# Classical Mirror Constructions II The Batyrev-Borisov Construction

Ursula Whitcher whitchua@uwec.edu

University of Wisconsin-Eau Claire

August 2013

#### Outline

Reflexive Polytopes

Hypersurfaces in Toric Varieties

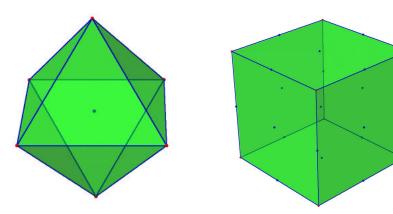
K3 Surfaces

Symmetric Subfamilies

References

#### The Batyrev-Borisov Strategy

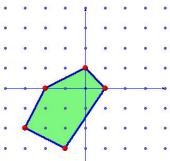
We can describe mirror families of Calabi-Yau manifolds using combinatorial objects called reflexive polytopes.



#### Lattice Polygons

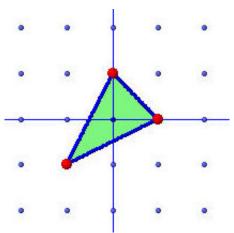
Let N be a lattice isomorphic to  $\mathbb{Z}^2$ .

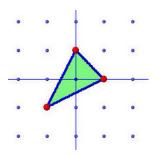
A lattice polygon is a polygon in the plane  $N_{\mathbb{R}}$  which has vertices in the lattice.



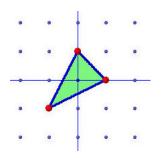
# Fano Polygons

We say a lattice polygon is Fano if it has only one lattice point, the origin, in its interior.



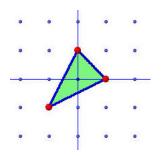


► List the vertices



List the vertices

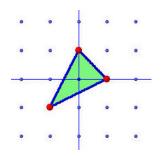
$$\{(0,1),(1,0),(-1,-1)\}$$



List the vertices

$$\{(0,1),(1,0),(-1,-1)\}$$

List the equations of the edges



List the vertices

$$\{(0,1),(1,0),(-1,-1)\}$$

List the equations of the edges

$$-x - y = -1$$
$$2x - y = -1$$
$$-x + 2y = -1$$

#### A Dual Lattice

The dual lattice M of N is given by  $\operatorname{Hom}(N,\mathbb{Z})$ ; it is also isomorphic to  $\mathbb{Z}^2$ . We write the pairing of  $v \in N$  and  $w \in M$  as  $\langle v, w \rangle$ . After choosing a basis, we may also use dot product notation:

$$(n_1, n_2) \cdot (m_1, m_2) = n_1 m_1 + n_2 m_2$$

The pairing extends to a real-valued pairing on elements of  $N_{\mathbb{R}}$  and  $M_{\mathbb{R}}$ .

#### Polar Polygons

Edge equations define new polygons

Let  $\Delta$  be a lattice polygon in  $N_{\mathbb{R}}$  which contains (0,0). The polar polygon  $\Delta^{\circ}$  is the polygon in  $M_{\mathbb{R}}$  given by:

$$\{(m_1, m_2) : (n_1, n_2) \cdot (m_1, m_2) \ge -1 \text{ for all } (n_1, n_2) \in \Delta\}$$

## Polar Polygons

#### Edge equations define new polygons

Let  $\Delta$  be a lattice polygon in  $N_{\mathbb{R}}$  which contains (0,0). The polar polygon  $\Delta^{\circ}$  is the polygon in  $M_{\mathbb{R}}$  given by:

$$\{\left(m_1,m_2\right):\left(n_1,n_2\right)\cdot\left(m_1,m_2\right)\geq -1 \; \mathrm{for \; all} \; \left(n_1,n_2\right)\in \Delta\}$$

$$(x,y) \cdot (-1,-1) = -1$$
  
 $(x,y) \cdot (2,-1) = -1$   
 $(x,y) \cdot (-1,2) = -1$ 

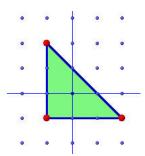
## Polar Polygons

#### Edge equations define new polygons

Let  $\Delta$  be a lattice polygon in  $N_{\mathbb{R}}$  which contains (0,0). The polar polygon  $\Delta^{\circ}$  is the polygon in  $M_{\mathbb{R}}$  given by:

$$\{ \left( m_1, m_2 \right) : \left( n_1, n_2 \right) \cdot \left( m_1, m_2 \right) \geq -1 \text{ for all } \left( n_1, n_2 \right) \in \Delta \}$$

$$(x,y) \cdot (-1,-1) = -1$$
  
 $(x,y) \cdot (2,-1) = -1$   
 $(x,y) \cdot (-1,2) = -1$ 



#### Mirror Pairs

If  $\Delta$  is a Fano polygon, then:

- $ightharpoonup \Delta^{\circ}$  is a lattice polygon
- ▶ In fact,  $\Delta^{\circ}$  is another Fano polygon

We say that . . .

- $ightharpoonup \Delta$  is a reflexive polygon.
- $ightharpoonup \Delta$  and  $\Delta$ ° are a mirror pair.

