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Motivation

I Model risk has been recognized as one of the fundamental
reasons for financial distress for banks and insurance
companies. Recently, a number of authors addressed this
issue:

I Schoutens et. al. (2004): A perfect calibration - now what?
I Cont (2006): Model uncertainty and its impact on the

pricing of derivative instruments.
I Bannör, Scherer (2011): Quantifying the degree of

parameter uncertainty in complex stochastic models
I Important questions:

I How sensitive is the value of a given derivative to the
choice of the pricing model (parametric setting)?

I Can one quantify a provision for model risk (as for market
and credit risk)?
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Problem Setting

I Model risk has not been discussed in the context of energy
markets (to our knowledge).

I A topical question is the need for reinvestment
(replacement investments and building more capacity) in
the power plant park. The financial streams of such an
investment can be generated on the market for energy
derivatives in terms of spread options.

I We use the Bannör, Scherer (2011) approach to discuss
the model risk in such a valuation problem.

Model Risk for Energy Markets | Fields Institute, Toronto | 15. August 2013



Seite 5 | Spread Options

Spread Options

Market participants are exposed to the difference of commodity
prices. Examples are

I the dark spread between power and coal (model for a
coal-fired power plant)

I the spark spread between power and gas (model for a
gas-fired power plant)

I In countries covered by the European Union Emissions
Trading Scheme, utilities have to consider also the cost of
carbon dioxide emission allowances. Emission trading has
started in the EU in January 2005.
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Clean Spark Spread

CSSτ = Pτ − h Gτ − cE Eτ , (1)

where Pτ is the power price, Gτ is the gas price, Eτ is the
carbon certificate price at maturity τ , h is the heat rate, cE
emission conversion rate.

I The clean spark spread reflects the profit/loss of
generating power from gas after taking into account gas
and carbon allowance costs.

I A positive spread effectively means that it is profitable to
generate electricity, while a negative spread means that
generation would be a loss-making activity.

I Note that the clean spark spreads do not take into account
additional generating charges beyond gas and carbon.
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Present Value of a Power Plant

I The operator acts on the spot market. The specific daily
configuration of the power plant is not traded, so we use
historical probabilities.

I We don’t consider any further restrictions.
I The plant runs for another few years, so future values will

be discounted.
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Spread Options to Manage Market Risk

I Spread options can be used by owners of corresponding
plants to manage the market risk. Instead of spread trading
with futures the owner of a power plant can directly
purchase/sell a spread option.

I The payoff of a typical spread option is

C(τ)

spread = max(S1(τ)− S2(τ)− K ,0)

with Si the underlyings, K the strike.
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Valuation of Spread Options

In the Black Scholes world there is an analytic formula for
K = 0 (exchange option) due to Margrabe (1978).

Cspread(t) = (S1(t)Φ(d1)− S2(t)Φ(d2))

Pspread(t) = (S2(t)Φ(−d2)− S1(t)Φ(−d1))

where d1 = log(S1(t)/S2(t))+σ2(τ−t)/2√
σ2(τ−t)

, d2 = d1 −
√
σ2(τ − t)

and σ =
√
σ2

1 − 2ρσ1σ2 + σ2
2

where ρ is the correlation between the two underlyings.
For K 6= 0 no easy analytic formula is available.
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Spread Option Value and Correlation

The value of a spread option depends strongly on the
correlation between the two underlyings.

S1 = S2 = 100, τ = 3, r = 0.02, σ1 = 0.6, σ2 = 0.4.

I The higher the correlation between the two underlyings the
lower is the volatility of the spread and hence the value of
the spread option.
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Approximative Spread Option Valuation

I A very good reference is Carmona, Durrleman (2003),
Siam Review 45 (4), 627-685.

