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Modular integrals and BPS amplitudes |

@ In closed string theory, an interesting class of amplitudes are
given by a modular integral

dridm
«42/ dulgika ®(7), du=—53
F T
e F =T\H : fundamental domain of the modular group I' = SL(2,Z)
on the Poincaré upper half plane #;

o Dgtkd) = 7-2“'/2 > qzPi G&Ps : a Siegel-Narain series for an even
self-dual lattice of signature (d + k, d);

e ®(7): an (almost, weakly) holomorphic modular form of weight
w = —k/2, which | will call the elliptic genus
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Modular integrals and BPS amplitudes Il

@ Such modular integrals arise in one-loop computations of certain
BPS-saturated amplitudes, such as F?, R?, F*, R*, after
integrating over the location of the vertex operators.

@ More general one-loop amplitudes are given by similar integrals,
but ®(7) is no longer (almost) holomorphic, hence much harder to
compute.

@ A provides a function on the moduli space of lattices,

6. .__Od+kad
d+kd = 5(d + k) x O(d)

> (95, By, Y7) ,

which is invariant T-duality, i.e. under the automorphism group
O(T g+k,0): @an example of Theta correspondence.
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Unfolding trick

@ In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method:
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Unfolding trick, revisited

@ For higher dimensional lattices, the theta series I'y. x4 involves
several different orbits of SL(2,Z). The orbit decomposition breaks
manifest invariance under the automorphism group O(T g.«.q)-

@ | will present an alternative method for computing such modular
integrals, which keeps T-duality manifest at all stages. The method
is inspired by the Rankin-Selberg method commonly used in
number theory.

@ The result is typically expressed as a field theory amplitude with
an infinite number of BPS states running through the loop.

@ The method is in principle applicable to higher genus amplitudes,
though for the most part | will focus on genus one.
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Rankin-Selberg method |

@ Consider the completed non-holomorphic Eisenstein series

E'(ris)=C(2s) Y wflr=1C(@s) Y ——2

2s
YET NI (c,d)=1 |CT T d|

where ¢*(s) = n=/2I'(s/2) ((s) = ¢*(1 — 8).
@ E*(r;s) is convergent for Re(s) > 1, and has a meromorphic

continuation to all s, invariant under s — 1 — s, with simple poles
at s = 0, 1 with constant residue:

E'(ri9) = gy + & (1= loglém e a(r)[Y) + O(s = 1).
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Rankin-Selberg method (cont.)

@ For any cusp form F(7), consider the Rankin-Selberg transform

R*(F.s) = /f 4y E*(r:5) F(7)

@ By the unfolding trick, R*(F, s) is proportional to the Mellin
transform of the constant term Fy(72) f 172471 F(r),

R*(F; 5) =C*(25) /S dyu 7 F(r)

—(*(25) /O dro 752 Fo(a)
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Rankin-Selberg method (cont.)

@ The RS transform is in fact proportional to the L-function
L(s) =, ann° associated to F.

@ It inherits the meromorphicity and functional relations of E*, e.g.
R*(F;8) =R*(F;1—25s).

@ Since the residue of E*(7; s) at s = 0, 1 is constant, the residue of
R*(F; s) at s =1 is proportional to the modular integral of F,

Ress—1R*(F;s) = ;/ du F
f
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Rankin-Selberg-Zagier method |

@ This was extended by Zagier to the case where F(©) is of
power-like growth F(O(7) ~ () at the cusp: the renormalized
integral

N./Fd,uF(T): lim [/]:TduF(T)—é(T)}

) =) Cats, ¢ an — +anlog72
(0%

a#1 a=1
is related to the Mellin transform of the (regularized) constant term

R*(F: ) = ¢*(25) /Ooodfz 52 (FO-y) .

via
N. / dj F(7) = 2Rese_yR*(F: 5) + 6
F
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Rankin-Selberg-Zagier method Il

@ ¢ is a scheme-dependent correction which depends only on the
leading behavior ¢(72),

0 = 2Ress—1[¢7(28) hr(s) + ¢*(2s = 1) hr(1 = )] = &(T),

where hr(s) = fOT dro p(12) 752
@ The Rankin-Selberg transform R*(F; s) is itself equal to the
renormalized integral

R*(F; S) = R.N. /}_d:u F(T) 8*(3; 7_)

@ According to this prescription, R.N. [-du&*(r;s) =0!
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Epstein series from modular integrals

@ The RSZ method applies immediately to integrals with ¢ = 1:

o) /
R*(I'gd;8) = C*(ZS)/ dm 7'25+d/272 Z e~ ™72 (PF+05)

° P—rR=0
r(s+9 -1

~ce 2 Deggpsrg 1)
7I_S+§*1

where Eﬁ(g, B; s) is the constrained Epstein series
>, o MEL O MP=piiph

(m;,n")€Z29\(0,0)
m;n'=0

£9(g,B;s) =

Toronto 2013

Rankin-Selberg methods
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Epstein series and BPS state sums |

@ Thisis identified as a sum over all BPS states of momentum m;
and winding n', with mass

M2 = (m,- + B,-knk)g’j(mj + Bj,n’) =+ nig,-/-r/

subject to the BPS condition m;n’ = 0. Invariance under O(Fgq)is
manifest.