## A Polygon Duality

#### Mirror pair of triangles

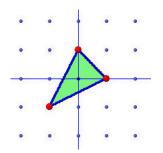


Figure: 3 boundary lattice points

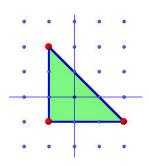


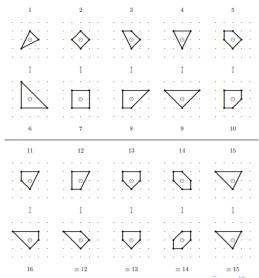
Figure: 9 boundary lattice points

$$3 + 9 = 12$$

## Classifying Fano Polygons

- ► We can classify Fano polygons up to a change of coordinates that acts bijectively on lattice points
- ▶ There are 16 isomorphism classes of Fano polygons

# Mirror Pairs of Polygons



#### Other Dimensions

#### Definition

Let  $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q\}$  be a set of points in  $\mathbb{R}^k$ . The polytope with vertices  $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q\}$  is the convex hull of these points.



#### Polar Polytopes

Let  $N \cong \mathbf{Z}^n$  be a lattice. A lattice polytope is a polytope in  $N_{\mathbb{R}}$  with vertices in N.

As before, we have a dual lattice M and a pairing  $\langle v, w \rangle$ .

#### Definition

Let  $\Delta$  be a lattice polytope in  $N_{\mathbb{R}}$  which contains  $(0, \dots, 0)$ . The polar polytope  $\Delta^{\circ}$  is the polytope in  $M_{\mathbb{R}}$  given by:

$$\{(m_1,\ldots,m_k):\langle (n_1,\ldots,n_k),(m_1,\ldots,m_k)\rangle \geq -1$$
for all  $(n_1,\ldots,n_k)\in \Delta\}$ 

#### Reflexive Polytopes

#### Definition

A lattice polytope  $\Delta$  is reflexive if  $\Delta^{\circ}$  is also a lattice polytope.

- If  $\Delta$  is reflexive,  $(\Delta^{\circ})^{\circ} = \Delta$ .
- $ightharpoonup \Delta$  and  $\Delta^{\circ}$  are a mirror pair.

#### Reflexive Polytopes

#### **Definition**

A lattice polytope  $\Delta$  is reflexive if  $\Delta^{\circ}$  is also a lattice polytope.

- If  $\Delta$  is reflexive,  $(\Delta^{\circ})^{\circ} = \Delta$ .
- $ightharpoonup \Delta$  and  $\Delta$ ° are a mirror pair.

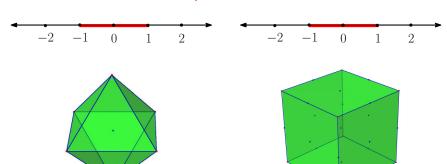


#### Reflexive Polytopes

#### **Definition**

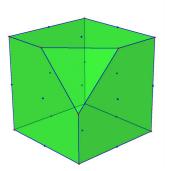
A lattice polytope  $\Delta$  is reflexive if  $\Delta^{\circ}$  is also a lattice polytope.

- If  $\Delta$  is reflexive,  $(\Delta^{\circ})^{\circ} = \Delta$ .
- $ightharpoonup \Delta$  and  $\Delta$ ° are a mirror pair.



#### Fano vs. Reflexive

- Every reflexive polytope is Fano
- ▶ In dimensions  $n \ge 3$ , not every Fano polytope is reflexive



Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
|-----------|---------------------|
| 1         |                     |
| 2         |                     |
| 3         |                     |
| 4         |                     |
| 5         |                     |

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
|-----------|---------------------|
| 1         | 1                   |
| 2         |                     |
| 3         |                     |
| 4         |                     |
| 5         |                     |

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
|-----------|---------------------|
| 1         | 1                   |
| 2         | 16                  |
| 3         |                     |
| 4         |                     |
| 5         |                     |

Up to a change of coordinates that preserves the lattice, there are  $\mbox{.}$ 

| Dimension | Reflexive Polytopes |
|-----------|---------------------|
| 1         | 1                   |
| 2         | 16                  |
| 3         | 4,319               |
| 4         |                     |
| 5         |                     |

Up to a change of coordinates that preserves the lattice, there are  $\mbox{.}$ 

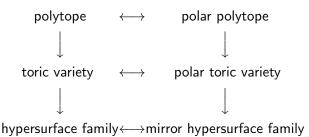
| Dimension | Reflexive Polytopes |
|-----------|---------------------|
| 1         | 1                   |
| 2         | 16                  |
| 3         | 4,319               |
| 4         | 473,800,776         |
| 5         |                     |

Up to a change of coordinates that preserves the lattice, there are  $\mbox{.}$ 

. .

| Dimension | Reflexive Polytopes |
|-----------|---------------------|
| 1         | 1                   |
| 2         | 16                  |
| 3         | 4,319               |
| 4         | 473,800,776         |
| 5         | ??                  |

## Mirror Polytopes Yield Mirror Spaces



#### Cones

A cone in N is a subset of the real vector space  $N_{\mathbb{R}} = N \otimes \mathbb{R}$  generated by nonnegative  $\mathbb{R}$ -linear combinations of a set of vectors  $\{v_1, \ldots, v_m\} \subset N$ . We assume that cones are strongly convex, that is, they contain no line through the origin.

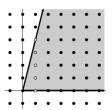


Figure: Cox, Little, and Schenk

#### **Fans**

A fan  $\Sigma$  consists of a finite collection of cones such that:

- ► Each face of a cone in the fan is also in the fan
- ▶ Any pair of cones in the fan intersects in a common face.

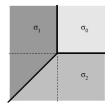


Figure: Cox, Little, and Schenk

## Simplicial fans

We say a fan  $\Sigma$  is simplicial if the generators of each cone in  $\Sigma$  are linearly independent over  $\mathbb{R}$ .

# Fans from polytopes

We may define a fan using a polytope in several ways:

1. Take the fan R over the faces of  $\diamond \subset N$ .





- 2. Refine *R* by using other lattice points in ⋄ as generators of one-dimensional cones.
- 3. Take the normal fan S to  $\diamond^{\circ} \subset M$ .