I There is also a survey by Krekel, de Kok, Korn, Man in
Wilmott Magazine (2004) available.
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Clean Spread Option Valuation

I R.Carmona, M. Coulon, D. Schwarz (2012) present a
valuation approach using a full structural model

I the difference between reduced form models (which we
use) and the structural model is relatively small for
high-efficiency gas plants, but reduced-form overprices for
low-efficiency plants

I we also define the power price exogeneously
I An accurate approximation formula for the three asset case

is also given in E.Alos, A.Eydeland and P.Laurence,
Energy Risk, (2011).
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Parameter Uncertainty

To use models we need to specify the parameters
I estimation

I some estimator ϑ̂ is used instead the true parameter ϑ
I bias and volatility of the estimator have to be considered

I calibration
I search for parameter that minimizes some pricing error

condition, e.g.

ϑc = argmin
ϑ

∣∣∣∣∣ ∑
set of derivatives

model price(ϑ)−market price

∣∣∣∣∣
I parameters may not be uniquely identified

I Both approaches
I produce parameter uncertainty,
I may disregard information.
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Parameter uncertainty set-up

I (Ω,F ,F) filtered measurable space
I S = (St ) basic instruments, contingent claim X = F (S)

I parametrized family of (martingale) measures (Qθ)θ∈Θ on
(Ω,F).

I parameter θ ∈ Θ, (risk neutral) value of contingent claim is

θ → Eθ(X ) := EQθ(X ).
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Bannör-Scherer Approach

I distribution R for likelihood of parameter on parameter
space Θ available

I convex risk measures gauge extent of parameter risk
I this allows to calculate parameter risk-induced spreads
I Advantages

I parameter’s distribution is exploited
I risk aversion can be incorporated without being maximally

conservative
I Cont’s (2006, Math. Finance, 16(3), 519 -547) suggestion is

an extreme points
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Convex Risk Measures
Let (Ω,F) be a measurable space and X ⊂ L0(Ω) a vector
space. Y ⊂ X be a sub-vector space and π ∈ Y∗.

ρ : X → R (2)

is a convex risk measure with π translation invariance iff
I ρ is monotone:

X ≥ Y =⇒ ρ(X ) ≥ ρ(Y ).

I ρ is convex:

∀λ ∈ [0,1] : ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ).

I ρ is π-translation invariant:

∀Y ∈ Y : ρ(X + Y ) = ρ(X ) + π(Y ).
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Convex Risk Measures – Properties

I ρ is coherent⇔ ρ(cX ) = cρ(X ), ∀c > 0.
I ρ is normalized⇔ ρ(0) = 0.
I Let P be a probability measure on (Ω,F).
ρ is P-law invariant⇔ PX = PY implies ρ(X ) = ρ(Y ).
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Risk Capturing Functionals
We denote the space of all derivatives by

D :=
⋂
θ∈Θ

L1(Qθ) (3)

We call
Γ : D → R

a risk-capturing functional with properties
I order preservation X ≥ Y ⇒ Γ(X ) ≥ Γ(Y )

I diversification
∀ λ ∈ [0,1] : Γ(λX + (1− λ)Y ) ≤ λΓ(X ) + (1− λ)Γ(Y ).

I parameter independence consistency

θ → Eθ(X ) ≡ constant ⇒ Γ(X ) = Eθ(X ).
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Model Risk – Cont’s Suggestion

I For X a derivative we associate with Γ(X ) the ask price
and with −Γ(−X ) its bid price.

I Cont’s suggestion

Γu(X ) = sup
Q∈Q

EQ and Γl(X ) = −Γu(−X ) = inf
Q∈Q

EQ.

This approach produces typically a wide bid-ask spread.
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Construction of Risk Capturing Functionals

I R a probability measure on Θ

I Let A ⊂ L0(R) be a vector space of measurable functions
containing the constants

DA :=

{
X ∈

⋂
θ∈Θ

L1(Qθ) : θ → Eθ(X ) ∈ A

}
(4)

I ρ : A → R be convex risk measure (normalized,
law-invariant)

I Define the parameter risk capturing function

Γ : DA → R, Γ(X ) = ρ (θ → Eθ(X )) (5)
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Parameter Risk-Capturing Valuation
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Derivative price distribution 

induced by R and θ → Eθ[X] 

Pricing function θ → Eθ[X] 
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Definition AVaR

I general probability space (Ω,F ,P), β ∈ (0,1], X ∈ L1(P),
then

VaRβ(X ) = qP
−X (1− β).

