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Motivation



PERSONAL MOTIVATION: TRYING TO UNDERSTAND




THE PDE APPROACH TO MFG IN LATEX
Formulation (given m(0, -) & u(T, -))

2
O + %Au + H(Vu) — pu=—g(m) (Hamilton-Jacobi-Bellman)

am+ V- (mH' (Vu)) = Z Am (Kolmogorov)

where m(t, -) probability measure, H(p) = sup,(ap — h(a)).
Stationary Case

o2
?Au + H(Vu) — pu=—g(m)

o2
V- (mH'(Vu)) = ?Am,

Stochastic Control Problem followed by a Fixed Point

ult,x)=  sup E / Te—ﬂ“—“[g(m(s,xs))+h(|a(s,xs)|)1ds
t

(as)t<s<T: Xt=x

under constraint dX; = a(t, X;)dt + odW; (HJB), with m(t, x) density of X;
(Kolmogorov).



PROBABILISTIC APPROACH

Disclaimer (to PL and the PDE aficionados)

"Mathematicians (Probabilists) are like Frenchmen:
whatever you say to them they translate into their own
language and forthwith it is something entirely
different."”

Johann Wolfgang von Goethe

Probabilistic Approach
» (Pontryagin) Stochastic Maximum Principle
» FBSDEs of McKean Vlasov type
» Weak Formulation and BSDEs
» Control of McKean-Vlasov stochastic differential equations



LECTURES BASED ON

» (with F. Delarue and A. Lachapelle) Control of McKean-Vlasov
Dynamics versus Mean Field Games. MAFE (2012)

» (with F. Delarue) Probabilistic Analysis of Mean Field Games.
SIAM J. Optimization and Contol

» (with F. Delarue) Control of McKean Vlasov Dynamics submitted

» (with F. Delarue) FBSDEs of McKean-Vlasov Type I. Existence
Electronic Communications in Probability

» (with D. Lacker) The Weak Formulation Approach to Mean Field
Games. submitted

» (with J.P. Fouque and L.H. Sun) Systemic Risk and Mean Field
Games. submitted

» Lecture Notes on Stochastic Control and Stochastic Differential
Games. Princeton University

Not cited in these lectures, the other sources will be !



A First Example of
Stochastic (Differential)
Game



MOTIVATING TOY MODEL FROM SYSTEMIC RISK

» X/,i=1,...,Nlog-monetary reserves of N banks
» Bi,i=1,..., N standard Brownian motions, ¢ > 0
» Borrowing and lending through the drifts:
aX; = > (X - X])dt + cdB;
J=1

= aX;—X)dt+odB}, i=1,...,N.

» OU processes reverting to the sample mean X; (rate a > 0)
» D < 0 default level

Easy Conclusions

» X;is a BM a Brownian motion with vol. of the order o /v/N;

» Simulations “show" that STABILITY is created by increasing the rate g;
» Easy to compute the loss distribution (how many firms fail);
| 4

Large Deviations (Gaussian estimates) show that increasing a increases
SYSTEMIC RiSK



A COMPETITIVE EQUILIBRIUM ANALOG

» X/,i=1,...,Nlog-monetary reserves of N banks
» W{,i=0,1,..., Nindependent Brownian motions, ¢ > 0
» Borrowing and lending through the drifts:

aXi = [a(X; — XI) + ] dtw(W pzdwg+pdw,°), =1 N

o' is the control of bank i which tries to minimize

Jita Nk T1i2 (X, — Xi (X xN2| gt (X Xi)2
(alee ) =2 [ | (@R — qolF X))+ £ (K= X2 o+ 5(Kr — Xp)

Regulator chooses g > 0 to control the cost of borrowing and lending.

> If Xt/ is small (relative to the empirical mean X;) then bank i will want to
borrow(c/} > 0)

> |If X[ is large then bank i will want to lend (a’,' < 0)
Example of Mean Field Game (MFG)



Crash Course on
Stochastic Differential
Games



STATE DYNAMICS

Time evolution of the state X = X“ of the system:
adX; = b(t, Xp, ar)dt + o (t, Xz, ) dW; 0<t<T,
with Xo = x and where
b:[0.T]xQxRIxA—=R? and o:[0.T]xQxRYxA s RIXM

satisfy
(A) (b(t, x,a))o<i<T and (o(t, X, a))o<t< T Progressively measurable;
(B) Lipschitz coefficients

|b(t,w,X,a) - b(t,w,X’,a)| + |U(t,w,X, Oé) - a(t,w,x',a)| < C‘X - Xll

Most often X; = (X{,--- , X]¥) and a; = (of, -+, al) with
» X/ private state
» «f action (control)

attime t of player i € {1,--- , N}



ADMISSIBLE STRATEGY PROFILES

a € Aif a = (ar)o<i< T Satisfies

» Integrability Properties
» Measurability Properties
» Open Loop (OL): a = (ar)o<i<T is F¥- adapted

at = ¢(t7 VV[O,I])
» Closed Loop (CL): a = (at)o<t<7 is F¥0.1- adapted
ar = ¢(t, X0, 1])

» Closed Loop in Feedback Form (CLFF): a = (at)o<i<7 iS FX
adapted
ar = ¢(t, Xt)
(Markovian control) _
» Distributed Markovian Controls: o' = (})o<(<7 is F- adapted

ap = ¢'(t X))



CoST FUNCTIONS

» (Terminal Cost) a Fr-measurable r.v. ¢ e 2(Q, Fr,P)
Most often, ¢/ = g/(X7) for some g’ : Q x R — R;

» (Running Cost) ' : [0, T] x Q x R? x A < R (same assumption
as the drift b);

» (Cost Functional) If the N players use the strategy profile a € A,
the expected total cost to player i is

Ji(a) = / fi(s, Xs, as)ds + &1, a=(a', V) €A
(1)



PARETO OPTIMALITY

Players try to minimize

J)=((a)---, ), achA

DEFINITION
An admissible strategy profile o* = (a*', - - ,g*’\’) € A is said to be
Pareto optimal if there isno a = (a4, -+ ,ay) € A s.t.

Vie{l,--- N}, J'(a)<J(a*)
Jige {1,--- N}, J°(a) < Jo(a*).

l.e., there is no strategy which makes every player at least as well off
and at least one player strictly better off.

