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This presentation is based on the following paper:

D. C. Brody & L. P. Hughston (2013)
Social Discounting and the Long Rate of Interest
arXiv: 1306.5145.
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1. Social discounting

A recent article appearing in the Financial Times reports that Andrew Haldane,
director of financial stability at the Bank of England, while addressing a
conference on the role of higher education in boosting the economy, told
delegates the following:

We know that financial markets discount rather too heavily projects with a
long life that yield returns in the distant future, to the extent that some of
those projects may not be initiated in the first place.

Haldane’s remarks are indicative of the importance of the unresolved
issues—and indeed, the ongoing debates—concerning the form of the discount
function that should be used in the cost/benefit analysis of proposals for
long-term projects carried out for the benefit of society.

At the heart of the matter is the apparent inadequacy of the standard
discounted utility model (which dates back to early work of Samuelson) as a
basis for rational decision making when the beneficiaries of the future
consumption are not the same as the beneficiaries of present consumption, and
whose needs cannot or should not be neglected.
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The use of the familiar exponential discount function for this purpose is
problematic, since even for small values of the exponential discount rate the
corrosive effect of continuous compounding is to reduce the present value of
even substantial benefits secured for the distant future to very little.

As a consequence various alternative proposals as to how long-term social
discounting should be carried out have been put forward.

In essence it seems that for the valuation of social projects some form of
“hyperbolic” discounting is required, where the discount rate is a decreasing
function of the time at which the benefits are received, with the effect of
enhancing the importance of benefits accruing to the remote future.

But what is the justification for such an approach, and does it make good sense
scientifically?

Numerous authors have contributed to this discussion, including for example
Arrow et al. (1996), Azfar (1999), Gollier (2002a,2002b), Groom et al. (2005),
Harvey (1986,1994), Henderson & Bateman (1995), Jouini et al. (2010),
Lengwiler (2005), Laibson (1997), Lind (1997), Nocetti et al. (2008),
Reinschmidt (2002), Schelling (1995), Strota (1956), Weitzman (1998,2001),
and Yao (1999a,b), to name a few.
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Social discounting

Apart from normative considerations regarding society as a whole, the view has
also been put forward that social discounting might arise in part as a byproduct
of the effects of aggregation in a heterogeneous population.

To see how this works, we construct the following simple model, which gives
some insight into the nature of hyperbolic discounting.

Let R be a random variable taking values in R+, and consider the random
discount function given by {e−Rt}t≥0.

We interpret R as representing the discount rate associated with an individual
chosen at random in a large heterogeneous population.

Then t 7→ E[e−Rt] is a decreasing function on R+ taking the value unity at
t = 0, and we can think of

P0t =

∫ ∞
0

e−rtµ(dr) (1)

as representing the “aggregate” discount function defined by the population.

Here µ(dr) = P(R ∈ dr) is the probability measure on R+ associated with the
random variable R.
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Thus we can regard R as representing the various views held in the population
as to what the appropriate rate of discount should be, and {P0t}t≥0 as the
aggregate discount function obtained by averaging in an appropriate sense over
the views of the various market participants.

There is, of course, no a priori reason why individuals should exhibit a strictly
constant exponential rate of discounting, except perhaps a desire for time
consistency, but this is a simplifying assumption of the argument.

Then depending on the distribution of R, we obtain the associated aggregate
discount function. For example, suppose that

µ(dr) =
∑
i

piδri(dr). (2)

Here δri(dr) is the Dirac measure centred at ri, i = 1, 2, . . . , n, and
p1, p2, · · · , pn are nonnegative weights satisfying

∑
i pi = 1. Then we have

P0t =
∑
i

pie
−rit. (3)

A calculation shows that the associated asymptotic rate (long rate) is:

r∞ = − lim
t→∞

1

t
lnP0t = min

i
ri. (4)
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We see that the aggregation of any finite number of exponential discounters is
asymptotically exponential, and that the asymptotic rate is given by the
minimum of the various individual rates under consideration. Weitzman (1998)
argued on that basis that the far-distant future should be discounted at the
lowest possible rate.

On the other hand, suppose we model R by setting

µ(dr) = 1{r > 0}L−1e−r/Ldr (5)

for some mean rate L > 0. Then we find that

P0t =
1

1 + Lt
. (6)

In other words, the effect of spreading the discount rate by use of an exponential
distribution is that the resulting aggregate discount function is of the hyperbolic
type, with a fixed “simple” (or Libor) rate L.

