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Motivation
• Main features: no carbon emissions; low operating costs; ability to meet

peak demands; significant operational flexibilities; high reliability.

• Negative effects on downstream environment (Edwards et al. (1999))

• affect the in-stream flow rates, reservoir levels, water
temperatures, and therefore change the chemical and physical
composition of the released water.

• impact the beach and bank erosion, beach and backwater
formation, which can affect shore areas that provide critical
wildlife habitat for native fishes, and other aquatic flora and
fauna.

• Scruton et al. (2003): “hydro-peaking often results in rapid changes in
river discharge and associated habitat conditions over very short time
scales (less than a day, or multiple peaks per day) and changes can be
moderate or as large as several orders of magnitude.”

• Smokorowski et al. (2009): “in Ontario both electricity producers and the
Ontario Ministry of Natural Resources are interested in testing whether
restricting ramping rates through turbines at hydroelectric facilities can
provide ecological benefits while, at the same time, minimize production
losses.”
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Ramping Problem

Without restrictions ⇒ maximize the profit by adjusting the magnitude, timing,
duration, and rate of change of flow (ramping rate).

• Prices/demands are high ⇒ ramp up

• Prices/demands are low ⇒ ramp down

With restrictions ⇒ reduce the efficiency, profitability, and ability to react to
changes in electricity demand and price.

• Ramping rate restrictions ⇒ provide environmental benefits by protecting
downstream habitat.

• Increased restrictions ⇒ rely more on fossil fuel fired plants ⇒ entail
greater Green House Gas emissions.

• Impose the appropriate restrictions ⇒ study the tradeoff among
protecting aquatic ecosystems, optimally operating hydropower, and other
externalities.

Need both economic and environmental studies to address the ramping issue to
guide for policies on ramping restrictions.
Require realistic, statistically sound and parsimonious electricity models to
value power plants and then study the associated ramping problem.
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This Paper

In this paper

1. Present a theoretical valuation framework of a stochastic control problem
for hydro operations using a regime switching model for electricity prices.

2. Solve a coupled PDE numerically using a fully implicit finite difference
approach.

3. Empirically investigate a medium sized prototype hydro plant using
estimated parameters for both the base regime and the spike regime.

4. Examine the sensitivity of the hydro operation and profit to different
levels of ramping restrictions.

Not in this paper

• We do not address the environmental gains to the aquatic ecosystem, nor
the environmental costs of alternate thermal power generation.

• If ramping rate restrictions were applied to a significant portion of the
hydro generation capacity in a particular province or state, then the
impact on the entire grid would need to be considered.
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Preview of Results

• The value of the hydro power plant is higher in the spike regime than the
value in the base regime.

• In most scenarios, the optimal control is of “bang-bang” type: ramping
up or down at the maximum allowed rates.

• Profits are negatively affected by ramping restrictions in both the single
regime and regime switching models.

• The profit is less sensitive to ramping restrictions in the regime switching
model compared to the single regime model.

• Profits are significantly affected by less than 16% for the single regime
model and less than 9% for the regime switching model in the case of
the most severe ramping constraints.

• However we also find a range of less severe ramping constraints for which
profits are impacted by less than 3% for the single regime model and less
than 2% for the regime switching model.
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Hourly Ontario Energy Price
Left: Hourly Ontario Energy Price, January 1-July 24, 2013.
Right: Hourly Ontario Energy Price, July 15-21, 2011, 2012, 2013.
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Jump Diffusion vs Regime Switching
In Thompson et al. (2004), the jump diffusion model can be represented as
the following general form

dP = µ(P, t)dt + σ(P, t)dW +
N∑
ς=1

ψς(P, t, Jς)dqς .

Consider the general N-state process for the regime switching model

dP = µı(P, t)dt + σı(P, t)dZ +
N∑
=1

P(ξı − 1)dXı.

The equation of motion for water

dw = H(r ,w)a(`− r)dt.

The ramping control variable z

dr = zdt.

The up-ramping and down-ramping constraints

−rd ≤ z ≤ ru.
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Pricing Equation
This stochastic dynamic non-linear optimization problem can be stated as

max
r

EQ

[ ∫ T

0

e−ρτH(r ,w)q(r , h(w))(P − c)dτ

]
.

subject to

Z(r) ⊆ [−rd , ru].

rmin≤r≤rmax .

wmin≤w≤wmax .