Natural in problems of optimal allocation of resources (economics,
operations research)



NOTIONS OF NASH EQUILIBRIUM

DEFINITION

(GENERIC) A set of admissible strategies o* = (a*!,--- ,a™N) € Ais
said to be a Nash equilibrium for the game if

Vie{l,-- ,N},Vgi e Al Ji(g*) < Ji(g*_i,ai).

No single player can be better off by perturbing unilaterally his
strategy

Will be refined and specialized to different information structures



SEARCH FOR NASH EQUILIBRIUMS

» Construction of Best Response Map

» for each strategy profiles (a',--- ,a")
» foreachie {1,--- N}

» find & minimizing J'(a',--- , a") over o/
» (o', ,aY) = (@&, ,aY)

» Find a fixed point for the Best Response map

Can be quite involved (prohibitive when N is large)
» Typically very difficult to prove existence
» Most often no uniqueness
» Numerical computations very difficult (especially when N is large)



MARKOV EQUILIBRIUMS

Strategy profiles in Closed Loop Feedback Form.
In the Markovian case, we assume that

the coefficients b and o are Lipschitz in (x, «) uniformly in t € [0, T]

¢ = (o', ") with deterministic functions ¢’ : [0, T] x RY — R¥ is a
Markov Nash equilibrium (MNE), if for each (¢, x) € [0, T] x R?,
o =(a"", -+ ,a™) € A defined by

af =t X)),  selt,T]
where X" is the unique solution of the stochastic differential equation
dXs = b(s, Xs, p(, Xs))ds + o(s, Xs, ¢(s, Xs))dWs, t<s<T
with initial condition X; = x, satisfies the usual definition inequalities

» The same ¢ solves the game on ALL [t, T] for ALL initial conditions
X =x;

» sub game perfect



PDE FORMULATION

V' the value function of player i:

.
(t,x) = Vi(t,x) = iynf']E{/O F(t, X, (78, X2), o)) at + gi(XT)}

aleAl
expected to satisfy the HJB equation
V' + L (x, 8, V'(t, x), 82 V'(t,x)) =0 )

where L*(x,y, z)inf,cu L'(X,y, 2, o) with
. 1 .
L'(x,y,z,a)= 5trace z[oo™)(t, x, (" '(t, X), @)
—y-b(t x, (a*_’(t, x),a)) + f"(l‘7 X, (a*_i(t, x), @)
» System of coupled HJB equations

» Usually very difficult to solve (existence & uniqueness)
» In many examples below that o*/(t, x) = 8y V/(t, x)



MEAN FIELD INTERACTIONS

Idea from statistical physics

» Interactions between palyers’ states

» in the coefficients of the state dynamics
> in the cost functions

» exclusively through the empirical distribution
1 N
N
=N 21: 5x{
j:

Consequences:
» Strong symmetry among the players
» Each player can hardly influence the system when N is large.



EXAMPLES OF MEAN FIELD INTERACTIONS

Scalar Interactions
b(t, X, i, @) = B(t, X, (¥, ), 0)  o(t, X, p,0) =&
so that

dx{:B(t, Xi, — Zw(xf a,) dt + ocdW;
/ 1

Linear interactions, of order 1

b(t, X, 1, ) = /B(t, %, %', ) dp(x')
SO

ax{ = bt X,EN, o)dt + cdW]
N
= NZ tXt', a,)dt+odW'

Similar forms for the cost functions



APPROXIMATE NASH EQUILIBRIUMS

The strategies (o)")i—1.... n form an
e-approximate Nash equilbrium
for the N-player game if for 1 < i< Nand g € A/,

JN,i(aNA aN,H,B’aN,m’”.7aN,N) < JN,i(aNA’ 3 '7aN,N) T

PR

For large games (N — co) we look for a sequence (en)n>o and an
en-approximate Nash equilbrium with

lim ey=0
N— oo N



Pontryagin Stochastic
Maximum Principle



PLAYERS’ HAMILTONIANS

for each player i € {1,---, N}, we define his Hamiltonian as the
function H':

[0, TIxQxRIXRIxR*™x A> (t,x,y,2z,a) = H(t,x,y,z,a) € R

defined by
H(t,x,y,z,a)=  b(t,x,a)-y  + trace[o(t,x,a)'2z] + F(t,x,a)
N—_——— N—_——
inner product of inner product of running cost
state drift b and state volatility o of player i

covariable y and covariable z



ADJOINT EQUATIONS & ADJOINT PROCESSES

Given
» an open loop admissible strategy profile o € A
» the corresponding evolution X = X< of the state of the system,

a set of N couples (Y"*, Z"*) = (Y,"a, Z[’O‘)te[o,r] of processes is said
to be a set of adjoint processes associated with o € A if

dY) ™ = —0 HI(t, Xy, Y, 20, an)dlt + Z) dW;
Y = —8,g/(X9).

Existence and uniqueness easy from classical BSDE theory



PONTRYAGIN SMP: NECESSARY CONDITIONS

Under the above conditions, if
» «o* € A is an open loop Nash equilibrium,

> X* = (X)o<i<T is the corresponding controlled state of the
system

(Y, Z) = (Y7, YN (2, -, Z*N)) are the adjoint
processes

then the generalized min-max Isaacs conditions hold along the
optimal paths:

Hi(t X, Y,z ap) = i_an_H"(t,x,*,Y,*",Z;",(a*—",a’)), dtodP a.s.;
a'eAl

forie {1,---,N}



ISAACS CONDITIONS

We say that the generalized Isaacs (minmax) conditions hold if
there exists a function

&0, T] x RY x (RN x (RI*™MN 5 (t,x,y,2) — a(t,x,y,2) € A
satisfying
Hi(t,x,y", 2" a(t, x,y,2)) < H'(t,x,y', 2, (a(t, x, ¥, 2) ', a'))

foralla/ e Al ie{1,--- N}, te]0,T], x e RY,
y:(y17"' 7yN)€(Rd)N, andZ:(z17... ,ZN)E(RdX’”)N_



PONTRYAGIN SMP: SUFFICIENT CONDITIONS

Assume

Coefficients twice continuously differentiable in (x,a) € RY x A
Bounded partial derivatives,
& € A is an admissible adapted (open loop) strategy profile,

~

>
>
» X = (Xi)o<i<T the corresponding controlled state,
»

v

(v,2)= ((f,--- ,XA’V),(Z‘,W ,ZN)) adjoint processes,

if FURTHERMOREt for each i € {1,--- , N}:
1. (x,a) = Hi(t,x, ¥{,Z!,a) is a convex function, dt® dP a.s.;
2. ¢'is convex P-a.s.
3. Hi(t, X, Y], 21, éy) = infuicq Hi(t, X, Y, ZE (677, a)), dt @ dP
a.s.

then & is an open loop Nash equilibrium.



