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This is an introduction to “Mirror Moonshine” for Calabi—Yau
manifolds. By this we mean loosely that mirror maps of
Calabi—-Yau manifolds have some modular properties.

We will illustrate in some examples that monodromy groups are
modular groups (e.g., finite index genus zero congruence subgroups
of SL(2,7Z)) and that mirror maps are related to modular functions.

However, we also exhibit Calabi—Yau manifolds whose monodromy
groups cannot have modular properties (i.e., thin). Cf. The tal'. by
I.ugh Thomas.



i*r —ul- 4. ri "lem t'ow.

Let M; be a 1-parameter family of Calabi—Yau manifolds of
dimension n, parametrized by ¢t € P(C).

Let w; be the holomorphic top n-form on M; (up to scalar). The

periods | w; (wit'1 vy n-cycles on M;) satisfy certain differential

Yt
equations, called the Picard-Fuchs differential equations of M,.



Let
L:ry®)y"™ + 11 (®)y™ Y + o 1 )y +10(t), i € C) Vi

be a differential op-rator with regular sir gularities. (We say that t
is a regular singular point if r,,_;(¢) has a pole of order at most ¢ at
to.) Assuming tl at ¢ = 0 is a regular singularity, and write

ﬂS\I&ANV — wl&ﬁil&vav 1=1,---,n,

where the functions 7, _;(t) are analytic at ¢t = 0. The roots of the
indicial equation

mAm|:v...Aml§+anT\W;IHAOvamI.Hv...Am|3|_|Mv|_|...
ATQuHonmleoAOv =0

determine the exponents of L at t = 0. We say hat t = 0 is a point
of mazimal unipotent monodromy (MUM) if the exponents at ¢t = 0



are all zero. (However, points of MUM may not always exist.)

Let S be the solution space of L at . Then ,he analytic
continuation along a closec curve « circling around ¢y gives rise to
an automorphism of S, called monodromy. If a basis

{u1,us, -+ ,u,} of S is chosen, ther we have a matrix
representation A = (a; j)1<i,j<n Of the monodromy. The group of
all such matrices is called the monodromy group relative to the
basis {u;} of the differential equation L. If we choose a different
bases, we will get another monodromy group. The two monodromy
groups are related by conjugation. Thus the monodromy group is
defined by up to conjugation.



Auti .o th 11l o .

Assume that ¢ = 0 is a point of maximal unipotent monodromy. At
t = 0, he Picard—Fuchs differential equation has a unique
holomorphic solution

—

L
n>1

ant”

and a logari hmic solution

y1(t) = yo(t)log(t) + g1(¢)
where g;(t) is holomorphic near t = 0 with g; (0) = 0. Set

L ()
2miyo(t)

Then

g1 @v v
o(?)

q = q(z) = exp(2miz) = texp(

<



gives an invertible analytic map from a disc |t| < K to some disc
lg| < K;. The inverse whicl expresses ¢ as a function of g = ¢(z), is
denoted by t(q). Then t(q) is holomorphic at t = 0, and it is

defi1 ed to be the mirror map of the Calabi—Yau family.



We want to study

Modular properties of monodromy groups, i.e, are they finite
index su sgrot ps of some known groups like PSL(2,7), or Sp(n,Z)?

Modular properties of mirror maps, are they related to 1odular
functions, or some other automorphic f nctions for the above
monodromy groups?



ol n=2
Let By : y? = 2° 4+ a(t)z + b(t), t € P1(C) be a family of elliptic
curves. Then for any 1-cycle v we have

d [ m 1 [ —(2a2%a’ +9bV') 3(3a’b— 2ab’) \ M

dt o A a(3a’b — 2ab’) 2a%a’ + 9b”/ \ "2

where
A = 2(4a° + 27b%)

\&& rdx
m = —, M= | —
v Y v Y

and prime denotes the differentiation with respect to t.

and



For instance, if E; is given by the Legendre family
Ei:y*=x(x—1)(z —t)

Then 7; anc 72 are solutions of the second-order differential

equation

1—2t 1 d
2 — — _ H—\._. — .
() A% ._lﬂﬁlwv% ﬁﬁl&vg 0, with 6 w&

.2 mi1a: There is a basis for the solution space of (*) such that
the projective monodromy group is I'(2) C PSL(2,7Z), which is a
genus zero principal congruence subgroup of index 6.

The holomorphic solution is given by

1 1
o F1(t) =2 ﬁlmvmwf&



and the other solution is

1 1
wﬁ;mu 5 1,1—1).

%NANV
%wANv

The mirror map is the modular function for I'(2), namely, ( )4
where 05 and 03 are classical Jacobi theta functions.