I the average value at risk at level α ∈ (0,1] is

AVaRα(X ) =
1
α

∫ α

0
VaRβ(X )dβ.

I AVaRα is a convex risk measure (coherent and
law-invariant).
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Definition AVaR risk capturing functional

I Assume a parametrized family of (martingale) measures
QΘ = (Qθ)θ∈Θ.

I Let R be a distribution on Θ.
I Consider the L1(R) admissible functionals, so

AVaRα : L1(R)→ R.
I Define the AVaRα risk-capturing functional

R ? AVaRα : CL1(R) → R as

R ? AVaRα(X ) := AVaRα (θ → Eθ(X )) .
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Convergence Property of AVaR

I Assume RN → R0, (N →∞) weakly on QΘ;
I ρN a sequence of convex risk measures with ρN is RN

invariant;
I A sequence ΓN with ΓN = ρN (QΘ → Eθ(X )) has the

convergence property (CP) if and only if

lim
N→∞

ΓN(X ) = Γ0(X ) = ρ0 (QΘ → Eθ(X )) ∀X ∈ CA.

I AVaR -induced risk-capturing functionals fulfill (CP) for Θ
compact.

Model Risk for Energy Markets | Fields Institute, Toronto | 15. August 2013



Seite 25 | Risk-Capturing Functionals

Using asymptotic distributions

I (CP) allows us, if the parameter distribution R is
complicated to calculate or even unknown, to use a
parameter distribution R̃ which is “close” to the original
distribution R (in the sense of weak convergence, like, e.g.,
some asymptotic distribution) and calculate the
risk-captured price with the parameter distribution R̃
instead.

I In particular, if the distribution R is propagated from an
estimator θ̂N and the asymptotic distribution of the
estimator θ̂N is known (let us, e.g., denote the asymptotic
distribution by R∞), we can use the distribution R∞
instead, if the sample size N ∈ N is large enough.
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Calculating AVaR

I Assume (θN)N∈N is an asymptotically normal sequence of
estimators for the true parameter θ0 ∈ Θ ⊂ Rm with
positive definite covariance matrix Σ, so

√
N (θN − θ0)→ Nm (0,Σ) .

I If θ 7→ Eθ(X ) is continuously differentiable and ∇Eθ0 6= 0,
then

√
N
(
EθN (X )− Eθ0(X )

)
→ N

(
0,
(
∇Eθ0

)′
Σ∇Eθ0

)
I For θN ?AVaRα(X ) we calculate the AVaR as for a normally

distributed variable

θN ? AVaRα(X ) ≈ Eθ0(X ) +
ϕ
(
Φ−1(α)

)
α
√

N

√(
∇Eθ0

)′
Σ∇Eθ0 ,
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Emission Certificates

We model the emission price as a geometric Brownian motion

dEt = αE Et dt + σE Et dW E
t , (6)
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Gas Price

I We model the gas price as a mean-reverting process

Gt = eg(t)+Zt ,

dZt = −αG Zt dt + σG dW G
t , (7)

I αG is the speed of mean-reversion for gas prices.
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Power Price

I We model the power price as a sum of two mean-reverting
processes

Pt = ef (t)+Xt +Yt ,

dXt = −αP Xt dt + σP dW P
t ,

dYt = −β Yt dt + Jt dNt , (8)

I αP and β are speeds of mean-reversion for the smooth and
the jump component of power prices.