IMPLEMENTATION STRATEGY

If above assumptions are satisfied
1. search for a deterministic function

[07 T]XRdXRdNXRdmN El (t,X, (y17"' 7yN)»(Z1:"' 7ZN)) — &(t,X, (y17"' 7yN)7(z1:'
satisfying Isaacs conditions;
2. replace the adapted controls « in the forward dynamics of the

state AND in the adjoint BSDEs by
&(t7 X[v (Yt1 sy YIN)v (Zt1 P aZtN))
3. solve the large strongly coupled FBSDE system:

dXe = b(t, Xe, a(t, Xe, (Y7, -, Y, (Z -, ZM))dt + o(t, Xe, &(- - - - - ))dW;,
dYt1 = _axH1 (t7 va Yt1 ) Zt 76‘(t7 X17 (Y1‘17' ) YI‘N)7 (Zt1 P 7ZI‘N)))dt + Zt1 dM/17

dYtN = _8XHN(ta Xt, YIszI ’d(tv Xh (Yt1 y T YI‘N)7 (211 P 7ZtN)))dt + Zl‘NdVV17

with Xo = x and Yi = 9,9'(X7)

4. if successful, &; = a(t, X, (Y, ,---, YV, (Z',--- ,ZN)) is an
open loop Nash equilibrium !



FOLK WISDOM

If you consider open loop game model

use Pontryagin stochastic maximum principle

and reduce the problem to
1. finding a function satisfying Isaacs conditions;
2. solving a coupled FBSDE system

ilf you consider Markov game model

use PDE approach based on system of coupled HJB equations

and reduce the problem to
1. solving scalar optimizations (akin to Isaacs conditions);
2. solving a coupled system of nonlinear (HJB) PDEs

Personal opinion: NOT ALWAYS the best strategy



ADJOINT PROCESSES IN MARKOVIAN GAMES

Assume

> o= (¢, -, ") is jointly measurable function from [0, T] x R? into
A=A x...x AN

> ¢ differentiable in x with derivatives uniformly bounded in (¢, x)

» band o are Lipschitz in (x, ) uniformly in t € [0, T],

X? the unique strong solution of the state equation:

dXt = b(ta XT? ¢(t7 Xt))dt+ J(t7 Xta ¢(t7 Xl‘))dea XO = X.

(Y, 2% = (Y?', Z") 0.7y adjoint processes associated with ¢ if

ayP = —[aH (6, XP, Y, 207 o(t, X))
+ Zflitj#i aa/ Hi(f, Xr(bv Yt(wf ngb,,v O(t Xf))aX/Y;J(tv X;J)]C/T + Z;b”dVVf
Y9! = —0cg'(X}).

Again existence and uniqueness of the adjoint processes from
classical BSDE theory.



STOCHASTIC MAXIMUM PRINCIPLE FOR MNES

Assume

» Coefficients twice continuously differentiable in (x,a) € R? x A

» Bounded partial derivatives,

> o= (¢, ,¢") is continuously differentiable in x € R? for t €]0, T]
fixed, with bounded partial derivatives,

> X? = (X?)o<t<7 the corresponding controlled state,

> (Y?,Z2%) = ((Y*',---,Y?N), (2%, .-, Z"")) adjoint processes of ¢,

if FURTHERMORE:t for each i € {1,--- , N}:
1. (x,@) = Hi(t,x, Y. Z"' a)is convex, dt® dPa.s.;
2. ¢'is convex P-a.s.
3. H(E XYL ZE 6t X)) =
infoica HI(t, X2, YO, Z9 (6(t, XP) ', o)), dt © dP a.s.

then ¢ is a Markov Nash equilibrium (MNE).



Complete Analysis of the
Systemic Risk Toy Model



SOLVING FOR AN OPEN LOOP NASH EQUILIBRIUM

For each playeri € {1,--- | N},
» H? space of admissible strategies
(square integrable adapted processes)

» Hamitonian of player i reads:
N 1 €
£ _ - i Mg L (o (i L E v )2
Hi(x,y,a) jz;[a(x X))+ olly + 5(0)2 - qo/ (X = x) + 5 (X = X)
» Minimized by

&' =d(x.y) = —y'+q(x - X').



PROBABILISTIC APPROACH
Adjoint Equations

> Given an admissible strategy profile o = (!, - - ,aN)

» The corresponding controlled state X; = X,

» The adjoint processes associated to « are the processes
(Y.2)=((Y",---,YN),(Z',--- ,ZV)) solving the system of BSDEs:

N
avyl = 8 H (X, Yi,an)dt + > ZKawf,

k=0
AN ik i1 v iy 1 N idk ik
=— Za(ﬁ = )T = ety = 8) + eXe = XD — 8ij) | dt+ >z awf.
k=1 k=0
with Yi = c(X7 — XE)(§ — 1) fori,j=1,---  N.
Strategy:

» Replace all the occurrences of the controls o} in the forward and
backward (adjoint) equations by

&%, ) = ="+ q(Xi - X))

> Solve the resulting system of (coupled) FBSDEs
> once done, oy = &' (X, Y{) = =Y + q(X: — X{) form an open loop
Nash equilibrium.



PONTRYAGIN MAXIMUMN PRINCIPLE APPROACH
(CONT.)

The FBSDEs read

aXi = [(a+q)(Xe — X)) — V']t + opdW? + o/T — p2dW},  i=1,.-- N
dvyl = - [azﬁ:wﬁ — )Y = alY = a(Xe = XDI( — 61p)
+e(Xe = XDy — 0i) + koo Z AW

YH = (Xt — X5)( - 61)) ij=1,...,N.

Affine FBSDE, so we look for a solution Y; = P:.X; 4 pr. S.ince the
couplings depend only upon quantities of the form X; — X/

Y = n(X: — th)(N — dij)

for some deterministic function t — n; to be determined.



