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Project Overview and Context

Project Overview

> Initial motivation : the modeling and control of energy
production and storage.

» Pure profit optimization : attempt to play storage and variable
prices at their best. No risk management per se.

» Complex optimization problems : optionnality, stochastic state
variables, multiscale seasonalities, long-term decisions.
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Project Overview and Context

Project Overview

» Development of a dynamic programming approach based on
simulations and regressions.

» The techniques of DP with simulations and regression have
become central in financial engineering to solve financial
option problems.

» We're valuing an energy instrument that is a set of dependent
options; and to value it, we need to time the sale decisions at
best.

M. Denault, J.-G. Simonato and L. Stentoft A simulations-and-regressions algorithm



Project Overview and Context

Project Overview

Focus here on one application (hydropower) and two state
variables : the exogenous spot price of power, and the endogenous
water level.

» The endogenous (control-dependent) variable is a key point.

» Two main ideas :

» Graft the endogenous state variable onto the simulation paths
of the exogenous state variable, building paths of “optimal”
water levels.

» Apply a “backwash” technique to both deal with operational
limits and avoid clustering in the endogenous variable space.
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Project Overview and Context

Related literature

Closely related literature, on gas storage.

» Boogert and De Jong (2008) : probably the first
simulations-and-regressions approach to gas storage, but the
endogenous variable is discretized.

» Carmona and Ludkowski (2010) : “quasi-simulation” of the
endogenous variable.

» Nascimento and Powell (2013) : A.D.P. (approximate dynamic
programming, or forward D.P.) approach.
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Setting the problem and solving it

Setting the problem

The simple setup, discussed today, includes
» a hydro power production facility which includes storage;

> the possibility to buy or sell a limited but fixed amount of
power at each period;

» purchases of power increase the water level (see below) ;
» all transactions are at the spot price, which is stochastic;

» storage is of course bounded above and below.
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Setting the problem and solving it

Setting the problem

A more complete problem setup would include

>

a variable local demand at a constant price, which must be
satisfied ;

purchases and sales are on a neighbour market, with
stochastic prices;

purchases of power help keep water behind the dam (but
don't actually increase the level);

water inflows are stochastic.
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Setting the problem and solving it

Setting the problem as a dynamic program

» The goal is to maximize expected net profit over a finite
horizon [0, T].

» Natural setup for dynamic programming : knowing the optimal
policy from t +1 to T, find the optimal policy from t to T by
identifying the best policy between t and t + 1.

» Backward solution is then possible, from time T to time O,
given the final boundary condition.
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Setting the problem and solving it

The Endogenous Variable and the State Equation

» The water level is an endogenous state variable : the
production decision at t changes the state of the system at
t+1.

» Compare : the american option has only an exogenous state
variable, the stock price.

» The water levels follow the state equation
Lev1 = h(ug; Le);

where u is a sales decision and L; is the water level at time t.
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Setting the problem and solving it

Dynamic programming recursion

Thanks to the optimality principle of dynamic programming, we
can compute the value function recursively as

Vt(St; Lt) = sup {Wt(ut; S, Lt) + ]Et{ Vt+1(5t+1a h(Ut; Lt))}}
u €U(S,L,t)

where u is the decision variable, m; is the payoff function on the

period from t to t + 1, the expectation is conditional on time t

information.

(The value function is the (monetary) value of being in a certain state at
a certain time, assuming that the best non-anticipative decisions will be
made until the end of time.)
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Setting the problem and solving it

Traditional solution approach for the recursion equation

» The traditional way to solve the continuous time, continuous
state variables DP is to discretize all state variables and time.

» This is the technique we use for benchmarking.

> Subject to the curse of dimensionality : beyond a few state

variables, the technique is very time-consuming, or even
untractable.
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Setting the problem and solving it

A simulations-and-regressions approach

For its simplicity, flexibility and ability to handle greater numbers
of state variables, we prefer the dynamic programming approach of
Monte Carlo simulations and (simple linear) regressions.

» Monte Carlo simulations are used to generate ahead of time a
set of scenarios for the exogenous stochastic variable
(e.g. spot price)

> Decisions are discretized.

» For each decision, the profit function is approximated by
regressing the profits on the state variable values (for all
paths).

What about the endogenous variable (water level) ?
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Setting the problem and solving it

Solution through simulations-and-regressions

Let the value function be known at t 4+ 1
k k
Viea (S.140,)

for each spot price path k€ 1,...,K.
Define the backward state equation

e
h (Ut; Lt+1) =L

and the water level at time t which depends on u;

&
10 ) = 7 (s 1)
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Setting the problem and solving it

We can regress

7Tt<Ut; Sﬁk), Lﬁk)(ut)) + Vt+1 (St(i)l’ Lgﬁ-)l)
on (St(k),Lgk)(ut)>

for each possible decision u;. Note that the “antecedent levels”
Lgk)(ut) are functions of the decision.

We obtain a regression surface for each possible discrete decision.
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Setting the problem and solving it

What is an adequate path-k,
time-t water level 1) 2

t
Water A ®
level ®
°
L(k) V(5 t+1)
t+1 known
°
°
°
—>>
t t+1 Time
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Setting the problem and solving it

Creating Paths of Water Levels

» Endogenous water level variable cannot be simulated ahead of
time, like the spot prices.