Thus, if we know that the market consists of exponential discounters, and if all
we know, beyond that, is that their mean rate of discount is L, then from an
information-theoretic perspective the best (or least biased) model is a discount
function of the hyperbolic type indicated above.
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As another example of such probability-weighted discounting (Brody &
Hughston 2001, 2002; Weitzman 2001), consider the case for which R has a
gamma distribution:

µ(dr) = 1{r > 0} 1

Γ[λ]
θλrλ−1e−θrdr, (7)

where θ, λ > 0.

A calculation shows that the discount function takes the form of a Pareto tail
distribution, given by P0t = [θ/(θ + t)]λ.

Then if we set θ = λ/L we obtain

P0t =

[
1

1 + (Lt/λ)

]λ
. (8)

Thus we obtain a discount function of the so-called generalised hyperbolic type
(Harvey 1986, 1994; Loewenstein & Prelec 1992).

For each maturity date t > 0 we have a flat term structure with a constant
annualised rate of interest L, assuming compounding at the frequency λ over
the life of the bond (λ need not be an integer).
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Interest rates models for social discounting?

This leads us to ask whether one can construct interest rate models from a
modern perspective that incorporate the principles of social discounting.

We fix a probability space (Ω,F ,P) with filtration {Ft}t≥0, where P denotes the
real-world measure, and {Ft} is taken to satisfy the “usual conditions”.

Price processes are modelled by {Ft}-semimartingales and are assumed to have
the càdlàg property.

We assume the existence of an established numeraire currency in units of which
valuations are expressed.

We assume that the market is arbitrage-free, but not necessarily complete.

To ensure the absence of arbitrage we assume the existence of an established
pricing kernel {πt}t≥0 satisfying πt > 0 for t ≥ 0, and with the property that if
an asset with value process {St}t≥0 delivers a single random cash flow HT at T ,
and derives its value from that cash flow, then its value at t < T is given by

St =
1

πt
Et[πTHT ], (9)

and for t ≥ T its value is zero.

The Fields Institute, Toronto c© DC Brody & LP Hughston 2013



Social Discounting and the Long Rate of Interest - 10 - 19 August 2013

In the case of a discount bond (or zero-coupon bond) which generates a single
cash flow of unity at T , the price at t is thus given by

PtT =
1

πt
Et[πT ] (10)

for t < T and PtT = 0 for t ≥ T , with limt→T PtT = 1.

Then for each fixed T ≥ 0 the bond price process {PtT} is defined for all t ≥ 0.

The initial bond price is given by P0T .

The asymptotic properties of the discount bond system for large T are best
pursued by consideration of the various interest rates associated with it.

We recall the relevant definitions.

The so-called “exponential” (or continuously compounded) rate RtT (expressed
on an annualised basis) is defined for 0 ≤ t < T by

RtT = − 1

T − t
lnPtT or PtT = exp [−(T − t)RtT ]. (11)

The rate RtT can be interpreted as the yield, at time t, expressed on a
continuously compounded basis, offered by a zero-coupon bond of maturity T .
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Next, we introduce the so-called “simple” (or “Libor”) rates LtT for 0 ≤ t < T ,
which are quoted on an annualised basis, by setting

LtT =
1

T − t

(
1

PtT
− 1

)
or PtT =

1

1 + (T − t)LtT
. (12)

In general, the relation between LtT and RtT is tenor dependent.

In particular, we have

RtT =
1

T − t
ln (1 + (T − t)LtT ) or LtT =

1

T − t

(
e(T−t)RtT − 1

)
. (13)

The implication of this tenor dependence is that while for fixed finite tenor the
relation between these rates is monotonic, this ceases to be the case in the limit
of very long maturity.

We observe in particular that in the limit of large tenor the asymptotic
properties of the long exponential rate and the long simple rate differ.

If Rt∞ is finite and greater than zero, then Lt∞ is infinite, whereas if Lt∞ is
finite and greater than zero, then Rt∞ is zero.
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Asymptotic properties

More specifically, the long exponential rate is defined by
Rt∞ := limT→∞RtT , if this limit exists.

Similarly, we define the long simple rate (or long Libor rate) by
Lt∞ := limT→∞LtT , if this limit exists.

The limiting rates are understood as taking values in the extended real numbers.

There is a problematic feature of the long exponential rate process that has
attracted a good deal of attention in connection with the analysis of long-term
investment.