SIMPLE DERIVATIONS

Computing the differential dYt”/ we get
i 1 Y. x| 1
vl = (3~ 61 ) i - Xr)[m —m(ata+ (- )]
+oy/1 = pPne(— — i) ( Zde dW,").
Evaluating the RHS of the BSDE using the ansatz for Y{’j we get
iy N4 o i o i, 1
v = a3 Sl (Ko~ Xy = )+ s = XDy 1)

N
5i,j) + Z Zt/»hdetk

— (X = X = 1) = 4K = XDl -
k=0

N

N

1 _ . 1 1 i

- (7 _ 5,,,-) (X — X,’)[(a+ Dt — (- P +¢? — e} dt + § :Zt”/’de,k.
N N N k=0



THE UNAVOIDABLE RICCATI EQUATION

Identifying the two 1t6 decompositions of Y,”/ we get:

o o 1 1
z’% =0, Z'M=¢ 1=y =)y —0in) k=1, N

and
. 1 1 1
m—m<a+Q+(1—N)nt>—(a+Q)nt—N(N nf+q? — ¢

which we rewrite as a standard scalar Riccati’s equation

. 1
ne=2(a+q)nt + (1 —W)U%?‘qu—ﬁ

with terminal condition nr = ¢. Under the condition ¢ > q2 (which
guarantees the convexity of the running cost function '), this Riccati
equation admits a unique solution.



A COUPLE OF NOTEWORTHY REMARKS

» Since

of = [a - mly — DI~ X)

the equilibrium controls are in closed loop feedback form (i.e.
depend only upon X; at time t). However,

» In equilibrium, the dynamics of X; are given by

) 1 _ . .
dXi = a+q— (g5 — DI(Xe = X)dt + opdWy + o/T— p2dW],

i=1,--- N, OUs with mean reversion rate
areplaced by a+q— (5 — 1)



SOLVING FOR A CLOSED LOOP NASH EQUILIBRIUM

Still by the Stochastic Maximum Approach
» Search for a set ¢ = (¢',--- , ") of feedback functions ¢’

» The Hamitonian of player i € {1,--- , N} reads:
N
Ho (xy,0) = D [ax—x")+e"(t, x)]yk+[a(Y—x")+a]y"+%oﬁ—qa(?—x")%(?—x")2
k=1,k#i
» The value of o« minimizing this Hamiltonian is the same as before
» For the same reasons as before, we make the ansatz

(020 = [a-my - DIE-x). (10 € (0. TIBT, i= 1. N,

for some deterministic function t — #;



CONSTRUCTING THE BEST RESPONSE BY
PONTRYAGIN
Solving the FBSDE
aXi = [(a+ q)(X; — XI) = Y']dt + opdW? + o/T — p2dW/,  i=1,.-- N
v, = = [a S G~ )V + AT s Ok (XY,

— a1} = a(Xe = XDI; — 81 + e(Xe = XDy — 61) + S Z7
YIJ_C(XT_XI)(f_(SIj) [7/:1,,N

For the particular choice of feedback functions (ansatz), we have

B (%) = (3 ~ 5,010~ m( — 1)

and the backward component of the BSDE rewrites:

N
VTR B SRR S S CRRTR
k=1 k= 1k¢:
— I} — X~ XD, — 1) + (X~ X — 1)) +22’fkdwk

k=0



CONSTRUCTING THE BEST RESPONSE BY
PONTRYAGIN

» For the same reasons as before, we make the same ansatz for
Ytl’l
i N o i1
dy) = — [a Z(N = Ok, Ine( Xt — X’I)(N — k)
k=1

N
1 1 o i1
+ 3k > .(N —6.k)q— Tlr(ﬁ = D)Ine(Xe — X:’)(N — Ok,j)
=1,k#i
— i A i
— q[ne (Xt — X’I)(N —8ij) —q(Xt — X‘I)](N —8ij) + (Xt — X'I)(N —dij)
N s s
+>°ZM dwf
k=0

N

1 _ ) o

- (N - 51-,/) (X¢ — Xi) [(a+ q— e+ - 6} dt+y Z  awf.
k=0



AGAIN, THE UNAVOIDABLE RICCATI EQUATION

Equating with the differential d¥;” from the ansatz, we get the same
identification for the Z,’”’k as before and the following Riccati equation
for n;:

) 1
=2+ g+ (1= yInf+q° —e

with the same terminal condition nr = c¢. We solve this equation
under the same condition € > g°.

SAME equation as before with ; instead of -, !!!!



COMPARING THE DIFFERENT t — 7)(t)

ETAoft, a=1 q=0.1 epsilon=1.5¢c= 0.5 N=1,2,5,10,25,50 ETAoft, a=1 q=0.1 epsilon=0.5¢c= 1 N=1,2,5,10,25,50

0.65
I

eta

0.50
I

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0

Plot of the solution 7; of the Riccati equations.



COMMENTS

» In equilibrium, the dynamics of the state X; are given by:
dX{ =[a+q— m(% — )Xt — X})dt + opdW? + o/1 — p2dW],

OUs with mean reversion coefficient a replaced by a+ g — ni(5 — 1).

» The differences between open and closed loop solutions disappear in
the limit N — oo as they converge toward the same limit;

» Both t — 7(t) converge toward the solution of the Riccati equation
ie=2(a+qQm+n+q —e

» This common limit appears as the limit of independent (identical)
classical stochastic control problems modulo a fixed point
(like in the solution of McKean-Vlasov stochastic equations)

» The theory of PROPAGATION OF CHAOS can be used to construct
approximate Nash equilibriums with distributed controls
ap = ¢(t, X;) !



More Examples of Mean
Field Games



STOCH. DIFF. GAMES WITH MEAN FIELD
INTERACTIONS

Playeri € {1,--- , N} state process
dX{ = b (t, X\, @y, ol) dt + o (t, X[, @, af) dW,

Objective function

T
Jl(a17"' 7aN) =K A f(tv thvﬁ;\lvvi\lva?)dt'i_ g(Xé'vﬁl;!) )

where

1 N 1 N
=N ._ 2 ) =N ._ E )
M = N — 5)({7 Vy = N 60/[
j=



EXAMPLE II: A SIMPLE MODEL OF PRICE IMPACT

(Almgren-Chriss '01, Carlin et al. '09)

» N brokers trade in the same asset and maximize wealth;
» Brokers (i=1,---, N) face identical limit order books;

» Broker i trade at rate o} at time ¢

» Transaction price = martingale + drift (price impact).



