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Backaround

Given a CY 3—fold Y, one of the most interesting problems to
count the Gromov-Witten invariants of Y and consider the
generating functions of genus g Gromov-Witten invariants of Y

Faw(Y,t) = 3 (egp= 30 NEKelret,

BEH(Y,Z) BeH(Y,Z)
k -
(Wiy - Wi g8 = H evj*w,-j N Mgk (Y, 8)]"",
=il

ht1(Y) ; 1,1
here w(t) =>",_;' ’ tiw;, where wj,i =1,2--- h>*(Y) are the
generators for the Kahler cone of Y.

For some special CY 3-folds, the generating functions F%,, (Y, t)
could be computed by localization technique, topological vertex,
etc. For general CY 3-folds, they are very difficult to compute.



Backaround

- Physics (topological string theory)tells that FE,, (Y, t) is the
holomorphic limit of some non-holomorphic quantity called the
A model genus g topological string partition function of Y

EEst) = ILi\r/rzfg(Y, t,t)

The above expression lim;y; means the holomorphic limit
based at the large volume limit t = ico: think of ¢, t as
independent coordinates, fix t, send t to ioc.

- Mirror symmetry predicts the existence of the mirror manifold
X of Y in the sense that 78(Y) (and its holomorphic limit
F&(Y)) is identical to some quantity 78(X) (and the
holomorphic limit F&(X)) called the B model genus g
topological string partition function on X, under the mirror
map.



Backaround

- The genus zero topological string partition function was
studied intensively since the celerated work

- The partition functions F&(X), g > 1 satisfy some differential
equations called the holomorphic anomaly equations

, and are easier to compute than
FE(Y).

- Thanks to mirror symmetry, one can try to extract
Gromov-Witten invariants of Y by studying properties of (the
moduli space of) X and solving F8(X) from the equations.



Mortivation

In some nicest cases, F&(Y) (and its holomorphic limit F&,,(Y))
are expected to have some modular properties. Some examples
include

- Y = elliptic curve

Fén(t) =—logn(q), q=exp2mit

1
Few(t) = {53650 (10E: — 6E2E4 — 4Es)

F&,/(t) s a quasi modular form of weight 6g —6...

- STU model: Y = a special K3 fibration

- FHSV model: Y = K3 x T?/Z2.
IIA — HE duality tells that F&(Y') have nice modular
properties



Overview

In this talk, we shall work only on the B model of X. We shall

- solve F&(X), g > 0 from the holomorphic anomaly equations
for certain noncompact CY 3—folds X and express them in
terms of the generators of the ring of almost-holomorphic
modular forms. The results we obtain predict the correct GW
invariants of the mirror manifold Y under the mirror map.

- explore the duality of F&(X) for these particular noncompact
CY 3-folds

- construct the analogue of the ring of almost-holomorphic
modular forms for general CY 3—folds by using quantities
constructed out of the special Kahler geometry on the moduli
space M complex(X) of complex structures of X



Example

Here is an example we could compute :

y S
1 1 . :
Few(Y,t) =—5logn(a)n(q’), g = exp2mir, t # 7
F2 (Y,t) = E(6A4_9A2E_‘_5E2)+_%A6_’_%/4?’834_#6?0(86
M 172885 172885

where A, B, C, E are explicit quasi modular forms (with multiplier
systems) of weights 1,1,1,2 respectively, with respect to the
modular group Ig(3). | will explain in detail how this modular
group comes out.



Example

F(3?W(Yv t)
(—2532A%0 4 3444A7B® — 1140A*B® + 48AB°) E
1244160812
(3516A° — 3708A°B* + 732A?B°) E?
- 1244160812
(—2645A° + 1900A°B* — 120B°) E*
i 1244160812
(1200A* — 420AB%) E*  25A%E® N 5E°
1244160812 82944B12 © 82944B12
+5359A12 — 8864A7B% + 4160A°B® — 496A°B® + 2(8 — 3y)B'?

