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Introduction

OTC market huge for energy derivatives

Highly exotic products:

e Asian options on power spot

e Various (cross-commodity) spread options
e Demand/volume triggered derivatives

e Swing options

Payoff depending on spot, indices and/or forwards/futures

In this lecture: Pricing and hedging of (some) of these exotics
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Example of swing options

e Simple operation of a gas-fired power plant: income is
T
/ e u(s) (P(s) — G(s)) ds
t
e P and G power and gas price resp, in Euro/MWh.
e Heating rate is included in G...
e 0 < u(s) <1 production rate in MWh
e Decided by the operator
e Value of power plant
V(t)= sup E U e "=u(s) (P(s) — G(s)) ds | Fe
0<w<1 t
e More fun if there are constraints on production volume....

e Maximal and/or minimal total production
e Flexible load contracts, user-time contracts
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e Tolling agreement: virtual power plant contract

e Strip of European call on spread between power spot and fuel
e Fuel being gas or coal

V(t) = /t ’ e "7 IE [max (P(s) — G(s),0) | F¢] ds

e Spark spread, the value of exchanging gas with power
e Dark spread, crack spread, clean spread....
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German (EEX) spark spread in 2011
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e Green: EEX power (Euro/MWh)
e Blue: Natural gas (Euro/MWH)

e Red: Spark spread, with efficiency factor (heat rate) of
49.13%
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Example: Asian options

e European call option on the average power spot price

72
max(l/ 5(u)du—K,0>
™ =711 )y

e Traded at NordPool around 2000

e "Delivery period” a given month
e Options traded until 71, beginning of " delivery”
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Example: Energy quanto options

e Extending Asian options to include volume trigger

e Sample payoff

1 72
max </ S(u)du — Kp,0>
T —T1 Jn
1 T2
X max </ T(u)du — KT,O>
T — T1 1

e T(u) is the temperature at time u
e in a location of interest, or average over some area (country)
e Energy quantos on:

e gas and temperature (demand)
e or power and wind (supply)
e Dependency between energy price and temperature crucial
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Spread options (tolling agreements)
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e Spread payoff with exercise time 7

max (P(1) — G(7),0)

e P. G bivariate geometric Brownian motion — Margrabe's
Formula
e Introducing a strike K # 0, no known analytic pricing formula
e Our concern: valuation for exponential non-Gaussian
stationary processes
e Exponential Lévy semistationary (LSS) models
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Recall definition of LSS process from Lecture Il

V= [ st sos)as)

o0

L a (two-sided) Lévy process (with finite variance)

o a stochastic volatility process

g kernel function defined on R

Integration in semimartingale (Ito) sense
o g(t—--+)x o(-) square-integrable

Y is stationary whenever o is
e Prime example: g(x) = exp(—ax), Ornstein-Uhlenbeck
process
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Bivariate spot price dynamics

In P(t) = Ap(t) + Yp(t)
In G(t) = Ag(t) + Yo(t)

Ai(t) seasonality function, Y;(t) LSS process with kernel g;
and stochastic volatility o;, i = P, G

e The stochastic volatilites are assumed independent of Up, Ug
L = (Up, Ug) bivariate (square integrable) Lévy process

e Denote cumulant (log-characteristic function) by ¥(x, y).

e \We suppose that spot model is under @
e Pricing measure
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Fourier approach to pricing

e To compute the expected value under @ for the spread:

e Factorize out the gas component

+
&Ye(®) <eYP(T)—YG(T) _ ,,’\G(T)> | ;t]

/\p(T)E /\p(’i‘)

e Apply the tower property of conditional expectation,
conditioning on ¢;,
e Recall being independent of L
o G, =F:Vi{oi(),i=P, G}

+
e¥s(7) (eYP(T)_YG(T) — hAG(T)> ’gt] ’ft]

AP(T)E /\p(T)

E
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e For inner expectation, use that Z is the density of an Esscher
transform for t < 7

Z(t) = ef_too ga(T—s)og(s) dUg(s)—[*__ ve(—ige(T—s)og(s))ds

e Us(y) =1(0,y), the cumulant of Ug.
e The characteristics of L is known under this transform

e This "removes”’ the multiplicative term exp(Yg(7)) from
inner expectation

e Finally, apply Fourier method
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Define , for ¢ > 1,

f. € LY(R), and its Fourier transform f. e L(R)