#### Toric varieties as quotients

- ▶ Let  $\Sigma$  be a fan in  $\mathbb{R}^n$ .
- Let  $\{v_1, \ldots, v_q\}$  be generators for the one-dimensional cones of  $\Sigma$ .
- ightharpoonup  $\Sigma$  defines an *n*-dimensional toric variety  $V_{\Sigma}$ .
- ▶  $V_{\Sigma}$  is the quotient of a subset  $\mathbb{C}^q Z(\Sigma)$  of  $\mathbb{C}^q$  by a subgroup of  $(\mathbb{C}^*)^q$ .
- Each one-dimensional cone corresponds to a coordinate  $z_i$  on  $V_{\Sigma}$ .

# Construction details: $Z(\Sigma)$

- Let S denote any subset of  $\Sigma(1)$  that does *not* span a cone of  $\Sigma$ .
- Let  $V(S) \subseteq \mathbb{C}^q$  be the linear subspace defined by setting  $z_j = 0$  if the corresponding cone is in S.
- $Z(\Sigma) = \cup_{\mathcal{S}} \mathcal{V}(\mathcal{S}).$

# Construction details: $\ker(\phi)$

- $ightharpoonup (\mathbb{C}^*)^q$  acts on  $\mathbb{C}^q Z(\Sigma)$  by coordinatewise multiplication.
- $\qquad \qquad \mathsf{Write} \ v_i = (v_{i1}, \dots, v_{in})$
- ▶ Let  $\phi: (\mathbb{C}^*)^q \to (\mathbb{C}^*)^n$  be given by

$$\phi(t_1,\ldots,t_q)\mapsto \left(\prod_{j=1}^q t_j^{\mathsf{v}_{j1}},\ldots,\prod_{j=1}^q t_j^{\mathsf{v}_{jn}}\right)$$

The toric variety  $V_{\Sigma}$  associated with the fan  $\Sigma$  is given by

$$V_{\Sigma} = (\mathbb{C}^q - Z(\Sigma))/\mathsf{Ker}(\phi).$$

## A Small Example



Figure: 1D Polytope ⋄

Let R be the fan obtained by taking cones over the faces of  $\diamond$ .  $Z(\Sigma)$  consists of points of the form (0,0).

$$V_R = (\mathbb{C}^2 - Z(\Sigma))/\sim$$
 $(z_1, z_2) \sim (\lambda z_1, \lambda z_2)$ 

where  $\lambda \in \mathbb{C}^*$ . Thus,  $V_R = \mathbb{P}^1$ .

# Another Example



Figure: Polygon ◊

Let R be the fan obtained by taking cones over the faces of  $\diamond$ .  $Z(\Sigma)$  consists of points of the form  $(0,0,z_3,z_4)$  or  $(z_1,z_2,0,0)$ .

$$V_R = (\mathbb{C}^4 - Z(\Sigma))/\sim$$

$$(z_1, z_2, z_3, z_4) \sim (\lambda_1 z_1, \lambda_1 z_2, z_3, z_4)$$
  
 $(z_1, z_2, z_3, z_4) \sim (z_1, z_2, \lambda_2 z_3, \lambda_2 z_4)$ 

where  $\lambda_1, \lambda_2 \in \mathbb{C}^*$ . Thus,  $V_R = \mathbb{P}^1 \times \mathbb{P}^1$ .

## Anticanonical Hypersurfaces

For each lattice point m in  $\diamond^{\circ}$ , choose a parameter  $\alpha_m$ . Use this information to define a polynomial:

$$p_{\alpha} = \sum_{m \in M \cap \diamond^{\circ}} \alpha_m \prod_{j=1}^q z_j^{\langle v_j, m \rangle + 1}$$

#### Calabi-Yau Varieties

- ▶ If we use the fan R over the faces of  $\diamond$  (or, equivalently, the normal fan to  $\diamond$ °),  $p_{\alpha}$  defines a Calabi-Yau variety.
- ▶ If we take a maximal simplicial refinement of R (using all the lattice points of  $\diamond$ ), and  $k \leq 4$ , then p defines a smooth Calabi-Yau manifold  $V_{\alpha}$ .
- Reversing the roles of ⋄ and ⋄° yields paired families of hypersurfaces.
- ▶ In particular, we can use pairs of 4-dimensional reflexive polytopes to define paired families of Calabi-Yau threefolds.

#### Toric Divisors

Each nonzero lattice point  $v_j$  in  $\diamond$  defines a toric divisor,  $z_j = 0$ . We can intersect these divisors with  $V_\alpha$  to yield elements of  $H^{1,1}(V_\alpha)$ .

- ▶ Not all of the toric divisors are independent.
- ▶ For general  $\alpha$ , a divisor corresponding to the interior lattice point of a facet will not intersect  $V_{\alpha}$ .
- ▶ The intersection of a toric divisor with  $V_{\alpha}$  may "split" into several components.