The value of the power plant in state ı satisfies the following HJB-PDE

∂V ı

∂τ
= sup

z∈Z(r)

(z
∂V ı

∂r
) + H(r ,w)a(`− r)

∂V ı

∂w
+

1

2
(σı)2(P, t)

∂2V ı

∂P2

+ (µı(P, t)− Λıσı(P, t))
∂V ı

∂P
+ H(r ,w)q(r , h(w))(P − c)− r̄V ı

+
N∑
=1
6=ı

λQ
ı(V

 − V ı).
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Boundary Conditions
For V ı in regime ı at the terminal time, we use the following zero profit

V ı(P,w , r , τ = 0) = 0.

Solve the equation in (P,w , r) ∈ [0,Pmax ]× [wmin,wmax ]× [rmin, rmax ].
At wmin,wmax , rmin, rmax , we solve the PDE along the corresponding boundaries.
Take the limit of the PDE equation as P→0 and for P→∞ apply V ı

PP = 0.

∂V ı

∂τ
= C0V

ı+BV ı+ sup
z∈Z(r)

(z
∂V ı

∂r
)+H(r ,w)a(`−r)

∂V ı

∂w
−H(r ,w)q(r , h(w))c;P→0

C0V
ı = αıK ı ∂V

ı

∂P
− (r̄ +

N∑
=1
6=ı

λQ
ı)V

ı.

∂V ı

∂τ
= C1V

ı+BV ı+ sup
z∈Z(r)

(z
∂V ı

∂r
)+H(r ,w)a(`−r)

∂V ı

∂w
+H(r ,w)q(r , h(w))(P−c);P = Pmax

C1V
ı = [αı(K ı − P)− ΛıσıP]

∂V ı

∂P
− (r̄ +

N∑
=1
 6=ı

λQ
ı)V

ı.
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Numerical Scheme

• Equally spaced grids in the P, w and r directions for the PDE
discretization: [P0,P1, . . . ,Pimax ], [w0,w1, . . . ,wjmax ] and [r0, r1, . . . , rkmax ].

• Discrete timesteps: 0 = 0∆τ < . . . < ℵ∆τ = T ; the nth timestep:
τ n = n∆τ .

• The exact solution of the pricing equation: V ı(Pi ,wj , rk , τ
n); an

approximation of the exact solution: V ı,n
i,j,k .

• The standard finite difference methods to discretize the operator: C0V
ı,

CV ı and C1V
ı.

• Let (CεV )ı,ni,j,k denote the discrete value of the differential operators
C0V

ı, CV ı or C1V
ı at a node (Pi ,wj , rk , τ

n).

• The operators can be discretized using central, forward, or backward
differencing in the P direction.

• Let (BεV )ı,ni,j,k be an approximation of the operator BV ı at a mesh node

(Pi ,wj , rk , τ
n). For BV ı =

∑N
=1
6=ı

λQ
ıV

, we have

(BεV )ı,ni,j,k =
∑N
=1
 6=ı

λQ
ıχ(Pi ξ̄

ı(Pi ),V
,n
i∗ ,j,k

,V ,n
i∗ +1,j,k).
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Numerical Scheme (Cont.)
Using a semi-Lagrangian time-stepping, in regime ı we get

DV ı

Dτ
=

∂V ı

∂τ
− z

∂V ı

∂r
− H(r ,w)a(`− r)

∂V ı

∂w
.

Now the PDE can be rewritten as

DV ı

Dτ
= CV ı + BV ı + H(r ,w)q(r , h(w))(P − c).

Let ζı,n+1
i,j,k denote the value of the control variable z at the mesh node

(Pi ,wj , rk , τ
n+1). Then we can approximate the value of DV ı

Dτ
by

(DV
Dτ

)ı,n+1

i,j,k
=

1

∆τ
(V ı,n+1

i,j,k − V ı,n

i ,̂j,k̂
) + truncation error .

where V ı,n

i ,̂j,k̂
is an approximation of V ı(Pi ,w

n
ĵ
, rn

k̂
, τ n) obtained by linear

interpolation with wn
ĵ

and rn
k̂

given by

wn
ĵ = min[max[wj + H(rk ,wj)a(`− rk)∆τ,wmin],wmax].

rnk̂ = rk + ζı,n+1
i,j,k ∆τ.
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Numerical Scheme (Cont.)
Substituting (CεV )ı,n+1

i,j,k and (BεV )ı,n+1
i,j,k into the PDE, we get

−∆τγıi V
ı,n+1
i−1,j,k + [1 + ∆τ

(
γıi + βıi + (r̄ +

N∑
=1
 6=ı

λQ
ı)
)
]V ı,n+1

i,j,k −∆τβıi V
ı,n+1
i+1,j,k

= sup
ζ
ı,n+1
i,j,k

∈Zk

V ı,n

i ,̂j,k̂
+ ∆τH(rk ,wj)q(rk , h(wj))(Pi − c)

+ ∆τ
N∑
=1
6=ı

λQ
ıχ(Pi ξ̄

ı(Pi ),V
,n+1
i∗j ,j,k

,V ,n+1
i∗j +1,j,k) if Pi ∈ (0,Pmax).