CASE OF FLAT ORDER BOOK (QUADRATIC COSTS)

» Asset price:

N
"Y .
dS, = N i:E1 Oéltdt + O'OdB[

» Broker i’s cash and volume:

dK] = —(a}S + (a})?)dt
dX] = ajdt + odWj

» Broker i's wealth: V] = VJ + X/S; + K],

N
avi = (;\YI Zo/tXt’ - (ai)z) dt + oS dW + oo X/ dB;
j=1



RISK NEUTRAL AGENTS

Broker / maximizes expected wealth E[V/]:

supe [ (;za/,x; - <a;>2) o,
[e% j=1

s.t. dX] = ajdt + cdW}

Are there Nash equilibria?

L-Q Mean Field Game



MORE GENERAL ORDER BOOKS

» Given a transaction cost curve ¢ : R — [0, ]
(convex, ¢(0) = 0);
» Order book shape function given by Legendre transform ~;
» Price impact given by c’:
» Optimization of expected terminal wealth becomes:

T N o )
SUpE /O (Z/ ; () Xi — c(a;)) dt,

of

s.t. dX] = aldt + odW}



IN GENERAL

» Adding benchmark tracking penalties, carrying and inventory
costs, ...

N
SUpE G(x§)+/ %Zc’ ) X! — c(al) — F(t, X)) | dt|,
i 0

a j=1

s.t. dX] = aldt + cdW]

» Still MFG but

» Brokers’ optimization problems coupled through the empirical
distribution of the controls;

» Maximizing utility instead of wealth leads to a much harder problem
(common noise would not go away!)



EXAMPLE III: A MODEL OF "FLOCKING"

Deterministic dynamical system model (Cucker-Smale)
dx/ = vidt
dvi =5 o wi(t)lv] - vildt
for the weights
wii(t) = wilxf —xl) = ——
! REECENPEOR

forsome K > 0and g > 0.

If Nfixed,0<p<1/2
> iMoo Vi = Vg, fori=1,--- N
> SUP»o MaX;jmt,... N |Xf — X{| < 00
Many extensions/refinements since original C-S contribution



A MFG FORMULATION

(Nourian-Caines-Malhamé)

= [x{, vi] state of player i

ax; =vjat
avi = [Av + Baildt + cdW]

For strategy profile o = (o', --- , &), the cost to player i

N
J(@) = lim i 1\ P+ 1Zw|x X[Vl — V]
j=

2
ot

» Ergodic (infinite horizon) model;
» 3 =0, Linear Quadratic (LQ) model;
» if 3 > 0, asymptotic expansions for 5 << 1?



REFORMULATION

() = lim —/ (8, Xp, i, o)t

Tooo T
with
i 1 i2 1 ! / / 2
Pt X pa) = 5l + 51 [ w(lx = x'|)[v = v]u(dx’)
where X = [x,v] and X’ = [x, v].
Unfortunately

f' is not convex !



MORE EXAMPLES OF INTERACTIONS

» Rank Effects
> f(t, x, u, g, @) contains G(p:(—o0, Xt])
» Qil production model (Guéant-Lasry-Lions)

» Quantile Interactions
» f(t, x, u, g, a) involves the quantile function

y = F(y) = inf{x € B; u(—o00,x] > y}

» Functions of the Density of the Population a |a Lasry - Lions



MEAN FIELD GAMES IN RANDOM ENVIRONMENT

Mean zero Gaussian measure W = (W(A, B)) ac=,8c0,)
E[W(AB)W(A,B)] =v(ANnA)|BN B|

where

» |B| is Lebesgue measure of B

» v is a non-negative measure on = (intensity)
dX! = b(t, X, @, a})dt+o(t, X[,ﬁf’,af)deJr/_ c(t, XL, i, o, ) W(de, dt)
for c: [0, T] x R x Pp(RY) x A’ x RY — R,

> If c(x, p, o, &) ~ c(t, x, p)d(x — &)

[, o0k ot oWide, db) = ofe. X, ) WX )
R

(realistic in the case of the Cucker-Smale flocking model)
» If cindependent of ¢ and W(d¢, dt) = W(dt) (common noise )



GAMES WITH MAJOR AND MINOR PLAYERS

More sophisticated model for banking network

adXPN =00, XON N, PNyt + o0 dW?
ax!N = bt X’N,u,,XON aMydt +ocdWi,  i=1,2-.. N.

with cost functions
PH(@) = B[ (XN, 7 ot + O, )]
SMa) =E| o 16X i X, oMt + g (X’T”,W,X?’”)}
» First take for minor players: Mean Field Game conditioned by

major player
» Introduced by M. Huang for a particular LQ model



The Mean Field Game
Strategy and the MFG
Problem



OPTIMIZATION PROBLEM

Simultaneous Minimization of
J'(@)=E {/ (e, XL, ab)dt + g(XnM’}’)}, i=1,---
0

under constraints of the form
X! = b(t, X, @Y, ab)dt + cdW/, i=1,--- N.

GOAL: search for equilibriums



MODEL REQUIREMENTS

v

Each player cannot on its own, influence significantly the global
output of the game

Large number of statistically identical players (N — oo)
Closed loop controls in feedback form

v

v

o =o't (X, X)), i=1,---,N.

Distributed controls

v

of = ¢'(t, X)), i=1,---,N.
Identical feedback functions

¢1(t7'):"':¢N(t7'):¢(tv')v 0<t<T.

v



TOUTED SOLUTION (WISHFUL THINKING)

v

Identify a (distributed closed loop) strategy ¢ from effective
equations (from stochastic optimization for large populations)

Each player is assigned the same function ¢
At each time t, player i take action a; = ¢(t, X])

v

v

What is the resulting population behavior?

v

Did we reach some form of equilibrium?
If yes, what kind of equilibrium?

v



MEAN FIELD GAME (MFG) STRATEGY

v

By symmetry, interactions depend upon
empirical distributions
When constructing the best response map
ALL stochastic optimizations should be "the same”

When N is large

» empirical distributions should converge

» capture interactions with limits of empirical distributions

» ONE standard stochastic control problem for each possible limit
Still need a fixed point for choice of the limit distribution to be
the right one

Lasry - Lions (MFG) Caines - Malhamé - Huang (NCE)

v

v

v



SUMMARY OF THE MFG APPROACH

1. Fix a deterministic function [0, T] > t — u; € P(R);
2. Solve the standard stochastic control problem

T
¢* = arg ”;fE {/(; f(t7 Xh/’(‘h ¢(t7 Xf))dt + g(XT7/’[/T)}

subject to
aX; = b(t, X, It (ﬁ(t, Xt))dt + odW;;

3. Determine the function [0, T] > t — u; € P(R) so that
Vte [0, T], Px, = pur
Once this is done,
of =¢"(t.X),  j=1, N

form an approximate Nash equilibrium for the game.