# Counting Kähler Moduli

For  $k \geq 4$ ,

$$h^{1,1}(V_lpha) = \ell(\diamond) - k - 1 - \sum_\Gamma \ell^*(\Gamma) + \sum_\Theta \ell^*(\Theta) \ell^*(\hat{\Theta})$$

- ho  $\ell()$  = number of lattice points
- $\ell^*()$  = number of lattice points in the relative interior of a polytope or face
- ► The Γ are codimension 1 faces of ⋄
- The Θ are codimension 2 faces of ⋄
- Property Description
  Property Description

# Counting Complex Moduli

We know each lattice point in  $\diamond^{\circ}$  corresponds to a monomial in  $p_{\alpha}$ . For  $k \geq 4$ ,

$$h^{d-1,1}(V_{lpha}) = \ell(\diamond^{\circ}) - k - 1 - \sum_{\Gamma^{\circ}} \ell^{*}(\Gamma^{\circ}) + \sum_{\Theta^{\circ}} \ell^{*}(\Theta^{\circ})\ell^{*}(\hat{\Theta}^{\circ})$$

- $\ell()$  = number of lattice points
- $\ell^*()$  = number of lattice points in the relative interior of a polytope or face
- The Γ° are codimension 1 faces of ⋄°
- ▶ The  $\Theta^{\circ}$  are codimension 2 faces of  $\diamond^{\circ}$
- $\hat{\Theta}^{\circ}$  is the face of  $\diamond$  dual to  $\Theta^{\circ}$

## Comparing V and $V^{\circ}$

For k > 4,

$$h^{1,1}(V_{lpha}) = \ell(\diamond) - k - 1 - \sum_{\Gamma} \ell^*(\Gamma) + \sum_{\Theta} \ell^*(\Theta) \ell^*(\hat{\Theta})$$
  $h^{d-1,1}(V_{lpha}) = \ell(\diamond^{\circ}) - k - 1 - \sum_{\Gamma^{\circ}} \ell^*(\Gamma^{\circ}) + \sum_{\Theta^{\circ}} \ell^*(\Theta^{\circ}) \ell^*(\hat{\Theta}^{\circ})$ 

# Comparing V and $V^{\circ}$

For  $k \geq 4$ ,

$$h^{1,1}(V_{lpha}) = \ell(\diamond) - k - 1 - \sum_{\Gamma} \ell^*(\Gamma) + \sum_{\Theta} \ell^*(\Theta) \ell^*(\hat{\Theta})$$
 $h^{d-1,1}(V_{lpha}) = \ell(\diamond^{\circ}) - k - 1 - \sum_{\Gamma^{\circ}} \ell^*(\Gamma^{\circ}) + \sum_{\Theta^{\circ}} \ell^*(\Theta^{\circ}) \ell^*(\hat{\Theta}^{\circ})$ 

$$h^{1,1}(V_{\alpha}^{\circ}) = \ell(\diamond^{\circ}) - k - 1 - \sum_{\Gamma^{\circ}} \ell^{*}(\Gamma^{\circ}) + \sum_{\Theta^{\circ}} \ell^{*}(\Theta^{\circ})\ell^{*}(\hat{\Theta}^{\circ})$$
 $h^{d-1,1}(V_{\alpha}^{\circ}) = \ell(\diamond) - k - 1 - \sum_{\Gamma} \ell^{*}(\Gamma) + \sum_{\Theta} \ell^{*}(\Theta)\ell^{*}(\hat{\Theta})$ 

# Mirror Symmetry from Mirror Polytopes

We have mirror families of Calabi-Yau varieties  $V_{\alpha}$  and  $V_{\alpha}^{\circ}$  of dimension d=k-1.

$$h^{1,1}(V_{\alpha}) = h^{d-1,1}(V_{\alpha}^{\circ})$$
  
 $h^{d-1,1}(V_{\alpha}) = h^{1,1}(V_{\alpha}^{\circ})$ 

# An Example





#### Four-dimensional analogue:

- ▶ ♦ has vertices (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), and (-1,-1,-1,-1).
- $\diamond$  has vertices (-1,-1,-1,-1), (4,-1,-1,-1), (-1,4,-1,-1), (-1,-1,4,-1), and (-1,-1,-1,4).

# An Example





#### Four-dimensional analogue:

- ▶ ♦ has vertices (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), and (-1,-1,-1,-1).
- ▶  $\diamond$ ° has vertices (-1, -1, -1, -1), (4, -1, -1, -1), (-1, 4, -1, -1), (-1, -1, 4, -1), and (-1, -1, -1, 4).

$$h^{1,1}(V_{\alpha}) = \ell(\diamond) - n - 1 - \sum_{\Gamma} \ell^*(\Gamma) + \sum_{\Theta} \ell^*(\Theta)\ell^*(\hat{\Theta})$$
  
= 6 - 4 - 1 - 0 - 0 = 1.

# Example (Continued)

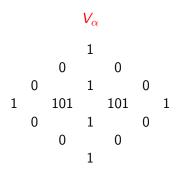
- ▶ ♦ has vertices (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), and (-1,-1,-1,-1).
- $\diamond^{\circ} \text{ has vertices } (-1,-1,-1,-1), \ (4,-1,-1,-1), \\ (-1,4,-1,-1), \ (-1,-1,4,-1), \ \text{and} \ (-1,-1,-1,4).$

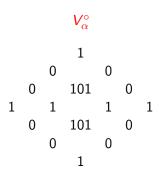
$$h^{1,1}(V_\alpha)=1$$

$$h^{3-1,1}(V_{\alpha}) = \ell(\diamond^{\circ}) - n - 1 - \sum_{\Gamma^{\circ}} \ell^{*}(\Gamma^{\circ}) + \sum_{\Theta^{\circ}} \ell^{*}(\Theta^{\circ})\ell^{*}(\hat{\Theta}^{\circ})$$
  
= 126 - 4 - 1 - 20 - 0 = 101.

## The Hodge Diamond

#### Calabi-Yau Threefolds





## Extrapolations

By looking more carefully at the structure of a reflexive polytope, one can study . . .