This is the so-called Dybvig-Ingersoll-Ross theorem [2], the continuous-time
version of which can be stated as follows:

Proposition 1. (Long exponential rates can never fall) If Rt∞ <∞ for all
t ≥ 0, then for all s, t such that 0 ≤ s ≤ t it holds that Rt∞ ≥ Rs∞.

The DIR theorem implies that it is impossible to construct viable “long rate”
models, where the long exponential rate of interest acts as a state variable.
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This is born out by the fact that in many of the well known interest rate models
the long exponential rate is simply a constant.

But the DIR theorem is not applicable to long Libor rates, and the behaviour of
such rates is very different.

This is in fact already apparent in deterministic interest rate systems.

First we note the following:

Proposition 2. In a deterministic interest-rate model, if the long exponential
rate exists and is finite, then it is constant.

Proof. By the definition of exponential rates we have PtT = exp[−(T − t)RtT ]
for 0 ≤ t < T <∞ and P0t = exp[−tR0t] for t ≥ 0.

In the absence of arbitrage, in the case of a deterministic interest-rate system we
have PtT = P0T/P0t.

It follows that

RtT =
TR0T − tR0t

T − t
. (14)

Assuming that the limit R0∞ = limT→∞R0T exists and that R0∞ <∞, we see
that Rt∞ = R0∞ for all t ≥ 0. �
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On the other hand, the Libor rate system is “asymptotically free”.

More precisely, we have the following:

Proposition 3. In a deterministic interest-rate system, if the long Libor rate
exists and is finite, then it is given by Lt∞ = P0tL0∞, where
L0∞ = 1/(limt→∞ tP0t).

Proof. By the definition of the Libor (or simple) interest-rate system we have
the relations PtT = 1/[1 + (T − t)LtT ] for 0 ≤ t < T <∞ and
P0t = 1/[1 + tL0t] for t ≥ 0.

In the absence of arbitrage, in the case of a deterministic interest-rate system we
have PtT = P0T/P0t.

It follows that

LtT =
1

T − t

[
TL0T − tL0t

1 + tL0t

]
. (15)

If the limit L0∞ = limT→∞L0T = 1/(limt→∞ tP0t) exists and is finite, then
Lt∞ = limT→∞LtT = L0∞/(1 + tL0t) for all t ≥ 0, and we deduce that
Lt∞ = P0tL0∞. �
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Interest Rate Models for Social Discounting

Thus even in a deterministic model the long Libor rate process is dynamic, and
indeed it contains the information of the entirety of the initial term structure.

This leads us to ask for general conditions on the pricing kernel sufficient to
ensure that the resulting interest-rate system is socially efficient.

Suppose we wish to construct models for which the discount functions are
asymptotically generalised hyperbolic (or tail-Pareto) with parameter λ > 0.

This notion can be formalised more precisely as follows:

Definition. A pricing kernel {πt}t≥0 satisfying limt→∞E[πt] = 0 will be said to
be socially efficient with index λ > 0 if it holds that (a) limt→∞ t

λπt > 0 and
(b) limt→∞E[tλπt] <∞.

Then we have:

Proposition 4. (Socially-efficient discount bond systems.) If a pricing kernel is
socially efficient with index λ > 0, then for all t ≥ 0 the associated discount
bond system satisfies

0 < lim
T→∞

T λPtT <∞. (16)
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Examples of Dynamic Social Discounting Models

In fact, it turns out that one can construct rather explicit examples of dynamic
models admitting generalized hyperbolic long-rate structures.

For simplicity, we consider the hyperbolic case (λ = 1).

The generalization to other values of λ is straightforward.

The models that we shall consider have the property that the resulting long
Libor rate processes are fully dynamic, and can be used as state variables.

We proceed as follows.

Let us write Γ+ for the space of strictly positive functions f : R+ → R+ \ {0}
such that t ∈ R+ 7→ ft ∈ R+ \ {0}, with the property that {ft}t≥0 ∈ C1.

Let {Mt} be a positive martingale normalised to unity at t = 0.

Let {at}, {bt} be elements of Γ+ satisfying limt→∞ tat = a, limt→∞ tbt = b for
finite a, b such that a + b > 0.