MFG ADJOINT EQUATIONS

Mean Field Interaction thru the states X; ONLY
o constant for simplicity

Freeze ;1 = (ut)o<t<T, Write (reduced) Hamiltonian
Hm(t,X,y, a) = b(t,X, ,u,,a) Y+ f(t,X, ,uft»a)

Given an admissible control @ = (at)o<i<T and the corresponding
controlled state process X = (X{*)o<i<7, any couple (Y:, Zt)o<i<T
satisfying:

dY; = —8XHM(1L7 Xta, Y[,Ozt)dt + ZidW;
Yr = 0ug(Xg. 7

is called a set of adjoint processes



STOCHASTIC MAXIMUM PRINCIPLE (PONTRYAGIN)

Determine
at(t,x,y) = arg ian H (t, x, y, a)
ac

Inject in FORWARD and BACKWARD dynamics and SOLVE

Xm‘ = b(ta Xt?l’[’t? &H(ta Xfa Yf))dt + Utha XO = Xo
d\/t - _aXHMr(tv Xt» Ytaé\éul(h Xtv Yt))dt+ thWt’ YT = axg(XTvﬂt)

Standard FBSDE (for each fixed t < j;)



FIXED POINT STEP

Solve the fixed point problem
()o<t<t — (Xidostst — (PxJo<t<T
Note: if we enforce yi; = Py, forall 0 < t < T in FBSDE we have

aX: = b(t, Xt,]P)X” dpxl(t, X, Yt))dt +odW;, Xo =X
d)/t = _aXHPXI(t7 Xfaa %a d]P’X[(ta Xt7 Yt))dt + thWt; YT = an(XTJP)XT)

FBSDE of McKean-Vlasov type !!!



ASIDE: SOLUTION OF MCKEAN-VLASOV FBSDES

Existence of a solution of

dXt = b(t, Xt, Yt, ]P)(thr))dt + O'(t7 Xt, Yt7 IED(X[,Yf))th
dYy = =V(t, X, Y1, Px,v,)dt + Z:dW;
XO =X, Yr = g(XT7IPXT)

if coefficients are uniformly Lipschitz and bounded

boundedness assumption can be relaxed

e.g. MFG and Controlled McKean-Vlasov models (later on in the
lectures)

Proof works for P(x, v, z) instead of P(x, v,



SOLUTION OF THE MFG PROBLEM

Assumptions
» Convex costs (f and g)
» Uncontrolled volatility (o (¢, x, u, @) = o > 0)
> b(t, X, p, ) = bo(t, ) + bi(t)x + bo(t)a with bounded b;’s

Then
a(t,x,y,u) € arginf H*(t, x, y, a)

is Lip-1in (x, y, ) uniformly in t € [0, T] and one can solve:

dX[ = b(t, X[, Yt,]PX” Cl\k(t7 Xh Yhth))dt + Uth
dY; = —xf(t, Xe, Yi, Px., 6(t, X, Yi,Px))dt — by (1) Y; + Z:dW,
XO = X7 YT = 8Xg()(7-7HD)('[')

and the solution is of the form

Yt = U(t, Xt)



BACK TO THE N-PLAYER (MEAN FIELD) GAME

dX{ = b(t, X}, @Y, al)dt + odW], 0<t<T, 1<i<N
where
1 N
=N _ ;
it = N;(SX?'

Then the controls , , ,
CAY? - d(t7 th, ]P)Xp U(t, th))

form an en-Nash equilibrium with ey N\, 0, asforeach 1 <i< N

J(OA‘:’ 3047"' ’&?I)ZJ(&;a ,6‘;3"' 7d{v)76N



The Weak Formulation for
Mean Field Games



FIRST SET OF ASSUMPTIONS

v

The control space A is a compact convex;
All progressively measurable A-valued processes are admissible;

Drift b: [0, T] x C x P, (C) x A — R? progressively measurable,
continuous in p.

Volatility o : [0, T] x C — R9*9 progressively measurable.
There exists a unique strong solution X of the driftless state equation

dXe = o(t, X)dWs,  Xo=¢

such that E[¢/?(X)] < oo,
o(t,X) > 0forall t € [0, T] almost surely,
o~ (t, X)b(t, X, i, @) is bounded.



WEAK FORMULATION

For each 1 € P;(C) and admissible « € A, define
o the probability P*~ on (2, Fr) by

dpr-e
dP

T T
= exp V 0’1b(t,X,y,a,)~dW,f%/ |a*1b(t,x,p,a1)yzdt .
0 0
o the process W+ defined by
t
Wi = W, —/ o~ 'b(s, X, u, as) ds
0

¢ so that

dX; = b(t, X, pi, ar) dt + o (t, X)W},



WEAK FORMULATION (CONT.)

» Running objective f : [0, T] x C x Py(C) x P(A) x A— R of the
form
f(t,X,,u,q, a) = f1(t,X,‘LL, a) + f2(t,X7p,, q)

» Terminal objective g : C x Py (C) — R is measurable

1906 1) +F(t %, 11, G,8)] < (w(x> o ( / wdu» . V(txmq.a).

for ¢ > 0 and an increasing function p : Ry — R,



PROBLEM STATEMENT

Given
» ameasure p € P(C)
» ameasurable map [0, T] 5 t — q: € P(A)
define the associated conditional expected reward for o € A by

.
(@)= | [ 0., 0 as)ds + 90X, 7]
t
and the conditional value function by
Mg w,q
Vid = inf J9(a).

Goal: Find ;2 and g s.t.
» there exists & € A such that V“ 9= J9(a),
» Prd o X1 =y, and PH% 0 4; ' = q; for almost every ¢



EXISTENCE AND UNIQUENESS

Hamiltonian h : [0, T] x C x Py(C) x P(A) x RY x A — R,
h(t,x, 1, q,z,a) = f(t,x, u,q,8) + z- o~ 'b(t, x, u, Q)
Maximized Hamiltonian H : [0, T] x C x Py(C) x P(A) x R — R

H(t5 X7 u? q7 Z) : Sup h(t7 X7 l’l’? q7 z7 a)
acA

Arg-max set

A(t,X,/J/,Z) = {a EA: h(t,X,/J/, q,Z,a) = H(t,X,/J/, qaz)}

» A(t, x, u, z) does not depend upon g
> A(t, x, pu, Z) is not empty



FINALLY, A BSDE !