Remark: Doran gave a necessary and sufficien, condition for the
mirror map of an elliptic family witl non-constant j-invaria it to be
a Hauptmodul of a subgroup of PSL(2,7Z) of finite index.
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Let S be a K3 surface. Then
H?(S,7Z) = A :=U; L (—Eg)?

where Uj is the rank 2 hyperbolic lattice and FEg is the unique
positive definite unimodular lattice of rank 8. The Picard group
Pic(S) = NS(S) generated ,y algebraic cycles on S is the
sublattice of AN HY1(S,R) of rank p(S), so p(S) is at most 20.
The orthogonal complement of Pic(S) in H?(S,Z) is T'(S) the
lattice of transcenc ental cycles on §.
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1- =« a:. . o aie- ¢ . sSIr: :es

Let S; be a 1-parameter family of K3 s rfaces parametrized by

t € B where B := P!\ {t|S, singular }. There is, up to scalar
multiplication, a unique holomorphic 2-form w; € H?(S;, C). Now
fix to € B and let 71 (B, o) be the fundamental group. Then there
is the monodromy representation

m1(B,ty) — Au (P(H2(S:, Z))).

Its image, denoted by G is the monodromy group of S;. Let
{7V, |i=1,---,22} be a Z-Dbasis for Hz(S;,Z). Then the period
map is the maps:

ml%wu\ﬁélﬁ\ Eﬁ”...\ Wi
71 Y22

where eac 1 functior [ w; is a period. The Picard—Fuchs
differential equation is a differen .ial equation satisfied by the
periods with the monodromy group G.
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» mu - Let S; be a 1-parameter family of K3 surfaces
parametrized by t € B. Suppose that p(S;) = r for generic t and
put k = 22 — r. Then the period of S; satisfies a Picard—Fuchs
differential equation of order k.

Proof: We know that H% (S;) has dimension 22. If p(S;) = r, then
H?% 5(S¢)/Pic(S;) has dimension 22 — r. Hence there is a linear

relation satisfied by the classes:
[we], [Bwy /O], - -+, [0Fw: /OFt]

in (H%»(S;)/Pic(S;) ® C. Hence there are gg, g1, - , gk € C such
that

G := gowo + 910w /Ot + - - - + bw%wo&\@f € Pic(St),

which 1eans that b G = 0 for any v € Hy(S;,7Z). Since integrating
around a cycle v € Ho(S¢, Z) commutes with differentiation with

13



respect to t in the sense that

mw&gw . &s
Qms. 51 Im&% QEN.

the linear relation becomes a differential equation for ,P W upon

changing the order of integration and differentiation.
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e s ot n=3

We consider 1- sarameter families of “{3 surfaces with generic
Picard number 19. Hence their Picard—Fuchs differential equations
are of order 3.

e aar = Looking at the so-called Shioda—Inose structures on
these K3 surfaces, Doran has shown that Picard—F 1chs differential
equations are in fact symmetric squares of order 2 differential
equations.

What are the monodromy groups?

15



r n¢.idc : Let S; be a 1-parameter family of K3 surfaces with
Picard number 19 for generict € B. Let T = T'(S;) be the group of

transcendental cycles on S;, and let disc(T') be the intersection
matrix of T'. Put

SO(T) :={M € PSL(3,R) | M disc(T)M = disc(T) }

and
SO(T,Z) := SO(T)NPSL(3,7Z).

Then the monodromy group of S; is isomorphic to a subgroup of
SO(T,Z).
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;1 nl :Let M, := U, L (—Eg)? 1< —2n > for some integer n,
and let S; be a pencil of M, -polarized K3 surfaces. Then
T(S;) = Uy 1.< 2n > and the intersection matrix of T' is given by

0O 1 0

1 0 O . The monodromy group of S; is isomorphic to a

0 0 2n
congruence subgroup of PSL(2,R) of level n.
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Now what can we say about mirror maps for 1-parameter families
of M,,-polarized K3 surfaces?

First we ought to determine the Picard-F ichs differential equation
of S; of generic Picard number 19 by computing the period. The
Picard-Fuc s differential equation has order 3, and it has a unique
holomorphic solution

wo(t) = P.J\ Cpt™
n>0
with wp(0) = 1, and also has a unique solution of the form:

-

w1 (t) = wo(t)log(t) + , dnt",
n>1

where ¢,, d,, are polynomials in the constants appearing in the
Picard—Fuchs differential equation. Here we assumed that ¢t = 0 is

18



w1 (t)
Mﬂ.&go va .
Then g = 2™% = t 2 dnt"/ 2 nt" gives an invertible analytic map

the point of maximal unipotent monodromy. Put z =

from a disc |t| < Koy to some disc |g| < Kj.

The inverse t(q) is the mirror map of S;, which is holomorphic in q.