8709120812



Solving Fé: Special Kahler metric

Consider the family of CY 3-folds 7 : X — M, where M is some
deformation space (of complex structures) of the CY 3—fold X.
The base M is equipped with the Weil-Petersson metric whose

Kahler potential is given by
= i/Q AQ (1)

where Q is a holomorphic section of the Hodge line bundle
L= ROW*Qi/”X The curvature of the Weil-Petersson metric Gij

satisfies the so-called special geometry relation

= BT = 6%Gi+ 6K Gp; — CimCo (2)

I] l - J
where Cjx = — fQ A 0;0;0kQ2 (Yukawa coupling or three-point

function) and CJ 2KG”G""C”,(,/ =1,2,---n=dimM.



Solving F&: BCOV holomorphic anomaly equations

The genus g topological string partition function F8 is a section of
L2728 For g = 1 case, it satisfies the holomorphic anomaly
equation

= 1 —jk b%
i j
B F = 2 Gl — (X~ 1)Gy 3)
where the quantity x is the Euler characteristic of the mirror
manifold Y (not of X).



Solving F&: BCOV holomorphic anomaly equations

For g > 2
K 1
BFe = Ecgk > D, F& D F& + D;D FE1 | (4)
811+82=8,81,82>1
- L — — -
. N

where D; is the sum of the Chern connection associated to the
Weil-Petersson metric G;j; and the Kahler connection K; on the
Hodge line bundle L.



Solving F§: polynomial recursion

Using the special geometry relation and the holomorphic anomaly
equation for genus 1, the equations could be solved recursively
using integration by parts

, for each genus g, the
topological string partition function F¥ is found to take the form

O:F€ = O;PF, g > 2 (5)
where P€ is a polynomial (coefficients are holomorphic functions)
of the propagators SY, S’ S defined via

5,51 =CY, 5.5 =GzS* 8.5=G;S (6)
and the Kahler connection K;. The coefficients are kind of universal

from recursion. These generators encode all of the
anti-holomorphic dependence of F%.



Solving F&: differential ring of non-holomorphic
Generators

Moreover, the ring generated by these non-holomorphic generators
SY,5",S, K; is closed under the covariant derivative D;

D; S = §isk + gks/ — +
D;S = 26{" — Gimn aF s
. (7)
P2 i > = hig
Dl = = +

where hfk, hf, hi, hijj are holomorphic functions.



Solvina F&: holomorphic amricuities

From _ B
T — A ) ©)

we get

FE=PE(SY, S S, K)+ 18, g>2 9)

The function € is purely holomorphic and is called the
holomorphic ambiguity. It can not be determined by only looking at
the holomorphic anomaly equations. Boundary conditions are
needed to fix it.



Solving F§: eoundary condition at LCSL

Mirror symmetry predicts that
1 T 1 -
Fa(X,t) = L|ICn5‘lLf (X,t,t)
hl I(Y)
& FewlY,t) Z t,/c2 (TY)w; + O(e2™ )
FE(X,t) = | g X 48
A( 9 ) LICr?Lf( 9 9 )

BagBag—2|
FE (v, ¢) = (—1)s X 1BaBs

where t = (t,t? .- - t") are the canonical coordinates on the
moduli spaces and lim;cs; means the holomorphic limit at the large
complex structure limit. These conditions are obtained from
computing the constant map contribution to F§,, (Y, t).

+ O(e27rit"), g > 2



Solving F¢: soundary condition at conifold loci

Moreover, at the conifold loci

] 1
1 . 0 1
Foan(t Iclor;r71’.7-" > log Aj + regular terms
] cg_182 p
g (¢)- — | g _ g i\0 >
where lim¢on, means the holomorphic limit at the conifold locus
which is defined as the discriminant locus A; =0, i =1,2,---, m.

The quantity t! is a suitably chosen coordinate normal to the
conifold locus A; = 0. This is called the gap condition.