I N is a Poisson process with intensity λ.
I Jt are independent identically distributed (i.i.d) random

variables representing the jump size.
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Seasonal components

g(t) and f (t) are seasonal trend components for gas and
power, respectively, defined as

f (t) = a1 + a2 t + a3 cos(a5 + 2πt) + a4 cos(a6 + 4πt),
g(t) = b1 + b2 t + b3 cos(b5 + 2πt) + b4 cos(b6 + 4πt),

(9)

where a1 and b1 may be viewed as production expenses, a2
and b2 are the slopes of increase in these costs. The rest of the
parameters are responsible for two seasonal changes in
summer and winter respectively.
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Dependence Structure

In the current setting we also assume that W E , W G and N are
mutually independent processes, but there is some correlation
between W P and W G

dW P
t dW G

t = ρ dt . (10)
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Parameter Uncertainty

I The total set of parameters includes
{αE , σE ,g(t), αG, σG, f (t), αP , β, σP , λ,E[J],E[J2], ρ}.

I Hence, the hybrid model we have chosen for modelling the
clean spark spread is not parsimonious and allows for
several degrees of freedom.

I Consequently, the risk of determining parameters in a
wrong way is considerable.
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Data sources

I Phelix Day Base: It is the average price of the hours 1 to
24 for electricity traded on the spot market. It is calculated
for all calendar days of the year as the simple average of
the auction prices for the hours 1 to 24 in the market area
Germany/Austria. (EUR/MWh),

I NCG: Delivery is possible at the virtual trading hub in the
market areas of NetConnect Germany GmbH & Co KG.
daily price (EUR/MWh),

I Emission certificate daily price: One EU emission
allowance confers the right to emit one tonne of carbon
dioxide or one tonne of carbon dioxide equivalent.
(EUR/EUA).

I We cover the last three years: 25.09.2009 - 08.06.2012.
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Price Paths, 25.09.2009 - 08.06.2012.
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Clean Spark Spread, 25.09.2009 - 08.06.2012.
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Emissions and Gas

I Apply a standard procedure to de-seasonalize gas (don’t
change notation).

I log Et and log Gt are normally distributed.
I Thus, we can use standard Maximum Likelihood Methods.
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Power I

The estimation procedure for the power price includes several
steps:

I Estimation of the seasonal trend and deseasonalisation.
I With an iterative procedure we filter out returns with

absolute values greater than three times the standard
deviation of the returns of the series at the current
iteration. The process is repeated until no further outliers
can be found.

I As a result we obtain a standard deviation of the jumps, σj ,
and a cumulative frequency of jumps, l . The latter is
defined as the total number of filtered jumps divided by the
annualised number of observations.
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Power II

I Once we have filtered the Xt process, we can identify it as
a first order autoregressive model in continuous time, i.e.
so-called AR(1) process. Discretizing the process and
estimating it by maximum likelihood method (MLE) yields
the estimates.
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Estimation Results

Estimation Step Product Estimates Method
GBM Emissions αE = −0.2843, σE = 0.4079 MLE

Seasonal trend Power a1 = 3.6716, a2 = 0.0980, a3 = −0.0274 OLS
a4 = 0.0368, a5 = 0.6524, a6 = 0.9530

Seasonal trend Gas b1 = 2.3420, b2 = 0.3503, b3 = 0.0218 OLS
b4 = −0.0445, b5 = 0.7829, b6 = 1.6126

Filtering Power 3×Std.Dev rule
Base process Gas αG = 13.5827, σG = 0.7768 Multivariate
Base process Power αP = 121.8684, σP = 2.5943, ρ = 0.1247 normal regression

Spike mean-reversion Power β = 243.7240
Spike intensity Power λ = 13.4936 Annual frequency

Spike size (Laplace) Power µs(median) = 0.3975, σs(scale) = 0.6175 MLE
Spike size (normal) Power µs(mean) = 0.0863, σs(variance) = 0.5857 MLE

Heat rate Gas h = 2.5
Interest rate r = 3%
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We will be capturing model risk in

I Jump size distribution;
I Correlation;
I Gas alone;
I Gas and power base signal;
I Gas, power and emissions (all the parameters, except of

jump size).
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General Procedure

I We reduce the problem here by considering the
distributions of the single parameters separately (e.g. the
correlation coefficient, the jump size distribution
parameters). Hence, we do some kind of “sensitivity
analysis” w.r.t. different parameters, disregarding the
remaining parameter risk.