Let the initial discount function P0t = at + bt be given for t ≥ 0.
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Then we have:

Proposition 5. (Existence of long-rate state-variable models.) The pricing
kernel defined by πt = at + btMt determines an arbitrage-free one-factor
interest-rate model, for which one can choose the relevant state variable to be
either the short rate, given by

rt = −a
′
t + b′tMt

at + btMt
, (17)

or alternatively the long simple rate, given by

Lt∞ =
at + btMt

a + bMt
. (18)

Proof. Under the stated assumptions we find that the discount bond system
takes the form

PtT =
aT + bTMt

at + btMt
. (19)

A calculation using the relation rt = −(∂uPtu)|u=t then shows that the short
rate is given by (17), and a further calculation using the relation
{Lt∞} = 1/ limT→∞ TPtT shows that the long rate is given by (18).
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Since rt and Lt∞ are both rational functions of Mt, we can invert these relations
to obtain Mt as a function of rt and to obtain Mt as a function of Lt∞, hence
allowing us to express PtT both as a function of rt and as a function of Lt∞. �

In fact, we find that the discount bond price, when it expressed as a function of
the short rate, takes the form

PtT =
(aTb

′
t − bTa′t) + (aTbt − bTat)rt

atb′t − bta′t
, (20)

and when it is expressed as a function of the long rate, takes the form

PtT =
(aTb− bTa) + (atbT − btaT )L−1

t∞
(atb− bta)

. (21)

Thus we deduce that the bond price is linear in the short rate, and inverse-linear
in the long rate.

This establishes the fact that one can construct fully dynamic arbitrage-free
term structure models admitting the long rate as a state variable, and indeed it
seems to be a characteristic property of social discounting that this possibility is
admitted.
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As a somewhat more realistic dynamical model of the term structure, an explicit
example of an arbitrage-free two-factor state-variable model based on both the
short rate and the long rate can be constructed as follows.

Let {Mt} and {Nt} be a pair of positive martingales normalised to unity at
t = 0. Let {at}, {bt}, {ct} be elements of Γ+ satisfying limt→∞ tat = a,
limt→∞ tbt = b, limt→∞ tct = c for finite a, b, c such that a + b + c > 0. Let the
initial term structure P0t = at + bt + ct be given for t ≥ 0. Then we have:

Proposition 6. (Existence of long-rate/short-rate two-factor state-variable
models.) The pricing kernel defined by

πt = at + btMt + ctNt (22)

determines an arbitrage-free two-factor interest rate model, for which the state
variables include the short rate, given by

rt = −a
′
t + b′tMt + c′tNt

at + btMt + ctNt
, (23)

and the long simple rate, given by

Lt∞ =
at + btMt + ctNt

a + bMt + cNt
. (24)
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In this case we find that the discount bond system is given by

PtT =
aT + bTMt + cTNt

at + btMt + ctNt
, (25)

and a calculation establishes that rt is of the form (23), and Lt∞ is of the form
(24). Since rt and Lt∞ are rational functions of Mt and Nt, we can invert these
relations to obtain Mt and Nt in terms of rt and Lt∞, thus allowing us to
express PtT in terms of rt and Lt∞. �

In fact, we find that the discount bond price takes the following form when it is
expressed as a function of the long rate and the short rate:

PtT = FtT + GtTrt + HtTL
−1
t∞, (26)

where the three deterministic coefficients appearing here are given by:

FtT =
(b′tct − c′tbt)aT + (c′tat − a′tct)bT + (a′tbt − b′tat)cT

(btc− ctb)a′t + (cta− atc)b′t + (atb− bta)c′t
, (27)

GtT =
(bct − cbt)aT + (cat − act)bT + (abt − bat)cT
(btc− ctb)a′t + (cta− atc)b′t + (atb− bta)c′t

, (28)

HtT =
(bc′t − cb′t)aT + (ca′t − ac′t)bT + (ab′t − ba′t)cT
(btc− ctb)a′t + (cta− atc)b′t + (atb− bta)c′t

. (29)
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We observe that in this model the discount function PtT is given by a function
of the state variables rt and Lt∞ which is linear in rt and inverse linear in Lt∞.

It is remarkable that such a simple and tractable expression emerges for the
bond price.

And it is evident from the construction that an n-factor version of the model
can be developed by essentially the same approach.

The initial yield curve in this model is freely specifiable at the short end, and is
asymptotically hyperbolic at the long end, and hence suitable for as an input for
a dynamic model of the valuation of long-term claims in situations where social
discounting is needed.

More generally, as this example illustrates, one concludes that it is indeed
possible to construct fully dynamic interest rate models that are compatible with
the principles of social discounting.

As a consequence, we are able to provide the basis for a consistent arbitrage-free
valuation framework for the cost-benefit analysis and risk management of
long-term social projects, such as those associated with sustainable energy,
resource conservation, and climate change.
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