Solving Fé: traditional approach in fixing &

According to the above boundary conditions at the LCSL and
conifold loci, one can try the following for f&

ERC

()= s (10)

=il i
where A% is a polynomial of zi, - - - z, of degree (2g — 2)degA;
Then one aims to solve for the coefficients in A% from the boundary
conditions. For noncompact CY 3—folds, a dimension counting
suggests that the numbers of

unknowns is the same as the number of boundary conditions. So in
principle, f& could be completely determined. For compact CY
3—folds, further inputs, e.g., boundary conditions at the orbifold loci
are needed



Solvina F&: difficulties

The boundary conditions are applied to the different
holomorphic limits of the same function F&, namely, to Ff
and F%;,. But the relation between these two different
functions is not quite clear.They are not related by a simple
analytic continuation (recall that the definition of a
holomorphic limit requires a choice of the base point).

The for the ambiguity 8 is made based on regularity at
the orbifold points (loci), which is not ensured for general CYs.

In practice, the generators S¥, S’ S, K; are computed as
infinite series in the complex coordinates on M, so the

expression for & is not compact.

Modularity is not manifest.



Solvina F&: implement of modularity

In our work, we could overcome these difficulties by making use of
the arithmetic properties of the moduli spaces, for certain
noncompact CY 3—folds X. We could solve 7% in terms of modular
forms according to the following procedure:

- identify the moduli space M with a certain modular curve
Xr=H*/T, T C PSL(2,Z)

- construct the ring of quasi modular forms and
almost-holomorphic modular forms attached to X, the latter
turns out to be equivalent to the special geometry polynomial
ring constructed out of purely geometric quantities (periods,
connections, Yukawa couplings...)



Solvina F&: implement of modularity

Then we

1. express the quantities S¥, S’ S, K; and F&,g = 0,1 in terms
of the generators of the ring of almost-holomorphic modular
forms

2. solve P& via polynomial recursion in terms of these generators,
modularity then gives a very strong constraint and also a
natural for & in terms of modular forms, with
under-determined coefficients

3. explore the relation between F§ and F&,, realize the boundary
conditions as certain regularity conditions imposed on the
modular objects 7€ and F&§

4. solve the under-determined coefficients in 8 and thus express
FE&s (F§s) as almost-holomorphic (quasi) modular forms



Local P? example: mirror CM 3—£old family

The mirror CY family of Y = Kpz (called local P? below) is a
family of noncompact CY 3-folds 7 : X — M = P! given by

. More precisely, choose
z as the parameter for the base M. For each z, the CY 3—fold X,
is itself a conic fibration

uv—H(yi;z)==uv—(y+yi+y2+y3) =0,(u,v) € C?

over the base C? parametrized by y;,i = 0,1,2,3 with the following
conditions:
a. there is a C* action: y; — Ay;, A€ C*,i =0,1,2,3;
b 7 — Yy

; W
Straightforward computation shows that z = 0,1/27, co
corresponds to the large complex structure limit, conifold point,
orbifold of the CY 3—fold family, respectively.



Local P? example: mirror curve £amily

The degeneration locus of this conic fibration is a curve &, (called
the mirror curve) sitting inside X, :

Y1y2ys3
%
This way, we get the mirror curve family 7 : & — M. It is

equivalent to

Hyiz)=yw+yi+y+y3=02z=—

y:—(vo+1)ys = 23 (11)
with

T (1—24z)3
= o7 FON Pt
= i) z3(1 —27z2)



Local P? example: arithmetic of moduli space

Comparing it with the elliptic modular surface associated to o(3),
i.e., the Hesse famlly 7T|'0(3) B gr0(3) = Xr0(3) = H*/r0(3)

1 . (1+ 2162)
XF A4 +x3 -z 3xxxa =0, jz)= 2= 272)°

One can see that

M = Xo(3) 1= H*/To(3)

In fact these two families are related by a 3-isogeny, see e.g.,

Taking the generator of the rational functional field (Hauptmodul)
of Xp(3) to be av = 27z, then the points @ = 0, 1, co correspond to
the large complex structure limit, conifold point, orbifold of the CY
3—fold family respectively.