1

To relate ¢(g) to Monstrous Moonshine, we consider .
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"' or aa:(1) Let
St : &m + @,% + &w + &w — t lzozi2023 = 0.
Then p(S;) = 19 for generic t and the mirror map t(q) is given by

t(q) = q — 104¢* + 6444¢® — 3111744¢* + - --

and
1 1 2 -9 3
—— — 96 = — +8+4+4372q + € 6276q° + 1240.02q¢° + - - -
t(q) q
is the Hauptmodul Ty 4 for T'o(2)+.
(2) Let

mﬁ : Hm + &m + Hm + &w + NIH\@HO&HHNHw = 0.

Then p(S;) = 19 for generic t, and the mirror map t(q) is given by

t(q) = q — T44q + 376352¢% — 140761152¢° + - - -

20



and

is the Hauptmodul Ty 4 for I' = PSL(2,7).
(3) Let
St 1 (1 +§+§+§Xaﬂ ._.&MIH +HMH+,@MJ =t+¢t!

be a 1-parameter family of K3 surfaces associated to the root
lattice As. Then p(S;) = 19 for generic t, and the reciprocal of the
mirror map is the Hauptmodul Tgc for T'o(6) + 3.

(4)Let
Si:1l—(1—zy)z—teyz(l—z)(1—y)(1—2)=0

be a 1-parameter family of .3 surfaces arising from the Ap’ry
sequences for ((3). Then p(S;) = 19 for generic t, and the

21



reciprocal of the mirror map is a Hauptmodul for I'g(12|2) + 6, i.e.,

1 n(47)n(67)
t(q) (n(27)n(127)

6

All these K3 surfaces are M,,-polarized.
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ooy s =4

Now we consider 1-parameter families of Calabi—Yau threefolds X;.
We will be focusing on 14 families of Calabi—Yau threefolds wit .
h?1 =1, so that B3 = 4 anc. Picard-Fuchs differen ial equations
are of order 4. A most well-known example of such a family is the
quintic threefold:

5 5 5 5% 5% —1
Ly + L1 + Lo -+ L3 + Ly — t Lol 1IXQIX3T4 — 0.

Actually, its mirror partner has %! = 1 and hence tl e
Picard—Fuchs differential equation of order 4. The Picard—Fuchs
differential or erator of this family is

0~ 51(6+ )6+ 2)(6+ %)+ .M.v

where 0 = @%. It has 0,57 ° and oo es regular singularities.
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The 14 families have the Picard—Fucl s differential equation of the
form (which are all of hypergeometric type 4F3):

0* — Ct(0 + A)(O+1—-A)(O+B)(H+1—B)
where A, B,C € Q.

Basic geometric invariants of Calabi—Yau threefolds are
degree := H3, the second Chern numbers cy - H and the Euler
number ¢3 = Xtop-

24
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‘ie0 e . :Let
L:60*—Ct(0+A)0+1—-A)(0+B)O+1- B)

be one of the 14 equations of hypergeometric type, and let

H?3. co - H and c3 be geometric invariants of the associated
Calabi—Yau threefold (given in the table). Let {yo,y1,¥2,ys} be the
Frobenius basis at the point t = 0 of maximal unipotent
monodromy. Then with respect to the ordered basis

{y3/(274)3, y2/(2mi)?, y1 /273, Yo }, the monodromy matrices around
z=0and z=1/C are

/11 1/2 1/6 )
01 1 1/2
00 1 1

\0 0 0 1 )

25



and

where

(14+a 0 ab/d a2/d \
b 1 —b/d —ab/d
0 0 1 o |

\ -4 0 —b 1-a J
c3 co - H

26
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# A B C Description ca-H| c3

1] 1/5[2/5] 3125 || X(5) c P* 5 | 50 |—200( [9)
2 [|1/10]3/10 8105 || X(10) c P*(1,1,1,2,5) 1 | 34 |-288]|[20]
3 1/2]1/2] 256 || X(2,2,2,2) CP’ 16 | 64 | —128 || [19]
4 |[1/3[1/3| 729 || Xx(3,3) cPs 9 | 54 |-144 ([ [19]
51 1/311/2 | 432 || X(2,2,3) c PS 12 | 60 |—144|[[19]
6 || 1/4 [ 1/2 | 1024 || X(2,4) c P? 8 | 56 |—176 || [19]
711 1/8 | 3/8 | 65536 || X(8) c P4(1,1,1,1,4) 2 | 44 | —296 || [20]
8 ]| 1/6 | 1/3 | 11664 || X(6) C P4(1,1,1,1,2) 3 | 42 |—204 | [20]
9 ||1/1215/12] 12% | X(2,12) cP(1,1,1,1,4,6)| 1 | 46 |—484 |[[11]
10)] 1/4 [ 1/4 | 4096 || X(4,4) CP5(1,1,1,1,2,2) | 4 | 40 | -144 | [17]
11))1/4 | 1/3 | 1728 || X(4,6) c P5(1,1,1,2,2,3) | 6 | 48 | —156 || [17]
1211 1/6 | 1/4 [ 27648 || X(3,4) c P5(1,1,1,1,1,2) | 2 | 32 |—-156 || [17]
1311 1/6 | 1/6 | 2%-3% ) X(6,6) c P5(1,1,2,2,3,3) | 1 | 22 |-120{|[17]
14)) 1/6 | 1/2 | 6912 || X(2,6) c P5(1,1,1,1,1,3) | 4 | 52 | -256|[17]