- Fibrations of Calabi-Yau varieties
- Degenerations of Calabi-Yau varieties
- Calabi-Yau complete intersections

## Dolgachev's K3 Mirror Prescription

▶ Let X be a K3 surface.

$$H^2(X,\mathbb{Z})\cong U\oplus U\oplus U\oplus E_8\oplus E_8$$

▶ If  $X_{\alpha}$  is a family of K3 surfaces polarized by a lattice  $\hat{L}$ , then the mirror family  $X_{\alpha}^{\circ}$  should be polarized by a lattice  $\hat{L}$  such that

$$L^{\perp} = \hat{L} \oplus nU$$

▶ In particular,  $rank(L) + rank(\hat{L}) = 20$ .

## Using Toric Divisors

Following Falk Rohsiepe, we observe ...

- We can intersect toric divisors with  $X_{\alpha}$  to create a sublattice of  $\operatorname{Pic}(X_{\alpha})$
- ► We can compute the lattice pairings using purely combinatorial information about lattice points

## Examining the Data

Set

$$\rho(\diamond) = \ell(\diamond^\circ) - k - 1 - \sum_{\mathsf{\Gamma}^\circ} \ell^*(\mathsf{\Gamma}^\circ) + \sum_{\Theta^\circ} \ell^*(\Theta^\circ) \ell^*(\hat{\Theta}^\circ).$$

| <b> \tau \tau \tau \tau \tau \tau \tau \tau</b> |      | $\rho(\diamond)$ | $\rho(\diamond^{\circ})$ |
|-------------------------------------------------|------|------------------|--------------------------|
| 0                                               | 4311 | 1                | 19                       |
| 1                                               | 4281 | 4                | 18                       |
| 2                                               | 4317 | 1                | 19                       |
| 3                                               | 4283 | 2                | 18                       |
| 4                                               | 4286 | 2                | 18                       |
| 5                                               | 4296 | 2                | 18                       |
| 8                                               | 3313 | 9                | 17                       |

#### A Toric Correction Term

Set

$$\delta(\diamond) = \sum_{\Theta^{\circ}} \ell^*(\Theta^{\circ}) \ell^*(\hat{\Theta}^{\circ}).$$

| <b>♦</b> |      | $\rho(\diamond)$ | $\rho(\diamond^{\circ})$ | $\delta(\diamond)$ |
|----------|------|------------------|--------------------------|--------------------|
| 0        | 4311 | 1                | 19                       | 0                  |
| 1        | 4281 | 4                | 18                       | 2                  |
| 2        | 4317 | 1                | 19                       | 0                  |
| 3        | 4283 | 2                | 18                       | 0                  |
| 4        | 4286 | 2                | 18                       | 0                  |
| 5        | 4296 | 2                | 18                       | 0                  |
| 8        | 3313 | 9                | 17                       | 6                  |

#### Rohsiepe's Formulation

- ▶ Let  $\diamond$  and  $\diamond$ ° be a mirror pair of 3-dimensional reflexive polytopes, and let  $X_{\alpha}$  and  $X_{\alpha}^{\circ}$  be the corresponding families of K3 surfaces.
- ▶ Write  $i: X_{\alpha} \rightarrow W$  be the inclusion in the ambient toric variety, and let  $D_i$  be the toric divisors.
- ▶ Let *L* be the sublattice of  $Pic(X_{\alpha})$  generated by  $i^*(D_j)$
- ▶ Let  $\hat{L}$  be the sublattice of  $\operatorname{Pic}(X_{\alpha}^{\circ})$  generated by all of the components of the intersections  $D_i \cap X_{\alpha}^{\circ}$

$$L^{\perp} = \hat{L} \oplus U$$

#### Some Picard rank 19 families

▶ Hosono, Lian, Oguiso, Yau:

$$x + 1/x + y + 1/y + z + 1/z - \Psi = 0$$

Verrill:

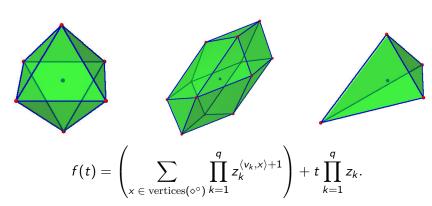
$$(1 + x + xy + xyz)(1 + z + zy + zyx) = (\lambda + 4)(xyz)$$

Narumiya-Shiga:

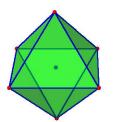
$$Y_0 + Y_1 + Y_2 + Y_3 - 4tY_4$$
  
 $Y_0Y_1Y_2Y_3 - Y_4^4$ 

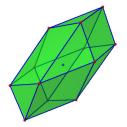
#### Toric realizations of the rank 19 families

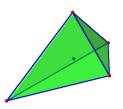
The polar polytopes ⋄° for [HLOY04], [V96], and [NS01].



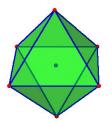
# What do these polytopes have in common?

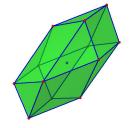


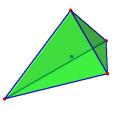




## What do these polytopes have in common?

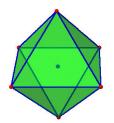


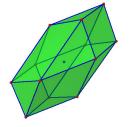


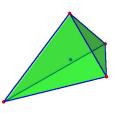


► The only lattice points of these polytopes are the vertices and the origin.

## What do these polytopes have in common?







- ► The only lattice points of these polytopes are the vertices and the origin.
- ▶ The group *G* of orientation-preserving symmetries of the polytope acts transitively on the vertices.