Local P? example: periods of elliptic curve £amily

The Picard-Fuchs operator attached to the Hesse elliptic curve
family is the hypergeometric operator

2
['elllptlc ~ 9 = 04(19 1 3)(‘9 A 3) (12)

where 6 = 043 A basis of the space of periods could be chosen to
be

12 i 12
e = = o (R 13
wo = 2 1(3,3, a), wi Nek: 1(3 3 a)  (13)
Then we get
w1 i 2F1( ,% 1—a)
> g : (14)
wo /3 2F1(3,3,1;0)

It follows then the points oo = 0,1, co correspond to
[T] = [io0], [0], [exp 27i /3], respectively.



Local P? example: periods of elliptic curve £amily

Define

A=uwy, B=(1—a)sA, C=a3A (15)
then
A3 . B3 fa C3
Moreover, one can show

1 1 il
Div A= g(a =00}, Div = g(a =1), DivA= g(a ="
(16)



Local P2 example: modular £orms

It turns out that the A, B, C defined out of periods are modular
forms (with multiplier systems) with respect to o(3) (see e.g.,

and references therein).
Moreover, they have very nice 0 or 1 expansions (g = exp 27iT)

A(T) = 02(27)02(67) + 63(27)03(67) Z B
(m,n)ez?
i 77(T)3 i 27” m—+n m2— mn+n
(m,n)eZ?

3
ctr) = 3T _ gy 5o griommertemin _ LTy - a(r)
(m,n)€Z?



Local P2 example: Quasi modular £orts

Now we consider the differential ring structure. One can show that

Do = aSA? (17)

where D = ﬁg,ﬁ =1 — «. This is equivalent to

which transforms as an honest modular form under 'o(3). Now we
define the analogue of the quasi modular form E; by

3E2(3T)4+ E2(T)) (19)

It is easy to see that it transforms as a quasi modular form under
M0(3). We denote its modular completion E + — (Z . % + %) by E.

E=Dlog C*B3}(=

7rlm7'



Local P? example: rina of Quasi modular £orms

It follows from the definitions and the Picard-Fuchs equation that
the ring generated by A, B, C, E is closed upon taking derivative

— &
D= 27 OT

1 c®- B3
DA=_A(E+——

Sl
DB = 1B(E — A?)

; (20)
DC = ZA(E+ A?)

1

DE = 6(E2 =A%

This is the ring of quasi modular forms (with multiplier systems) for
lo(3). The ring generated by E, A, B, C is then the ring of
almost-holomorphic modular forms (with multiplier systems) .



Local P2 example: Fricke involution on modular
curve

There is a natural automorphism, called Fricke involution Wy, of

the family mr 3y : Ery(3) — Xro(3)- Here N = 3.
In terms of coordinates, it is described by

WN:TH—NLT,aHﬁzzl—a (21)
Using the interpretation of the modular curve as a moduli space
Xo(3) = {(E. )| C < En = Z§,|C| = N}
then the Fircke involution has the following description

Wa : (E,C) — (E/C,En/C)

The mirror curve family X’ is related to &r(3) by a 3-isogeny and
the Fricke involution is also an automorphism of X .



Local P2 example: Fricke involution on modular

curve
o ={ (2 7)

Fricke involution

¢ =0 mod N} C PSL(2,Z)

For Xo(N) = H*/To(N), N = 4,3,2,1* which has three singular
points, the Fricke involution exchanges the two distinguished cusps
[icc] = [1/N] and [0] on the modular curve, and fixes the last of
the singularities on Xo(/V).



Local P2: Fricke involution on modular £orms

Under this transformation, one has

A(T) — \/I_NTA(T)

B(7) — \/I_NTC(T) o
C(r) — \/I_NTB(T)

A N 2
E(r,7) — —(£T)2E(T,7_')
i
This involution turns out to be a "duality" for the topological string
partition functions F&, as | shall explain below.