By conjugating the above matrices by

[0 0 1 0

0 0 0 1
0 d d/2 —b
—d 0 -=b I@\

the matrices can e brought into the syn plectic group Sp(4,7Z).

27



' 1 eo e a: The monodromy group is generated by the two matrices

(1 1 0 o)
0 1 0 0
d d 1 0,
\0 -k -1 1
and
/100 0)
0 1 0 1
0 0 1 0
000 1)

for z =0 and z = 1/C, respectively, where k = 2b + d /6.

28



They are contained in the congruence subgroups I'(d, gcd(d, k)) of
Sp(4,7) of finite index, where

( \H***/ )

['(dy,d2) =< v€ Sp(4,2) |y = mod dy
0O 0 1 0
. /o * % V_A\ \
\H *x % */ ,
0 1 x =«
N ve€Sp(4,Z) |~ = mod dy
0 0 1 O
/o 0 = H\ )

29



e .1 » : Even though the congruence subgroup I'(dy, d2) has
finite index in Sp(4,Z) (by Erdenberger), we are not able to show
that the monodromy group is of finite index in I'(d, ged(d, k)).

A physics consequence of finite indexness of the n onodromy group
is that there are only finitely many string vacua (~ 10°%0), or
equivalently the fi1 iteness of the Hodge numbers (~ 5(0).
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~1: rer « (Chris Brav and Hugh Thomas): Among the
monodromy group of the 14 Calabi—Yau threefolds of
hypergeometric type, 7 are thin.

By Sarnak et al, among the remaining 7 cases, 3 are arithmetic,
and but the remaining 4 are unknown.

> s .71eice: For he 7 Jalabi-Yau threefolds with thin
monodromy groups, the monodromy group cannot be a finite index
subgrou, of Sp(4,7Z). So it is not modular.

31



thin
\¢ "\*\\. .\»wr\xh

? = ynkronn

1/4 | 1/2 | 1024 || x(2,4) c P 56 | —176 || [19]

1/8 | 3/8 | 65536 || X(8) c P4(1,1,1,1,4) 44 | —296 || [20)

LT

1/6 | 1/3 | 11664 || X(6) c P4(1,1,1,1,2) 42 | —204 || [20]

#1| A B C || Description H3|cy-H| ¢35 || Ref

1] 1/5]2/5]| 3125 || X(5) c P4 5 | 50 [—200( [9]
. 2 (11/10{3/108-10° || X(10) Cc P*(1,1,1,2,5) 1| 34 |-288(f[20]

3 1/2]1/2| 256 || X(2,2,2,2) CP? 16 | 64 | —128 |l [19]
2 4] 1/3{1/3| 729 || X(3,3) CP5 9 | 54 |—-144 ([ [19]

5 11/3|1/2| 432 || X(2,2,3) c P® 12 | 60 |~144{ [19]

6

7

8

9

1/12|5/12| 128 || X(2,12) c P5(1,1,1,1,4,6) 46 | —484 || [11]

N~ oo
>
o

2 (10| 1/4 | 1/4 | 4096 || X(4,4) c P5(1,1,1,1,2,2) —144 || [17]
¢ 11 1/4 | 1/3 | 1728 || X(4,6) Cc P5(1,1,1,2,2,3) 48 | —156 || [17]
A [12] 1/6 | 1/4 | 27648 || X(3,4) c P5(1,1,1,1,1,2) 32 | —156 || [17]
13 || 1/6 | 1/6 |28-38 || X(6,6) C P5(1,1,2,2,3,3) 22 | —120| [17]
14 || 1/6 | 1/2 | 6912 || X(2,6) c P5(1,1,1,1,1,3) 52 | —256 || [17]




“lontsevich observed that the mirror map for the quintic
Calabi—Yau family has bounded denominator.

32



T e o

The Zariski closure of I' is the smallest matrix group that
contains I'. In our case, the Zariski closure of the monodromy
group is Sp(4,7Z).

If I' is of infinite i1dex in its Zariski closure, I' is called thin.

A typical example of an arithmetic group is a subgrou~ of
GL,(Z).
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