T T
Yt“’”:g(X,u)—i-/ H(s, X, 1, Vs,z:v”)ds—/ ZY - dWs
t t

For each a € A, we may also solve the BSDE

T T
YtMyVyoé :g(qu)+/ h(37X7I'L7VS7ZéLYVY&7aS)dS*\/t ZSMVVVOC dWS

T T
=9(X,n) +/ f(s, X, u, vs, as)ds — / zZr . dwig .
t t

and since WH>“ is a Wiener process under P# < and Y* ¢ is adapted

T
ypro = gl |:g(X7u)+/ f(s, X, pu, v, as)ds
t

]-'t”] = J" ().

» By comparison principle Y/ > V{*¥
> By measurable selection, there exists & : [0, T] x C x Py (C) x P(A) x R — A
H(t, x, u,v,2) = h(s, x, p, v, z,a(t, x, u, 2)), forall (t,x, p,v, 2),

The process at”
a.;i,V = &(LXMU‘)ZIH’V)
is an optimal control, but so is any process in the set
A(p,v) =={ae A H(t, X, v, y) = h(t, X, p, v, Z" o) dt x dP — a.e.}



FINAL STEP

Define ® : P, (C) x A — P(C) x M by
O, @) == (P> o X1, 5]1,,#7%&;1 (dg)dt)

The goal now is to find a point (u, v) € Py (C) x M for which there
exists « € A(u, v) such that (i, v) = ®(u, «). In other words, we seek
a fixed point of the set-valued map

(1, v) = ®(p, A, v)) == A{P(p, @) : o € A(p, v)}.



MCKEAN-VLASOV FBSDES: WISHFUL THINKING !

Main difficulty is the analysis is the adjoint process Z#-*.

For each (u,v), Z{"" = (,,.(t, X) and if & is a measurable selection
as before, any solution of

{dx, = b(t, X, 11, &(t, X, 1, G (1, X)))dt+cr(t, X)aw,,
X~ p, po (At p, Gt ))) = ae.

is a solution of our MFG problem

Can’t solve this McKean-Vliasov SDE!



SOME (LOOSELY STATED) RESULTS

THEOREM

» Ifb,f, g are continuous in (i, v, ), the Hamiltonian h is concave
in a, some growth conditions hold and
f=f(t,x, ua) + HL(t x, u,v), then there exists a fixed point.

» if the Hamiltonian h is strictly concave in a,
f=fi(tuv)+ h(tx,a), and b = b(t, x, a), then the fixed point
is unique.

Approximate equilibria for the finite-player game

THEOREM

Ifa = a(t, X') is an optimal feedback control for the MFG problem,
then the strategy profiles o(t, X') form an approximate Nash
equilibrium for the finite-player game (i.e. for some ¢, | 0, no player
can increase his expected reward by more than e, by unilaterally
changing strategy).



PRICE IMPACT MODEL REVISITED

Price impact model corresponds to
> b(t, x,p,a) =a;
> o constant;
> g(x, 1) = G(x);
> f(t,x,p,v,a) =vx [ c'dv — c(a) — F(t, X).

THEOREM

For a bounded order book, with ¢’ continuous, the mean field price
impact model has a solution. Moreover, the errors e, are O(1/+/n).



Control of McKean -
Vlasov Dynamics



FRANCHISE EQUILIBRIUM

We say that (¢, x) — ¢*(t, x) gives a franchise equilibrium if
T . .
0

where for each player i € {1,--- , N} we have o} = ¢(t, X}).

So when one player perturbs his/her ¢
ALL players perturb their ¢’s in the same way!

So the streamlining procedure is
1. Take the limit N — o (i.e. solve the fixed point problem) FIRST
2. Solve the optimization problem NEXT



TAKING THE LIMIT N — oo FIRST

Propagation of Chaos
(Mc Kean / Sznitmann / Jourdain-Méleard-Woyczinski)

» Focus on N (fixed) player in a large set (N — oo) of players

» Their private state processes X{ forj=1,---, Ny become

» (Asymptotically) independent identically distributed
» (Asymptotically) distributed like the solution of (McKV)

dX: = b(t, X;, Px,, o(t, X¢))dt + o d W,

The individual objective costs become

T
J(¢) :E{/O f(taXtv]PXp7¢(taXt))dt+g(XT7PXT)}



CONTROL OF MCKEAN-VLASOV DYNAMICS

Stochastic optimization problem: minimize
T
J(Q) =E [/ f(tvxtapXtaat)dt+g(XTap)(T) )
0

over admissible control processes a = (at)o<i<T Subject to

dX[ = b(t, Xt,PX[,at)dt—f— O'(t, Xt,IPX”Oé[)th 0<t< T,

» PDE approach difficult

» X; not Markovian
> (X:,PPx,) evolves in an infinite dimensional manifold

» Probabilistic approach (stochastic maximum principle)
Hamiltonian

H(t,x,u,y,z,a):b(t7x,u,a)~y+a(t,x,,u,a)~Z+f(t,X,,u,a)



(INFORMAL) NATURAL QUESTION

Is the diagram

SDE State Dynamics — Nash Equilibrium
for N players Optimization for N players
! (fixed point) 1 (fixed point)
N— oo N— oo
. Optimization Mean Field Game?
McKean Vlasov Dynamics - Controlled McK-V Dynamics?

commutative?



DIFFERENTIABILITY AND CONVEXITY OF 1 — h(u)

» Notions of differentiability for functions defined on spaces of measures
from theory of optimal transportation, gradient flows, etc) studied by
Ambrosio, De Giorgi, Otto, Villani, etc

» Tailored made notion (Lions’ College de France Lectures,
Cardaliaguet)

Lift a function 1 < h(y) to L2(Q2, F,P) into

X — h(X) h(Px)
and say
his differentiable at 1 if h is Fréchet differentiable at X whenever By = .

A function g on RY x P;(RY) is said to be convex if for every (x, 1) and
(x', ') in R x Py(RY) we have

g 1) = gx, 1) = 2xg(x, 1) - (x' = x) = E[0,g(x, X) - (X = X)] 2 0

whenever Py = yand Py, = 1/



THE ADJOINT EQUATIONS

Lifted Hamiltonian 5 B
H(t,X,X,y,Oé) = H(t7x7p'7.y7a)

for any random variable X with distribution ..