Local P?2 example: Picard-Fuchs and periods of the
CY 3-fold

The Picard-Fuchs operator of the corresponding CY 3-fold
X :uv—H(y,z)=0is

Lcy = Leliiptic © 0 (23)
The periods are given by X° =1,t,t. = k71 F;, where
t ~loga+--- near the LCSL a = 0, tc is the vanishing period at
the conifold point o = 1, and « is the classical triple intersection
number of the mirror Y = Kp2 of X. Here we have chosen the
normalization of t. so that

0t = wg, Ot; =w; (24)

Then ot
(AJ]_ C —1
== = F 25
g wo ot ﬁ t VE



Local P? example: holomorphic limit at the LCSL

Recall the large complex structure limit is given by o = 0 or
equivalently [7] = [icc] on Xp(3).

In the following we shall compute the special geometry quantities
(connections, Yukawa coupling: - -) in the holomorphic limit at this
particular point. It is in this limit that 78 becomes F§(X) and is
mirror to the generating function F£,,,(Y) of the GW invariants on
Y.

Using the modularity. we shall see that the full non-holomorphic

partition function F& could be recovered by its holomorphic limit
Fé
A



Local P? example: special ceometry Quantities in
the holomorphic limit

Take the coordinate x = In o near the LCSL. In this coordinate the
holomorphic limit of the connections are

limKx =0, lim %, = Ox log gt
X

The Yukawa coupling is

where « is the classical triple intersection number, it is —% in the
local P? case. Using the boundary conditions for F! at LCSL and
at conifold, the holomorphic limit of the genus one partition
function is solved to be



Local P? example: special ceometry Quantities in
terms of modular forms

B3 o 5
Recall @ = A3,ﬁ A3, using the 7 expansions

3 3
c=3"87) g_ n(r)
n(7) n(37)
and the definition of A by A = wg = 0t, we then get
Rl 8x3_f<5_177(3)
Cttt —F (X0)2 CXXX(at) I B3 . 3 77( )
1 1 3,3 1 1 1
Fr=——logB’C>=—— |og77(7)77(37), DFy,=——E
12 12
here as before D = %d@ In particular,
1 1 1 i
ol — ~5 log V/Im7V/Im37n(7)n(7)n(37)n(37), DF* = —EE



Local P2 example: cenerators in terms of modular
forms

The generators $*, S are chosen so that:

limS*=1imS=0,limK, =0

while lim 5 is solved according to the integrated special geometry
relation

k k k k
M = 6KK; + 05K — CjnS™F + 57

In this case, it simplifies to

im 5, = lim 2K, — Cyex lim S + 53

That is,

Olog A = —%Iim 5%+ s



Local P2 example: cenerators in terms of modular
forms

Recall that Dav = aBA2 with D = 512 one has

27i o1’
0 or il
0 =a— =2mia—D = —=D
Yoa Y 5 BA?
Then the above equation becomes

1 2ok | c®-B3 K
——DlogA= —5-(E+ ———)= —=IlimS* + s
/6A2 Og ﬁA2 6( + A ) B Im +SXX

A natural choice for s is

C3_B3 C3_B3
SX = =

e 65A3 6B3

so that
E i (5

ImS™ = 6w 3R



Local P2 example: differential rinag of cenerators

Recall the differential ring of generators

D;S* = 8IS + of S
Di = 25{: i Cimn + S
s 1 (26)
1 G + +
[Dhl = aF

where h{ h{ hi, hijj are holomorphic functions.

According to our choices, the only nontrivial equation in the above
is

DS™ = —Con S5 + I5,



Local P2 example: differential rinag of cenerators

Taking the holomorphic limit, one then gets

Ox lim S 4 21im Ty [im 5™ = — Gy lim S S + A
It follows that
1 A3

X = _ =
2 12 B3

1 3

3 3
L ;a—h> = — %are

Note that the quantities s = s}, = ~¢55- i3
modular and thus honest holomorphic obJects in the
non-holomorphic completion (due to the fact that the
non-holomorphic completion is the same as the completion to
almost-holomorphic modular objects.) That is, these holomorphic
ambiguities are really holomorphic as they should be.



Local P? example: polynomial part P&

Polynomial recursion gives

P2 = %@53 o %Chs € gcs% + %Szac (27)

Straightforward computations show that its holomorphic limit at
LCSL is

E(6A* — 9A%E + 5E?)
G = 28
a 172885 (28)

This implies in return that the non-holomorphic quantity P2 is

E(6A* — 9A%E +5E?)
172886

That is, the non-holomorphic quantity 72 could be obtained from
its holomorphic limit P2, thanks to (quasi) modularity.