Representation of f:

1

£ = 5- | R0 dy

o Gives general representation for a random variable X

BIF(X)] = 5 [ ZU)E [d09X] dy



Introduction Spread options Asian options Quanto options Conclusions
000000 0000000800 0000000000 0000000 000

Theorem

Suppose exponential integrability of L. Then the spread option has
the price at t < 7

~

C(t.7) :e—f(T—ﬂ’\’;f:) A f()®e (Ye(e,7), Yo(£,7) ) Ve (v) dy

where, fori = P, G,

Yi(t, ) = /_ gi(T — s)oi(s) dU;(s)

S (u,v) =exp((y —ic)u+ (1 —(iy + ¢))v)
and

Verr(y) = E [l H0-i8r(-97n (- 1i-lgstr—s)oa(s) & 1,
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e Note: spread price not a function of the current power and
gas spot, but on Yi(t,7),i =P, G

e Recalling theory from Lecture Ill: Y;(t,7) isl given by the
logarithmic forward price....

Infi(t,7) = Xi(t,7,0i(t)) + Yi(t, 7)

e No stochastic volatility, o; = 1: X; is a deterministic function
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Some remarks on hedging

e Power spot not tradeable, gas requires storage facilities

Alternatively, hedge spread option using forwards!

But incomplete model, so only partial hedging possible
e Quadratic hedging, for example
e May also depend on stochastic volatility, making model " more
incomplete”

In real markets: forwards on power and gas deliver over a
given time period
e Further complication, as we cannot easily express spread in
such forwards
e Further approximation of partial hedging strategy
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Asian options

Options on the average spot price over a period
e Traded at NordPool up to around 2000 for " monthly periods”

Recall payoff function

1 2
max( / S(U)du—K,O)
!

T —T1

Geometric LSS spot model:

InS(t) = A(t) + Y(t)

Y an LSS process with kernel g and stochastic volatility o
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e Pricing requires simulation
e Propose an efficient Monte Carlo simulation of the path of an
LSS process
e Suppose that g (u) := exp(Au)g(u) € L}(R) and its Fourier
transform is in L}(R)

1

(1) = o

JECr
. \A/Ayy(t) complex-valued Ornstein-Uhlenbeck process

t
Yo, (1) = / ey =N(E=5) (5 dL(s)

—00
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e Paths of Ornstein-Uhlenbeck processes can be simulated
iteratively

~ . ~ . t+6 .
Vay(£48) = ¥ N9F, | (1) ety -3 / e Mg () dL(s)

t

e Numerical integration (fast Fourier) to obtain paths of Y
e Extend g to R if g(0) >0
e Let g(u) =0 for u < 0if g(0) =0.
e Smooth out g at u = 0 if singular in origo
e Error estimates in L2-norm of the paths in terms of
time-stepping size
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e Asian call option on Y over [0, 1], with strike K =5

e Y BSS-process, with o =1, Y(0) = 10, and kernel (modified
Bjerksund model)

§°SLW,,_W - ,
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Issues of hedging

Let F(t, 71, 72) be forward price for contract delivering power
spot S over 11 to T: At t = 7,

1 2
F(m,11,m) = 7_2_7_1/ S(u) du
T1

Asian option: call option on forward with exercise time 7
e In power and gas, forwards are traded with delivery period

e Hence, can price, but also hedge using these
e Analyse based on forward price model rather than spot!

Problem: many contracts are not traded in the settlement
period

e Can hedge up to time 7y

e _but not all the way up to exercise 7,
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Example: quadratic hedging

¢ Hedge option with payoff X at exercise 7, using (s) forwards

Assume Levy (jump) dynamics for the forward price
e Martingale dynamics

Can only trade forward up to time 11 < 7

V(e) = V(0) + Om b(s)dF(s)

+ 1{t>7'1}1/)(7—1)(F(t7 T1, T2) - F(Tla 71, T2))

Predictable strategies v being integrable with respect to F.
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e Minimize quadratic hedging error

E[(X — V(72))’]

e Solution:
o Classical quadratic hedge up to time 77,

e thereafter, use the constant hedge
i = E[X(F(r2) — F(m1)) [ Fr]
M E[(F(m2) = F(71))? | Frl
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Example: geometric Brownian motion

e X call option with strike K at time 7
e t+— F(t,71,7) geometric Brownian motion with constant
volatility o
e We suppose the forward is tradeable only up to time 7y < 7
e Quadratic hedge
e N is the cumulative standard normal distribution function

N(d(t)), t< T
¢(t) - { wminv t> Ti

where
"2 TN T =1 + d(r)) — (K + Fr))N(d(my)) + KN(d(r1) — ov/73 = 71)

Flr)(e*(2= ) — 1)

F(ry)e?