Need to solve a discrete local optimization problem

sup
ζ
ı,n+1
i,j,k

∈Zk

V ı,n

i ,̂j,k̂

Write and solve

Rk =
{
rnk̂ |r

n
k̂ = rk + ζı,n+1

i,j,k ∆τ,∀ζı,n+1
i,j,k ∈ Zk

}
.

sup
rn
k̂
∈R̂k

V ı,n

i ,̂j,k̂
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Numerical Scheme (Cont.)
In matrix form

[I + Mı]V ı,n+1
j,k = V̄ ı,n

ĵ,k̂
+ ∆τ H̄j,k(P − ιc) + ∆τΞ(V ı,n+1

j,k ).

[MıV ı,n+1
j,k ]ith row = ∆τ [−γıi V ı,n+1

i−1,j,k +
(
γıi +βıi +(r̄ +

N∑
=1
6=ı

λQ
ı)
)
V ı,n+1

i,j,k −β
ı
i V

ı,n+1
i+1,j,k ]

Ξ(V ı,n+1
j,k ) =

[
Ṽ 1,n+1

j,k Ṽ 2,n+1
j,k · Ṽ ı,n+1

j,k · Ṽ N,n+1
j,k

]

λQ
ı1

·
0
·
λQ
ıN



Ṽ ,n+1
j,k =


Ṽ ,n+1

0,j,k

·
Ṽ ,n+1

i,j,k

·
Ṽ ,n+1

imax ,j,k


and 0 is the ıth element of the column vector. The ith element of vector

Ṽ ,n+1
j,k for  = 1, . . . ,N is given by χ(Pi ξ̄

ı(Pi ),V
,n+1
i∗j ,j,k

,V ,n+1
i∗j +1,j,k).
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CIR+Shifted Lognormal Model

Janczura and Weron (2009) use German EEX spot price from 2001-2009 to
estimate the following model

• CIR (Cox-Ingersoll-Ross) process for the base regime

dP = η(µ1 − P)dt + σ1

√
PdZ .

• Shifted lognormal distribution for the spike regime

log(P −m) ∼ N(µ2, σ
2
2), P > m.

The spike regime has higher mean and variance than those in the base regime
and assigns zero probability to prices below the median m.

The empirical experiments are based on the Abitibi Canyon Generation Station,

located on the Abitibi River in Ontario.
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Parameter Values

Table: Parameter Values Used for the Regime Switching Case

dP = η(µ1 − P)dt + σ1

√
PdZ ; log(P − m) ∼ N(µ2, σ

2
2 ), P > m.

Parameter Value Parameter Value
µ1 47.194 EUR/MWh Pmax

2 200 EUR/MWh

η 0.36 Pmin
1 0 EUR/MWh

σ1 0.73485 Pmin
2 48 EUR/MWh

σ2 0.83066 wmax 17000 acre-feet

m 46.54 EUR/MWh wmin 7000 acre-feet
r̄ 0.05 annually rmax 15000 CFS

T 168h rmin 2000 CFS
c 20 EUR/MWh ru 3000 CFS-hr

g 32.15 feet/square-second rd 3000 CFS-hr
ρ 1000 kg/cubic-meter ` 6671 CFS

ξ12 1.6470 b 0.0089

ξ21 0.6072 λQ
12 0.0089

Λ1 -0.2481 λQ
21 0.8402

Λ2 -0.2481 e 0.87
µ2 3.44 a 0.0826

Pr(1) 0.9896 Pr(2) 0.0104

qmax 336 MW qmin 0 MW
Pmax

1 200 EUR/MWh CPC 19000 CFS
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Results

Table: Regime Switching Case

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping Re-

strictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF, TP 1386100 1380900 1372100 1353300 1320500
HF, CP N/A -0.4 -1.0 -2.4 -4.7
FF, TP 1384700 1378400 1367100 1331400 1262800
FF, CP N/A -0.5 -1.3 -3.9 -8.8