P =

(29)



Local P? example: holomorphic amBiauity in terms
Of modular forms

By induction, one can prove that P& and F% are non-holomorphic
completions of quasi modular functions (that is, modular weights
are 0) for g > 2. That is, they are almost-holomorphic modular
functions.

The above result for P? suggests the following ansatz for the
holomorphic ambiguity 2

1A% + ASB3 + 3BS
1728B6

(In fact, this form could be obtained by considering the singularities
of F& on the deformation space M.)

=

(30)



Local P? example: Boundary condition at LCSL

Boundary condition at the LCSL given by oz = 0 or equivalently
t=1ioc0is

BrgBog_»| ;
F& — (—1)8X |Bag Bag it > 9
A=V g 22 ) 82

It is easy to apply this boundary condition since the holomorphic
limits of the quantities A, B, C, E based at the LCSL are very easy
to compute from their expressions in terms of hypergeometric
functions. For example,

200 1002 56003 38500* 28028a°

il 2
A0) = 2Ri(5, 5 1ia) = T+ 5+

o " 781 6561 ' 50040 | 531441 |

e | a 5a? 2770(371880a4+
7 9 81 6561 59049



Local P2 example: cap condition at the conifold
poiNnt

The expression t.(3) is clear near the conifold point & =1 or
equivalently B = 0 since t. is chosen to be the vanishing period of
the Picard-Fuchs equation of the CY 3—fold at the this point.

From the expansion of the period

1182 1098° 93895* 8835183°
te(8) = B+
18 243 26244 295245

solved as the vanishing period of Lcy = Lejjiptic © 0, we can invert
the series to get 8 = ((tc):

11t2 1453 6733t 120127t

Blte) = te = 15"+ 36 ~ 5oass 2361060 T




Local P2 example: cap condition at the conifold
poiNnt

To apply the gap condition

81 B2g
2g(2g — 2)(tc)*6?

one needs to evaluate the holomorphic limit F&,, from

F& = P& + f&. In the holomorphic limit based at the conifold, the
holomorphic limit of & is itself, while the holomorphic limit P%,, of
P& is different from (the analytic continuation of) P§ since a
different base point is taken. Then one needs to compute the 3 or
t. expansion of F&,,.

Fgon(tC) i— i O(tg)a g Z 2a




Local P2 example: series expansion in dual
coordinates

We have obtained the «, & expansions of F&(«, &), we could try to
do analytic continuation to get (F& o (o, &@))(53,3). But itis
extremally complicated to do this directly.



Local P2 example: series expansion in dual
coordinates

Instead of doing analytic continuation to get (F8 o (o, @))(8, 5),
we make use of the Fricke involution as follows

Ale) = ﬂTA(/B)
1 el 1
Ble) = (1—04)3/\(0&):/33@7/\(5): @TC(ﬁ)
1 1
Cla) = asAla) = @TB(ﬂ)
. ] ~ U
E(a, @) = —(@T)ZE(ﬂ,ﬁ)
here we treat A, B, C, E as functions A(e), B(e),---. More
precisely, A(e )— 2F1(% 2.1;0),



Local P? example: Fricke involution

At first glance, it seems that we only used the definition of 7 in
terms of A(a), A(() to get the series expansion in the dual

coordinate for all of the generators. However, what is really working
is the Fricke involution:

1

Wy : ——

L Nt
o« [

L) 2
= 1
S La)e 1(3 '3 : B)

A(T) < A(WnT)
FE(1,7) « F&|wy (WnT, WyT)

2F1(5,

with
VN A Wat) _ 2F1(%
Rl - - 3
! A(T) 2F1(§

1;5)

1;q)

w\l\) (.OH\J



Local P? example: Fricke involution

Since 7€ has weight 0, the @T factors are cancelled out. From

P2(0,d) — E(a, @)(6A(a)* — 9A(a)2E(a, &) + 4E(a, a)?)
’ 1728B5()