## Another symmetric polytope

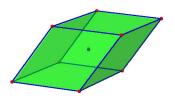


Figure: The skew cube

$$f(t) = \left(\sum_{x \in \, ext{vertices}(\diamond^\circ)} \prod_{k=1}^q z_k^{\langle v_k, x 
angle + 1} 
ight) + t \prod_{k=1}^q z_k.$$

#### **Dual rotations**

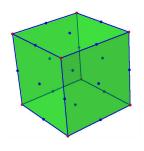


Figure: ♦

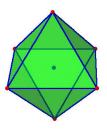


Figure: ⋄°

We may view a rotation as acting either on  $\diamond$  (inducing automorphisms on  $X_t$ ) or on  $\diamond$ ° (permuting the monomials of f(t)).

# Symplectic Group Actions

Let G be a finite group of automorphisms of a K3 surface. For  $g \in G$ ,

$$g^*(\omega) = \rho\omega$$

where  $\rho$  is a root of unity.

#### Definition

We say G acts symplectically if

$$g^*(\omega) = \omega$$

for all  $g \in G$ .

## A subgroup of the Picard group

#### Definition

$$S_G = ((H^2(X,\mathbb{Z})^G)^{\perp})$$

Theorem ([N80a])

 $S_G$  is a primitive, negative definite sublattice of  $\operatorname{Pic}(X)$ .

# The rank of $S_G$

#### Lemma

- ▶ If X admits a symplectic action by the permutation group  $G = S_4$ , then Pic(X) admits a primitive sublattice  $S_G$  which has rank 17.
- ▶ If X admits a symplectic action by the alternating group  $G = A_4$ , then Pic(X) admits a primitive sublattice  $S_G$  which has rank 16.

#### Why is the Picard rank 19?

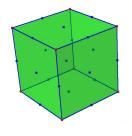


Figure:  $\diamond$ 

We can use the orbits of G on  $\diamond$  to identify divisors in  $(H^2(X_t,\mathbb{Z}))^G$ .

#### Why is the Picard rank 19?

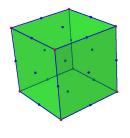


Figure: \$

We can use the orbits of G on  $\diamond$  to identify divisors in  $(H^2(X_t,\mathbb{Z}))^G$ .

- ► For the families of [HLOY04] and [V96], and the family defined by the skew cube, we conclude that 17 + 2 = 19.
- ▶ For the family of [NS01], we conclude that 16 + 3 = 19.

#### Collaborators

- Dagan Karp (Harvey Mudd College)
- ▶ Jacob Lewis (Universität Wien)
- Daniel Moore (HMC '11)
- Dmitri Skjorshammer (HMC '11)
- Ursula Whitcher (UWEC)











## K3 surfaces from elliptic curves

Let  $E_1$  and  $E_2$  be elliptic curves, and let  $A = E_1 \times E_2$ .

- ▶ The Kummer surface Km(A) is the minimal resolution of  $A/\{\pm 1\}$ .
- ▶ The Shioda-Inose surface SI(A) is the minimal resolution of  $Km(A)/\beta$ , where  $\beta$  is an appropriately chosen involution.

## Picard-Fuchs equations

- ► A period is the integral of a differential form with respect to a specified homology class.
- Periods of holomorphic forms encode the complex structure of varieties.
- ► The Picard-Fuchs differential equation of a family of varieties is a differential equation that describes the way the value of a period changes as we move through the family.
- ► Solutions to Picard-Fuchs equations for holomorphic forms on Calabi-Yau varieties define the mirror map.

### Picard-Fuchs equations for rank 19 families

Let M be a free abelian group of rank 19, and suppose  $M \hookrightarrow \operatorname{Pic}(X_t)$ .

- ► The Picard-Fuchs equation is a rank 3 ordinary differential equation.
- The coefficients of the Picard-Fuchs equation are rational functions.
- ► The equation is Fuchsian (the singularities of the rational functions are controlled).

# Symmetric Squares

- Let L(y) be a homogeneous linear differential equation with coefficients in  $\mathbb{C}(t)$ .
- ▶ There exists a homogeneous linear differential equation M(y) = 0 with coefficients in  $\mathbb{C}(t)$ , such that . . .
- ▶ The solution space of M(y) is the  $\mathbb{C}$ -span of

$$\{\nu_1\nu_2 \mid L(\nu_1) = 0 \text{ and } L(\nu_2) = 0\}$$
.

#### Definition

M(y) is the symmetric square of L.

### Symmetric Square Formula

The symmetric square of the differential equation

$$a_2 \frac{\partial^2 A}{\partial t^2} + a_1 \frac{\partial A}{\partial t} + a_0 A = 0$$

is

$$a_{2}^{2} \frac{\partial^{3} A}{\partial t^{3}} + 3a_{1}a_{2} \frac{\partial^{2} A}{\partial t^{2}} + (4a_{0}a_{2} + 2a_{1}^{2} + a_{2}a_{1}' - a_{1}a_{2}') \frac{\partial A}{\partial t} + (4a_{0}a_{1} + 2a_{0}'a_{2} - 2a_{0}a_{2}')A = 0$$

where primes denote derivatives with respect to t.

# Picard-Fuchs equations and symmetric squares

#### **Theorem**

[D00, Theorem 5] The Picard-Fuchs equation of a family of rank-19 lattice-polarized K3 surfaces can be written as the symmetric square of a second-order homogeneous linear Fuchsian differential equation.

# Quasismooth and regular hypersurfaces

Let  $\Sigma$  be a simplicial fan, and let X be a hypersurface in  $V_{\Sigma}$ . Suppose that X is described by a polynomial f in homogeneous coordinates.

#### Definition

If the derivatives  $\partial f/\partial z_i$ ,  $i=1\ldots q$  do not vanish simultaneously on X, we say X is quasismooth.

## Quasismooth and regular hypersurfaces

Let  $\Sigma$  be a simplicial fan, and let X be a hypersurface in  $V_{\Sigma}$ . Suppose that X is described by a polynomial f in homogeneous coordinates.