I Each parameter θj is to be estimated by an estimator
θ̂j(X1, . . . ,XN) under the real-world measure and we
assume the other parameters θ1, . . . , θj−1, θj+1, θN to be
known. We use plug-in estimators as the true values and
figure out the asymptotic distribution of the estimators.

I We calculate the parameter risk-captured prices which are
generated by the Average-Value-at-Risk (AVaR) w.r.t.
different significance levels α ∈ (0,1].
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Spark Spread Analysis I

In our investigation we will focus on the clean spark spread to
model the value of virtual gas power plant. We will use spot
price processes in order to assess the day-by-day risk position
of such a plant. Thus, we will model the daily profit (or loss) of a
power plant as

Vt = max{Pt − h Gt − cE Et ,0}, (11)

where Pt is the power price, Gt is the gas price, Et is the carbon
certificate price, h is the heat rate, cE emission conversion rate.
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Spark Spread Analysis II

I We compute the spark spread value Vt given in (11) for
every day t for a time period of three years.

I Then, by fixing all the parameters except of one (e.g.
correlation) and setting the shift value (e.g. 1%), we
compute shifted up and down spark spread values, i.e. V up

t
and V down

t .
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Power Plant Analysis I

We compute the value of the power plant (VPP) by means of
Monte Carlo simulations. For a fixed large number N and a
fixed period T = 3 years we have

VPP(t ,T ) =
1
N

N∑
i=1

VPPi(t ,T ),

where

VPPi(t ,T ) =
T∑

s=t

e−r(T−s) Vi(s).
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Power Plant Analysis II
I We also compute shifted both up and down power plant

values, i.e. VPPup(t ,T ) and VPPdown(t ,T ) (i.e. w.r.t.
shifted spark spread values) and calculate the sensitivity

sVPP(θ0) =
VPPup(t ,T )− VPPdown(t ,T )

2 · shift
.

I Finally, we compute the bid and ask prices, i.e. we use the
closed formula for AVaR to get the risk-captured prices by
subtracting and adding risk-adjustment value to VPP(t ,T )
respectively.

I For a specified significance level α ∈ (0,1) this
risk-adjustment value is computed as

ϕ(Φ−1(α))

α

√
sVPP(θ0)′ · Σ · sVPP(θ0)

N
.
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Correlation: the Estimator and its Distribution

I We have correlation between the base signal Xt of power
price and the log gas price logGt implied by the driving
Brownian motions

I Let xi and yi , 1 = 1, . . .n the corresponding discrete
observations, then we use Pearson’s sample coefficient

ρ(n) =
n
∑n

i=1 xiyi −
(∑n

i=1 xi
) (∑n

i=1 yi
)√∑n

i=1 x2
i −

(∑n
i=1 xi

)2
√∑n

i=1 y2
i −

(∑n
i=1 yi

)2
.

I In our bivariate normal setting we can apply Fisher’s
transformation and have

artanh
(
ρ(n)

)
∼ N

(
artanh(ρ0),

1
n − 3

)
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Parameter-risk implied bid-ask spread w.r.t. correlation
parameter, Gaussian jumps.
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Parameter-risk implied bid-ask spread w.r.t. correlation
parameter, Laplace jumps.
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Parameter-risk implied bid-ask spread w.r.t. the gas price
process, Gaussian jumps.
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Bid and ask prices accounting for the parameter risk in gas signals with normal jumps
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Parameter-risk implied bid-ask spread w.r.t. the gas price
process, Laplace jumps.
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Parameter-risk implied bid-ask spread w.r.t. the gas and power
base processes, Gaussian jumps.
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Bid and ask prices accounting for the parameter risk in base power and gas signals with normal jumps
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Parameter-risk implied bid-ask spread w.r.t. the gas and power
base processes, Laplace jumps.
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Parameter-risk implied bid-ask spread w.r.t. all the parameters,
except of the Gaussian jump size.
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Bid and ask prices accounting for the parameter risk in diffusion components with normal jumps