» However, the value expectations must rely on optimal paths.

» We build water level paths backwards, using the regression
surfaces.

» These water level paths are not actual simulations, but each
is matched with a spot price path.
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Setting the problem and solving it

Creating Paths of Water Levels : forward-optimal paths

>

So, which time-t water level L; is the “right” level, given a

time-(t+1) water level Lyyq7?

» Certainly not the level with the highest value, that would be
“backward optimal”.

» We need a time-t level that “forward optimally” leads to the

(known) time-(t+1) level.

» The regression surfaces are computed already, so just use
them repeatedly (small numerical overhead)
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Setting the problem and solving it

What is an adequate path-k,
time-t water level 1) 2

t
Water A
level
L(k) V(5 t+1)
t+1 known
—>>
t t+1 Time
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Setting the problem and solving it

Clusters, Bounds and Backwash

Two problems crop up with this “fausse-simulation” technique.

» Problem 1 : little control over the building of the water level
paths, so water levels can go out-of-bounds (leakage) and can
cluster. (And they do!)

> Problem 2 : need to take account of the water level
operational bounds wisely. We do need information about
crossing the bounds.
» Solution :
» Add a penalty term for violations of the dam upper and lower
levels.
> Let water level paths go out-of-bounds, and use that info in
the regressions.
» When a path goes too far out-of-bounds, backwash it
randomly to the feasible area, thereby smoothing clusters.
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Setting the problem and solving it

Clusters, Bounds and Backwash

Solution :

» Add a penalty term for violations of the dam upper and lower
levels.

> Let water level paths go out-of-bounds, and use that info in
the regressions. This takes care of problem 2.

» When a path goes too far out-of-bounds, backwash it
randomly to the feasible area, thereby smoothing clusters.
This takes care of problem 1.
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Setting the problem and solving it

Summary of the algorithm

Initialization :

1.

Choose a set of basis functions for the state variables, S; and
Lt ,

. Randomly generate K paths for the exogenous variable S;,

(t=0,1,...,T);

. Randomly generate K time-T levels of the endogenous

variable L7, within the range [Lmin, Lmax];

Compute time-T values according to a boundary condition.
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Setting the problem and solving it

Backward recursion : for all times fromt=T —1tot=0:

1. Compute the regression surfaces V4(S, L), u € {+1,0,-1}
using a payoff with penalty for going out of bounds.

2. For each of the 3K candidate levels L(tk), compute a
forwardoptimal decision.

3. Associate a level L(tk) for each path k, according to the

decisions in the above step. If Lgk) is too far out of bounds,
randomly reassign it to a random, acceptable water level (the

backwash technique)

4. Compute the K values V; (St(k), Lgk)) as a sum of payoffs until
time T along path (k). In the case of paths whose level has
been reassigned in step 3, use instead the value on the
regression surface.

Out-of-sample tests : retain solely the regression parameters.
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Setting the problem and solving it

Convergence ?

» Sources of approximations come from the simulation, the
regression on basis, the backwash.

» Tsitsiklis-Van Roy vs Longstaff-Schwartz approaches.

» Given the backwash procedure, this algorithm is in fact hybrid
of TVR and LS.
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Numerical Results

lllustration with a simple example

We consider a simple but interesting case of four half-days.

» Average price is 50$, except during the 2nd and 5th periods
(average of 30%). Prices are serially independent.

> Three regimes : buy, sell, do nothing.
» Number of simulations in the learning phase : 50 000.

» Comparison is done with a fully discretized DP as benchmark.
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Numerical Results

Regression surfaces (g=sell, k=wait,r=buy) for period 3
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Numerical Results

Regression surfaces (g=sell,k=wait,r=buy) for period 3
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Numerical Results

Benchmark policies vs Simulation and Regression policies
Spot prices on x-axis ; water levels on y-axis.
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Numerical Results

Numerical results on a larger model

» Algorithm is run on a problem with the same state variables
(price and water level) but 16 weeks long at two periods per
day (224 time steps)

» Spot price follows a geometric brownian motion (we want to
benchmark !)

» Daily, weekly, monthly seasonalities on the spot prices.

» We do out-of-sample testing against a finely discretized
dynamic program. The benchmark value is 247 500 $.

» Obtain results within two percent of the optimal value :

Npath Mean Stdv
25000 242765% 2779%
50000 242897 % 161%
75000 242900% 128 %
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Numerical Results

Numerical results : pretty good or pretty bad ?

Pretty good or pretty bad ? Well, both...

» The quality of the results (sim-and-reg vs benchmark) is
influenced by the bases and by the backwash procedure.
» Polynomial bases do their best, but are clearly imperfect. This

is however could be rather good news for the backwash
technique.

> Note that sim-and-reg and benchmark results are similarly
impacted by the discretization of the decision.
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Numerical Results

Conclusions

» The classical simulations-and-regressions technique is
extended to a more general problem with an endogenous
(control-dependent) state variable.

» Neither the exogenous nor the endogenous variables are
discretized.

» Simulation based, so very flexible with respect to the modeling
of the exogenous, stochastic variables.
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Numerical Results

Future and on-going work

v

Introduce more exogenous and endogenous variables.

v

Introduce decisions that kick in only after a number of periods.

v

Risk management.

v

Non-energy applications.
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Numerical Results
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