#### Definition

If the derivatives  $\partial f/\partial z_i$ ,  $i=1\dots q$  do not vanish simultaneously on X, we say X is quasismooth.

#### Definition

If the products  $z_i \partial f/\partial z_i$ ,  $i=1\ldots q$  do not vanish simultaneously on X, we say X is regular and f is nondegenerate.

### The Skew Octahedron





- Let ⋄ be the reflexive octahedron shown above.
- ontains 19 lattice points.
- Let R be the fan obtained by taking cones over the faces of  $\diamond$ . Then R defines a toric variety  $V_R \cong (\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1)/(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$ .
- ▶ Consider the family of K3 surfaces  $X_t$  defined by  $f(t) = \left(\sum_{x \in \text{vertices}(\diamond^\circ)} \prod_{k=1}^q z_k^{\langle v_k, x \rangle + 1}\right) + t \prod_{k=1}^q z_k.$
- $ightharpoonup X_t$  are generally quasismooth but not regular.

### The Picard-Fuchs equation

### Theorem ([KLMSW10])

Let  $A = \int \operatorname{Res}\left(\frac{\Omega_0}{f}\right)$ . Then A is the period of a holomorphic form on  $X_t$ , and A satisfies the Picard-Fuchs equation

$$\frac{\partial^3 A}{\partial t^3} + \frac{6(t^2 - 32)}{t(t^2 - 64)} \frac{\partial^2 A}{\partial t^2} + \frac{7t^2 - 64}{t^2(t^2 - 64)} \frac{\partial A}{\partial t} + \frac{1}{t(t^2 - 64)} A = 0.$$

As expected, the differential equation is third-order and Fuchsian.

## Symmetric square root

The symmetric square root of our Picard-Fuchs equation is:

$$\frac{\partial^2 A}{\partial t^2} + \frac{(2t^2 - 64)}{t(t^2 - 64)} \frac{\partial A}{\partial t} + \frac{1}{4(t^2 - 64)} A = 0.$$

### Semiample hypersurfaces

- ▶ Let *R* be a fan over the faces of a reflexive polytope
- $\triangleright$  Let  $\Sigma$  be a refinement of R
- We have a proper birational morphism  $\pi:V_\Sigma \to V_R$
- ▶ Let Y be an ample divisor in  $V_R$ , and suppose  $X = \pi^*(Y)$

#### Then X is semiample:

#### Definition

We say that a Cartier divisor D is *semiample* if D is generated by global sections and the intersection number  $D^n > 0$ .

### The residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X:

Res : 
$$H^3(V_{\Sigma} - X) \rightarrow H^2(X)$$
.

Anvar Mavlyutov showed that  ${\rm Res}$  is well-defined for quasismooth, semiample hypersurfaces in simplicial toric varieties.

### Two ideals

#### Definition

The Jacobian ideal J(f) is the ideal of  $\mathbb{C}[z_1,\ldots,z_q]$  generated by the partial derivatives  $\partial f/\partial z_i$ ,  $i=1\ldots q$ .

#### Definition

[BC94] The ideal  $J_1(f)$  is the ideal quotient

$$\langle z_1 \partial f / \partial z_1, \dots, z_q \partial f / \partial z_q \rangle : z_1 \cdots z_q.$$

### The induced residue map

Let  $\Omega_0$  be a holomorphic 3-form on  $V_{\Sigma}$ . We may represent elements of  $H^3(V_{\Sigma}-X)$  by forms  $\frac{P\Omega_0}{f^k}$ , where P is a polynomial in  $\mathbb{C}[z_1,\ldots,z_q]$ .

Mavlyutov described two induced residue maps on semiample hypersurfaces:

- ▶ Res<sub>J</sub> :  $\mathbb{C}[z_1, ..., z_q]/J \rightarrow H^2(X)$  is well-defined for quasismooth hypersurfaces
- ▶ Res<sub>J1</sub> :  $\mathbb{C}[z_1, \dots, z_q]/J_1 \to H^2(X)$  is well-defined for regular hypersurfaces.

# Whither injectivity?

Res<sub>J</sub> is injective for smooth hypersurfaces in  $\mathbb{P}^3$ , but this does not hold in general.

#### **Theorem**

[M00] If X is a regular, semiample hypersurface, then the residue map  $\mathrm{Res}_{J_1}$  is injective.

We want to compute the Picard-Fuchs equation for a one-parameter family of K3 hypersurfaces  $X_t$ .

- ▶ Look for  $\mathbb{C}(t)$ -linear relationships between derivatives of periods of the holomorphic form
- ▶ Use Res<sub>J</sub> to convert to a polynomial algebra problem in  $\mathbb{C}(t)[z_1,\ldots,z_q]/J(f)$

#### Procedure

1.

$$\frac{d}{dt} \int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k \int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

#### Procedure

1.

$$\frac{d}{dt} \int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k \int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

2. Since  $H^*(X_t, \mathbb{C})$  is a finite-dimensional vector space, only finitely many of the classes  $\operatorname{Res}\left(\frac{d^j}{dt^j}\left(\frac{\Omega}{f^k(t)}\right)\right)$  can be linearly independent

#### Procedure

1.

$$\frac{d}{dt} \int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k \int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

- 2. Since  $H^*(X_t, \mathbb{C})$  is a finite-dimensional vector space, only finitely many of the classes  $\operatorname{Res}\left(\frac{d^j}{dt^j}\left(\frac{\Omega}{f^k(t)}\right)\right)$  can be linearly independent
- 3. Use the reduction of pole order formula to compare classes of the form  $\operatorname{Res}\left(\frac{P\Omega}{f^{k+1}(t)}\right)$  to classes of the form  $\operatorname{Res}\left(\frac{Q\Omega}{f^{k}(t)}\right)$

Implementation

### Reduction of pole order

$$\frac{\Omega_0}{f^{k+1}} \sum_i P_i \frac{\partial f}{\partial x_i} = \frac{1}{k} \frac{\Omega_0}{f^k} \sum_i \frac{\partial P_i}{\partial x_i} + \text{exact terms}$$

We use Groebner basis techniques to rewrite polynomials in terms of J(f).

