natural gas

prices) for PJM (more later) versus KPHL temperature.

- A regression relating expected heatrates versus temperature.
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Common Modeling Approaches

Econometric and Structural Models

Econometric Models:

- Based on regressions of historical behavior of relevant underlying variables.

- The results yield simulation methods to generate the joint distribution of
future realizations of these variables.

- These realizations yield physical measure distributions of:

* The payoff Π of whatever the structure is that you are valuing.

* Available hedges ~H which trade at market prices ~pH.

- Standard portfolio analysis method can then be applied—for example,
construction of minimum variance hedges:

min var
h
Π + ~w†

“
~H− ~pH

”i
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On Deck

Tolling Deals

Variable Quantity Swaps

CSOs and Natural Gas Storage
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