£2(a) = aA%(a) + 0A3(a)B3(a) + c3B%(a)
1728B5(a)

we then get

B)* — 9A(B)*(—E(8, B)) + 4(—E (8, 5)?))
1728C6(5)

_ al®(B) + aA%(B)C3(6) + s C°(B)
f2(a(B)) = 1728C5(5)




Local P2 example: solving the unknowns

Therefore, we can easily get the (3 expansion of

F2.(8) = lim(P*(a(B,B),&(B,B)) + f*(a(B))
(—E(B)(6A(B)* — 9A(B)*(—E(B) + 4(—E(B)?))
1728C6(5)
L aA%(B) + oA (B)C3(8) + & C°(B)
1728C6(5)

From the expansion

11625 =145 REREHERE " 100127 ¢
5(tC) =tc — -
18 486 52488 = 2361960

we can express F2, () in terms of t. series. We can then make use
of the gap conation to get linear equations satisfied by ¢, ¢, c3.




Local P? example: predicting GW (GV) invariants

It turns out that

1 = §C_EC_7_8_3X
1 = 572_ y €3 — )

(31)

o1

By using the mirror map
o = —27q—162q> — 243¢% — 1512¢* +8100¢° + - - - , g = exp 2mit

we then get the g = exp 27it expansion of

E(6A* — 9AE + 5E?) —3A° + SA°B’ + —5*B°
_|_
1728B% 1728 B
This gives exactly the generating function of genus 2 GW (GV)

invariants listed in -
For example, the first few GV invariants n§:2, d=1,2,--- are

F(2§W(Y7 t) —

0,0,0, —102, 5430, —194022, 5784837, —155322234, 3894455457, - - -



Other examples: local dP,,n=5,6,7,8

One can easily work out the higher genus cases for local P? using
the same approach.

For the local del Pezzo geometries Kyp,,n = 5,6,7,8 with
corresponding modular groups being 'o(N) with N =4,3,2,1*
respectively, the same procedure we outlined above constructs the
ring of quasi modular forms from the periods, and solves F&. The
F&s also predict the correct GV invariant.

This approach making use of modularity works for noncompact CY
3-fold families whose mirror curves are of genus one, and whose
base M could be identified with some modular curves.



Local CY examwples: differential rina of special
Geometry generators vs differential ring of
almost-holomorphic modular forms

In these examples, first we constructed the differential ring of
almost-holomorphic modular forms, then we expressed the
differential ring of generators S¥, S’ S, K; in terms of these
almost-holomorphic modular forms. After that we did the
polynomial recursion.

We could have started from the differential ring of generators

Si. S, S, K; constructed from special geometry without knowing
their relations to the generators A, B, C, E, provided that we know
the correct notion of 7 and their gradings as "modular weights"
which tell how they transform.



Local CY examples: special Geometry polynomial ring

This ring of generators S¥, S'. S, K; constructed from special
geometry (called the special geometry polynomial ring below) is as
follows (for Kp2, K = —é):

_, ot

. 1 5 E
lim St (= 5E); et(: A), Cu =+ e 1B3)
Dstt s _Sttstt (0t)4

12k
DOt = C;;160%t = —S™0t + C;}' s,

DCt;t = _3Cttt15tt I Cttt («9t) (Ox log C;o1< + 3s%c)

where s} = %% — %, Oxlog CL = —5- To make the ring closed,

we add the holomorphic quantity Oy log Coxx = % = g—z. Now its
derivative lies in the ring of the above generators:

DOy 10g Cox = (O l0g Ciood) D log Oy log Crox = (Ox log Crx ) (0)?



Local CY examples: special ceometry polynomial
rinG vs ring Of Quasi modular forms

The holomorphic limit of the special geometry polynomial ring is
essentially equivalent to the differential ring of quasi modular forms

1 C'— B’

DA= —A(E+ -~ A?
2r (E + Ar )
1

DB = —B(E — A%)

DC = —C(E + A?

€ 2rC( + A?)