Advantages and disadvantages

### Advantages

We can work with arbitrary polynomial parametrizations of hypersurfaces.

### Disadvantages

We need powerful computer algebra systems to work with J(f) and  $\mathbb{C}(t)[z_1,\ldots,z_q]/J(f)$ .

### Modular Groups and Modular Curves

- ▶ Consider a modular group  $\Gamma \subset PSL_2(\mathbb{R})$ .
- ► Γ acts on the upper half-plane ℍ by linear fractional transformations:

$$z \mapsto \frac{az+b}{cz+d}$$

- $ightharpoonup \overline{\mathbb{H}/\Gamma}$  is a Riemann surface called a modular curve.
- ► The function field of a genus 0 modular curve is generated by a transcendental function called a hauptmodul.

## Some modular groups

### Congruence subgroups

$$\Gamma_0(n) = \left\{ \left( egin{array}{cc} a & b \\ c & d \end{array} 
ight) \in \mathrm{PSL}_2(\mathbb{Z}) \ \middle| \ c \cong 0 \ (\mathrm{mod} \ n)$$

### Atkin-Lehner map

$$w_h = \begin{pmatrix} 0 & \frac{-1}{\sqrt{h}} \\ \sqrt{h} & 0 \end{pmatrix} \in PSL_2(\mathbb{R})$$

 $\Gamma_0(n) + h$  is generated by  $\Gamma_0(n)$  and  $w_h$ .

### Mirror Moonshine

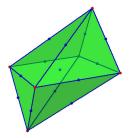
Mirror Moonshine for a one-parameter family of K3 surfaces arises when there exists a genus 0 modular group  $\Gamma$  such that . . .

- ► The Picard-Fuchs equation gives the base of the family the structure of a modular curve  $\overline{\mathbb{H}/\Gamma}$ , or a finite cover of the modular curve.
- ▶ The hauptmodul for  $\Gamma$  can be expressed as a rational function of the mirror map.
- The holomorphic solution to the Picard-Fuchs equation is a Γ-modular form of weight 2.

# Mirror Moonshine from geometry

| Example                         | [HLOY04]                      | [V96]                                     |
|---------------------------------|-------------------------------|-------------------------------------------|
| Shioda-Inose                    | $SI(E_1 \times E_2)$          | $SI(E_1 \times E_2)$                      |
| structure                       | $E_1$ , $E_2$ are 6-isogenous | $E_1$ , $E_2$ are 3-isogenous             |
| $\operatorname{Pic}(X)^{\perp}$ | $H \oplus \langle 12  angle$  | $H \oplus \langle 6 \rangle$              |
| Γ                               | $\Gamma_0(6) + 6$             | $\Gamma_0(6) + 3 \subset \Gamma_0(3) + 3$ |

# Geometry of the skew octahedron family



- $\triangleright$   $X_t$  is a family of Kummer surfaces
- ▶ Each surface can be realized as  $Km(E_t \times E_t)$
- ▶ The generic transcendental lattice is  $2H \oplus \langle 4 \rangle$

### The modular group

We use our symmetric square root and the table of [LW06] to show that:

$$\begin{split} \Gamma &= \Gamma_0(4|2) \\ &= \left\{ \left( \begin{array}{cc} a & b/2 \\ 4c & d \end{array} \right) \in PSL_2(\mathbb{R}) \;\middle|\; a,b,c,d \in \mathbb{Z} \right\} \end{split}$$

 $\Gamma_0(4|2)$  is conjugate in  $\textit{PSL}_2(\mathbb{R})$  to  $\Gamma_0(2) \subset \textit{PSL}_2(\mathbb{Z}) = \Gamma_0(1) + 1.$ 

- Batyrev, V. and Cox, D. On the Hodge structure of projective hypersurfaces in toric varieties. *Duke Mathematical Journal* 75, 1994.
- Doran, C. Picard-Fuchs uniformization and modularity of the mirror map. *Communications in Mathematical Physics* 212 (2000), no. 3, 625–647.
- Hosono, S., Lian, B.H., Oguiso, K., and Yau, S.-T. Autoequivalences of derived category of a K3 surface and monodromy transformations. *Journal of Algebraic Geometry* 13, no. 3, 2004.
- Karp, D., Lewis, J., Moore, D., Skjorshammer, D., and Whitcher, U. "On a family of K3 surfaces with  $S_4$  symmetry". Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds, Fields Institute Communications.



- Mavlyutov, A. Semiample hypersurfaces in toric varieties. *Duke Mathematical Journal* 101 (2000), no. 1, 85–116.
- Narumiya, N. and Shiga, H. The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope. *Proceedings on Moonshine and related topics*, AMS 2001.
- Nikulin, V. Finite automorphism groups of Kähler K3 surfaces. *Transactions of the Moscow Mathematical Society* 38, 1980.
- SAGE Mathematics Software, Version 3.4, http://www.sagemath.org/



Verrill, H. Root lattices and pencils of varieties. Journal of Mathematics of Kyoto University 36, no. 2, 1996.