Given an admissible control o = (at)o<t< 7 and the corresponding controlled
state process X« = (X{*)o<:i<7, any couple (Y;, Zt)o<i< 7 satisfying:

de = _axH(tv Xta7 ]P)Xt‘*, Yt7 Oét)dt + thW[
~E[o,H(t, X, X, ¥, )] |x=xp dt
Y7 = 0k g(X7, Pxg ) + E[0,9(x, Xi)][x=xg

where (&, X, ¥, Z) is an independent copy of (a, X*, Y, Z), is called a set of
adjoint processes

BSDE of Mean Field type according to Buckhdan-Li-Peng !!!

Extra terms in red are the ONLY difference between MFG and Control of
McKean-Vlasov dynamics !!!



A NECESSARY CONDITION FOR OPTIMALITY

If X = X controlled McKean-Vlasov dynamics (X, = x), compute the
Gateaux derivative of the cost functional J at « in the direction of 3 using
dual processes and the variation process V = (V;)o<i<7 solution of the

equation
dVi = [ Vs + 8t(Pix,,vy) + el + [5e Ve + 61 (Pixg.vy) + 7l dWs

where the coefficients ~:, 6, nt, 1, 5: and 7j; are defined as

Yt :8xb(t,Xt,]P’x,7Olt)7 and At :8)(0'(1’, XI,PXI,OQ)
nt = dab(t, X¢, Px,, at)Bt, and fit = Qa0 (t, Xt, Px,, ot) Bt
Yt = Oxb(t, Xt, Px,, aut), and A = dxa(t, X, Px,, ar)

and
6t = Baub(t, x, Py, a)(Xp) - V| xex, »  and & = Bduo(t, x,Px,, a)(Xp) - V| x=x,
ooy oty

where (X;, ) is an independent copy of (X;, Vi).



PONTRYAGIN MINIMUM PRINCIPLE (SUFFICIENCY)

Assume
1. Coefficients continuously differentiable with bounded derivatives;
2. Terminal cost function g is convex;

3. « admissible control, X corresponding dynamics, (Y, Z) adjoint
processes and

(X?M7a) — H(t7X7/'La Yt,Z{,O{)

is dt ® dP a.e. convex,
then, if moreover

H(t7 X[,]P)X” Yt,Zt, Oét) = Ian H(t, XtaPX” \/t, Oé), a.s.
aec

Then « is an optimal control, i.e.

J(@) = inf J(@)



SCALAR INTERACTIONS

b(t, X, u, ) = B(t, X, (1, p), @) o(t, X, p, @) = 5(t, X, (¢, ), )
f(t, X, p,0) = £(t,x, (v, ), ) 9(x, ) = 9(X, (¢, 1))

> 1, ¢, v and ¢ differentiable with at most quadratic growth at oo,

» b, 5 and 7 differentiable in (x,r) € RY x R for t, o) fixed

> g differentiable in (x,r) € RY x R.

Recall that the adjoint process satisfies
Y7 = 0xg(X7, Px;) + E[0,9(X7, Py, )(X7)]-

but since
9ug(x, 1)(X") = 8:9(x, (¢, 1)) (),
the terminal condition reads
Y1 = 0x3 (X, E[C(XT)]) + E[0,3(X7. E[¢(X7)]) | 0¢(X7)

Convexity in 4 follows convexity of g



SCALAR INTERACTIONS (CONT.)

H(ta X, 1Y, 2Z, Oé) = B(t7x7 <¢7/J’>7 a)y+&(ta X, <¢,,U>, a)'z+?(t7x7 <’Y,,U>,O[)
OuH(t,x, 1, y, z, ) can be identified wih

OuH(t X, 1.y, 2,0)(X') = [0:B(t, x, (W, 1), @) - y] O (X')
+ [8’&(t7 X, <¢7 M>7 Oé) . Z] 8¢(X,)
+ 8, F(t, x, (7, ), @) Dy(x)

and the adjoint equation rewrites:
ay; = 7{8)(5(1‘, Xe, E[p(X0)], o) - Yo+ 056 (t, X, E[p(X))], cut) - Z
+ O (t, X, E[y (X)), a,)}dt + ZidW;
—{E[Orb(t X, Bl (X)), 60) - Vi]ow(X) + E[0:5(t, X, E[9(X)), 6r) - Zi]06(X)
+E[0:F((t, X, E[y(X)], i) aw(xf)}dt

Anderson - Djehiche



SOLUTION OF THE MCKYV CONTROL PROBLEM

Assume

> b(t, X, p, ) = bo(t) [a xdpu(x) + by (t)x + ba(t)x
with by, by and bs is R?*%-valued and are bounded.

» fand g as in MFG problem.
There exists a solution (X;, Y;, Zt)o of the McKean-Vlasov FBSDE

dXi = bo(t)E(X:)dt + by (t) Xedt + ba(t)a(t, Xi, Px,, Yi)dt + ocdW,
dYt = _8XH(t7 XT7 ]P)Xt: Y[: &t) at
- E[auﬂ(tv Xi’? va Yi/v d;)] at + thWt

with Y; = u(t, X, Px,) for a function
u: [0, T x R x Py(RY) 3 (8, x, i) — u(t, X, )

uniformly of Lip-1 and with linear growth in x.



A FINITE PLAYER APPROXIMATE EQUILIBRIUM

For N independent Brownian motions (W7, ..., WN) and for a square integrable
exchangeable process 8 = (87, .., 8V), consider the system

N
ax} = Nbo(t)E X!+ by () X] + ba(1) B + cdW], X5 = &,
j=1

and define the common cost
r N
N
JVB)=E |:/0 f(s, Xs7 us , ,Bs)ds + g(XT,uT) with ,“t = N ;6)(’;.

Then, there exists a sequence (en)n>1, en N\ 0, s.t. forall g = (3',...,8M),
J(B) = SN(@) — en,

where, a = (a',--- , o) with
= a(s, X, u(t, X{), Px)

where X and u are from the solution to the controlled McKean Vlasov problem, and
(X1,...,XN) is the state of the system controlled by «, i.e.

aX{ = Zbo (X + by (DX + ba()a(s, XL, u(s, Xi), Px,) + odW, X§ = &b
] 1