1

DE = —(E? — A*
2r( )

where D = 2%”.% and r =2,3,4,6 for N = 4,3,2, 1* respectively.



Special geometry polynomial ring

This seems to suggest that the special geometry polynomial ring
constructed using connections, Yukawa couplings, etc. is a natural
candidate of the ring of almost-holomorphic modular forms, even
for the cases in which the arithmetic properties of the moduli space
is unknown.

This leads us to define the following "special" special geometry
polynomial ring on the moduli space (dimM=1)

Ko =k C3t (08)3, Gy = 6t, Ko = i Cort K

3 % 33
T, = S%, TA=GmS S T = C.2S,, 55)

with 0 = z%, z is the algebraic coordinate. We furthermore need a

generator Cy = 0 log 23 C,,, for the coefficients from their
derivatives.



Special geometry polynomial ring

This differential ring, which has a nice grading called the weight, is
given by

a7',{0 _2K0 K2 Y KO Gl (hzzz + 3(szz + 1))

a G1 :2G1 2 _K/Gl T2 = K0G1(522+1)7

8K2—3K2_3K/K2 2 — KR T4+K0G1 zz_KOGfK277§zz7
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where 7 = k"1 F; and the sub-indices are the weights
For each g > 2, the normalized topological string partition function
(X9)2=28 F¢ is a rational function of weight 0 in these generators.



Candidate of the rina of almost-holomorphic
Mmodular forms

As we have discussed, for local P> and local del Pezzo cases, this
ring, in the holomorphic limit, is essentially equivalent to the ring of
quasi modular forms.

For a general CY 3—fold X (compact or noncompact), we could use
this ring, as a guidance for the study of modular forms.



Candidate of the rina of almost-holomorphic
Mmodular forms

For example, for the mirror quintic family, one gets

8-Co= Co(1+ Go) Ko G2,
@m:qm&—qﬁﬁ,

3.Gi = TGRS G Kon‘,
d-K2 = 3K3 — 15K, T2 —25Ta + o z Ko Gt — (§+Co) Ko Gi Kz,

8, Ta=2Ky To —5T2 + 10T, + g(1+ Go) K3 Gy

(35)
2
O:-Ta = 4Ky Ts —15T2 T4 + 1076 — (% 4 Co) (e @2 T — EK& Gy T»
= @(1 + Go)K; G,
0. T = 6Kz To —30Ta To + 2 T2 — — K2 G Ta+ L Gk GE

2 125 78125
=2 (g-l—Co) Ko Gi Te .



Candidate of the rina of almost-holomorphic
Mmodular forms

Since we know how to take the holomorphic limit in this special
geometry polynomial ring, we can get the candidate for the ring of
quasi modular forms from it.

But if the arithmetic properties of the moduli space is not clear, we
cann't really say that the special polynomial ring is ring of
almost-holomorphic modular forms.

Also if there is no suitable description of the modular group, it is
not clear whether there is an analogue of Fricke involution as an
duality of the topological string partition functions.



Conclusions

In summary, we have

- computed F&s in terms of modular forms for certain CY
manifolds whose moduli spaces have nice arithmetic
descriptions: M = H*/[o(N)

- found a duality acting on topological string partition functions
for these examples: F&, = F%|w,

- constructed the special geometry polynomial ring which has a
nice grading. The normalized topological string partition
functions are rational functions of degree zero in these
generators. This ring is a natural candidate for the ring of
almost-holomorphic modular forms.



Discussions and future directions

There are some interesting questions

interpretation of 7 coordinate in generality, e.g. for compact
CY, multi-moduli cases?

enumerative meaning of the g, = exp 27wiT expansions?
(example: quintic, where g; = exp(27it) is used in GW
generating functions)

g: = g- — 575q° + 8250¢° + 43751250q% + . ..

enumerative meaning of holomorphic limits of F& at some
other points on the moduli space.

interpretation of gap condition in mathematics
Fricke involution on the level of moduli space of CYs

How exactly is the special geometry polynomial ring related to
the ring of quasi modular forms for general CYs, e.g, mirror
quintic?
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