Pmin =

In(F(t, 71, 72)/K) + 0.50%(m5 — t)
o\/Ty) — t

d(t) =



Introduction

000000

e Empirical example:
Annual vol of 30%, 71 = 20, 7» = 40 days

Hedge ratia
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ATM call with strike 100
Quadratic hedge jumps 1.8% up at 71 compared to delta hedge
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e Recall payoff of an energy quanto option

1 2
max </ S(u)du — Kp,O)
T2 —T1 Eal

X max (Tindex(71, 72) — K7,0)

e Tindex(71,T2) temperature index measured over [11, 73]
e CAT index, say, or HDD/CDD
e Consider idea of viewing the contract as an option on two
forwards

e Product of two calls,
e One on forward energy, and one on temperature (CAT forward)

e Main advantages

e Avoid specification of the risk premium in the spot modelling
e Can price "analytically” rather than via simulation
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Case study: bivariate GBM

e Consider bivariate GBM model

de(t, 7'1,7'2) = Jp(t,Tl,TQ)FP(t,Tl,TQ) dWP(t)
dFr(t,71,m2) = or(t, 71, 72)Fr(t, 71, 72) dWr(t)

e op,o7 deterministic volatilities, Wp, Wt correlated Brownian
motions

e May express the price of the quanto as a " Black-76-like”
formula
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e Price of quanto at time t < 7 is

C(t) = e (=70 {Fp(t)Fr(t)e” P T N(dE™, d5**)
—Fp(t)KTN(dp", d7") — Fr(t)KpN(dp, d7)

+KPKTN(dp, dT)}
where
. _ 0.502
g In(F,(t)/K). 0.507 4 =gt onie BT

d' =di+poj, d" =di+poj+oj,ij=P,T,i#]

i

e N(x,y) bivariate cumulative distribution function with
correlation p, equal to the one between Wp, and Wt

e op and ot integrated volatility

]
0,-2 = / 0,-2(5,7'1,7'2) ds, i=P, T
t

Conclusions
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Empirical study of US gas and temperature

Temperature index in quanto is based on Heating-degree days

T2

Tindex(71, 72) = / max(c — T(u),0) du

71

Fr(t,1,72) HDD forward
HDD forward prices for New York
e Use prices for 7 first delivery months

NYMEX gas forwards, monthly delivery

e Use prices for coming 12 delivery months

3 years of daily data, from 2007 on
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e Approach modelling of F(t,,7) by F(t, ), forward with
fixed maturity date
e Choose the maturity date 7 to be middle of delivery period
e Price dynamics only for t < 7!

e Two factor structure (long and short term variations)

dFi(t,7) = Fi(t,7) { i dWi + Bre =T dB;} i = G, T

e Estimate using Kalman filtering
e W and B strongly negatively correlated for both gas and
temperature
e W's negatively correlated , B’s positively
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e Compute quanto-option prices from our formula
e The period 71 to 7 is December 2011
e Current time t is December 31, 2010
e Use market observed prices at this date for Fg(t), Fr(t)
e Prices benchmarked against independent gas and temperature
e Quanto option price is equal to the product of two call options

prices, with interest rate r/2
strikes Kg, KT | 1100,3 | 1200,5 | 1300,7
dependence 596 231 108

independence 470 164 74

e Note: long-dated option, long-term components most
influencial

e These are negatively correlated, approx. —0.3
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Conclusions
e European-style options can be priced using transform-based

methods
e Example: spread options

Path-dependent options require simulation of LSS processes

e Suggested a method based on Fourier transform
e Paths simulated via a number of OU-processes

Considered "new" quanto option

e Priced using corresponding forwards
e Case study from US gas and temperature market

Discussed hedging based on minimizing quadratic hedge error

e Particular consideration of no-trading constraint in delivery
period
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