 

 
AVaR

0.01
AskPrice

AVaR
0.01

BidPrice

AVaR
0.1

AskPrice

AVaR
0.1

BidPrice

AVaR
0.5

AskPrice

AVaR
0.5

BidPrice

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Simulations

B
id

−
A

sk
 D

el
ta

 V
al

ue

Relative bid−ask spread width accounting for the parameter risk in diffusion components with normal jumps
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Parameter-risk implied bid-ask spread w.r.t. all the parameters,
except of the Laplace jump size.
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Parameter-risk implied bid-ask spread w.r.t. jump size
distribution: Gaussian.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Simulations

P
ric

e 
V

al
ue

Bid and ask prices accounting for the parameter risk in jump distribution with normal jumps
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Parameter-risk implied bid-ask spread w.r.t. jump size
distribution: Laplace.
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Bid and ask prices accounting for the parameter risk in jump distribution with Laplace jumps
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Resulting values for the relative width of the bid-ask spread for
various model risk sources. α1 = 0.01, α2 = 0.1, α3= 0.5.

Jumps size distribution
Gaussian Laplace

α1 α2 α3 α1 α2 α3

M
od

el
R

is
k Jumps 111.9% 73.71% 33.51% 163.5% 107.7% 48.96%

Correlation 6.95% 4.58% 2.08% 3.29% 2.17% 0.99%
Gas and power base 6.48% 4.27% 1.94% 3.07% 2.02% 0.92%

Gas 6.11% 4.03% 1.83% 2.89% 1.91% 0.87%
Gas, power and carbon 8.21% 5.41% 2.46% 3.83% 2.52% 1.15%
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Gas Power Plant
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A day in august
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Wind, sun and electricity
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RWE Response 14.August 2013

5RWE AG | H1 2013 Conference Call | 14 August 2013

Decision on capacity measures

Measure Plant MW1 Fuel Location Date

Decom-
missioning

Amer 8 610 Hard coal NL Q1-20162

Long-term 
mothballing

Moerdijk 2 430 Gas NL Q4-2013

Gersteinwerk F 355 Gas – steam turbine DE Q3-2013

Gersteinwerk G 355 Gas – steam turbine DE Q2-2014

Weisweiler H 270 Topping gas turbine3 DE Q3-2013

Weisweiler G 270 Topping gas turbine3 DE Q3-2013

2 mid-size units 85 Gas NL Q1-2013

Summer 
mothballing

Emsland B 360 Gas – steam turbine DE Q2-2014

Emsland C 360 Gas – steam turbine DE Q2-2014

Termination
of 3 contracts

Confidential 1,170 Hard coal DE Q4-2013 –
Q4-2014

Total 4,265 MW
1 Net nominal capacity  |  2 Depending on the final decision on the Dutch “Energieakkoord”, 
with a decision expected by the end of August 2013 | 3 At a lignite plant

5

Model Risk for Energy Markets | Fields Institute, Toronto | 15. August 2013



Seite 62 | Results

Conclusions

I What we did
I We suggested a methodology to quantify model risk in

power plant valuation approaches (spread options)
I We studied correlation and spike risk

I What we still need/want to do
I Perform more and better model analysis: estimation

methods, approximation of quantities
I Improve simulation method: use analytic approaches as

benchmarks
I Discuss multi-variate parameter model risk
I Study more realistic examples of power plants and

valuation methodology
I Consider other energy derivatives
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Energy & Finance Essen

Energy & Finance Conference in Essen, October 9-11, 2013
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Contact

I Chair for Energy Trading and Finance
University Duisburg-Essen
Universitätsstrße 12
45141 Essen, Germany
phone +49 (0)201 183-4973
fax +49 (0)201 183-4974

I web: www.lef.wiwi.uni-due.de

I Thank you for your attention...
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