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 80 EUR/MWh
HF, TP 1419000 1413100 1403300 1383000 1351300
HF, CP N/A -0.4 -1.1 -2.5 -4.8
FF, TP 1421200 1415400 1405700 1377300 1315500
FF, CP N/A -0.4 -1.1 -3.1 -7.4

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF, TP 1439300 1433200 1423000 1399900 1364000
HF, CP N/A -0.4 -1.1 -2.7 -5.2
FF, TP 1441900 1436000 1425800 1394500 1334200
FF, CP N/A -0.4 -1.1 -3.3 -7.5

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF, TP 1591400 1583000 1569200 1530700 1481100
HF, CP N/A -0.5 -1.4 -3.8 -6.9
FF, TP 1604400 1598700 1589000 1561900 1522000
FF, CP N/A -0.4 -1.0 -2.7 -5.1

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir level; TP
means total profit; CP means percentage change of total profit compared to the no ramping restrictions scenario .
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Results (Cont.)
Left: Value of full reservoir at t=0, over prices and release rates (Base regime).
Right: Value of full reservoir at t=0, over prices and release rates (Spike
regime).
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Results (Cont.)
Left: Optimal ramping rate for full reservoir at t=0, over prices and release
rates (Base regime).
Right: Optimal ramping rate for full reservoir at t=0, over prices and release
rates (Spike regime).
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Results (Cont.)
Left: Optimal ramping rate for full reservoir and a given release rate over time
(Base regime).
Right: Optimal ramping rate for full reservoir and a given release rate over
time (Spike regime).
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Results (Cont.)
Left: Value of half release rate at t=0, over prices and reservoir levels (Base
regime).
Right: Value of half release rate at t=0, over prices and reservoir levels (Spike
regime).
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Results (Cont.)
Left: Optimal ramping rate for half release rate at t=0, over prices and
reservoir levels (Base regime).
Right: Optimal ramping rate for half release rate at t=0, over prices and
reservoir levels (Spike regime).
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Results (Cont.)
Left: Total profit vs ramping rate restrictions at half release rate and full
reservoir level.
Right: Total profit vs ramping rate restrictions at full release rate and full
reservoir level.
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Sensitivity Analysis

Single Regime Model
Case Power Plant Value Ramping Impact on Power Plant

Value
K0=27 $/MWh, φ=15, σ=0.2
(Benchmark) N/A N/A

K0=47 $/MWh, φ=15, σ=0.2 (I) Higher (Compared to Benchmark) Smaller (Compared to Benchmark)

K0=47 $/MWh, φ=0, σ=0.2 (II) Higher (Compared to Benchmark) Smaller (Compared to Benchmark)

K0=47 $/MWh, φ=0, σ=0.2 (II) Lower (Compared to (I)) Smaller (Compared to (I))

K0=47 $/MWh, φ=15, σ=0.4 (III) Higher (Compared to Benchmark) Smaller (Compared to Benchmark)

K0=47 $/MWh, φ=15, σ=0.4 (III) Higher (Compared to (I)) Larger (Compared to (I))

Regime Switching Model

η=0.36, λQ
12=0.0089, λQ

21=0.8402,
σ1=0.73485, σ2=0.83066
(Benchmark) N/A N/A

η=0.72, λQ
12=0.0089, λQ

21=0.8402,
σ1=0.73485, σ2=0.83066 (IV) Lower (Compared to Benchmark) Smaller (Compared to Benchmark)

η=0.36, λQ
12=0.02, λQ

21=0.7402,
σ1=0.73485, σ2=0.83066 (V) Higher (Compared to Benchmark) Larger (Compared to Benchmark)

η=0.36, λQ
12=0.0089, λQ

21=0.8402,
σ1=0.93, σ2=1.43 (VI) Higher (Compared to Benchmark) Larger (Compared to Benchmark)

Note: Other benchmark parameter values for the single regime case and regime switching case are given in Table 1
and 2 respectively and the corresponding results for these two cases are reported in Table 3 and 4 respectively.
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Conclusions

1. This paper provides

• a regime switching framework for hydro plant valuation.
• a comprehensive analysis of the economics of ramping rate

restrictions at hydro plants to protect ecosystem.

2. This study gives

• insights into our understanding of ramping related issues for a
hydro power station, including the desirable choice of ramping
restrictions and possible policy recommendations.

3. Results from this research will

• facilitate the implementation of environmental regulations
designed to promote the integrity of river systems.

• provide a set of planning tools regulators and industry can use
to negotiate the optimal ramping rate for environmental and
economic benefits.
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