@ The constrained Epstein Zeta series £J(g, B; s) converges
absolutely for Re(s) > d. The RSZ method shows that it admits a
meromorphic continuation in the s-plane satisfying

55*(5) A r(s) C*(ZS— d+2) ge(s) _ 55*(0'— 1_ 5)7

with a simple pole at s = 0,3 — 1,4, d — 1 (double poles if d = 2).
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Epstein series and BPS state sums |l

@ The residue at s = ¢ produces the modular integral of interest:

rg-1)

£0(9.B:5-1)
—1

RN. [ dulua(0.B) = ~%;
F T2

rigorously proving an old conjecture of Obers and myself (1999).
@ For d = 2, the BPS constraint m;n’ = 0 can be solved, leading to

EZ(T,U;s) =2 E*(T;s)E*(U; s)
"4

hence to Dixon-Kaplunovsky-Louis famous result (1989)

/ (F22(T, U) = 72) du = ~log (To Uz [n(T)n(U)[*) + cte
o
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Relation with other constructions

@ The differential equations

= [Aso(a,q) — 2 Dsi(2) + 5 d(d = 2)] Tyq(g. B)

0
0=[Asi2) — 3S(s—1)] EX(7;5),

imply that 5\‘}*(3) is an eigenmode of the Laplace-Beltrami
operator on the Grassmannian Gy 4 with eigenvalue s(s —d + 1),
and more generally, of all O(d, d) invariant differential operators.
° 53*(g, B; s) is proportional to the Langlands-Eisenstein series of
O(d, d) with infinitesimal character p — 2sa;.
@ The residue at s = % is the minimal theta series, attached to the
minimal representation of SO(d, d) (functional dimension 2d — 3).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller
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Modular integrals with unphysical tachyons |

@ For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon, ®(7) ~ 1/q9" + O(1) with k = 1.

@ In mathematical terms, ®(7) € (C[Ez, E4, Eg,1/A] is an almost,
weakly holomorphic modular form with weight w = —k/2 < 0.

@ The RSZ method fails, however the unfolding trick could still work
provided ®(7) can be represented as a uniformly convergent
Poincaré series with seed f(7) is invariantunder ', : 7 — 7 + n,

o(r)= >  fDlwy

YET NI

@ Convergence requires f(1) < 721_% as o — 0. The choice
f(r) = 1/q" works for w > 2 but fails for w < 2.
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Various Poincaré series representations |

@ One option is to insert a non-holomorphic convergence factor a la
. s—%
Hecke-Kronecker, i.e. choose aseed f(7) =7, *q~"

E(s,k,w) =

s—w
—w 2
2 : (CT + d) T —27iKk g::g
ler + d|2s—w
Selberg;Goldfeld Sarnak; Pribitkin

=

(c,d)=1

@ This converges absolutely for Re(s) > 1, but analytic continuation
to desired value s = 7 is tricky, and in general non-holomorphic.

@ Moreover, E(s, k, w) is not an eigenmode of the Laplacian, rather

[AW + % s(1—s)+ % w(w + 2)] E(s,k,w) =2nk(s— %) E(s+1,k,w)
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Niebur-Poincaré series |

@ We shall use another regularization which does not require
analytic continuation: the Niebur-Poincaré series

.7:(8 K, W é Z MS W( K/Tz) e_ZWiKT1 |W’Y
Vel Niebur; Hejhal; Bruinier Ono Bringmann...
where M w(y) is proportional to a Whittaker function, so that

[Aw+ 5s(1—8)+ L w(w+2)] F(s,w,w)=0
@ The seed f(7) = Ms w(—km2) € 2757 is uniquely determined by

I'(2s)
To—>00 F(S+ g)

3*% —2miKkTy —K
f(r) ~rys0 7, %€ f(r) ~

ensuring that 7 (s, x, w) converges absolutely for Re(s) > 1.
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Niebur-Poincaré series |l

@ Under raising and lowering operators,

; iw ,
Dy=1 (37 - 272> , Dy, = —17'('7'2287——,

the NP series transforms as
Dy - F(s,k, W) =2k(s+ 5) F(S, 5, W+ 2),

l(s— %) F(s, kW —2).

Dw'./l_"(s,/‘i,W): 8k

@ Under Hecke operators,
Ho  F(s,m,w)= > d'"YF(s kK /d? w).
d|(k,k")

@ For congruence subgroups of SL(2,Z), one can similarly define
NP series F4(s, k, w) for each cusp.
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Niebur-Poincaré series Il

@ For s =1 — 7, the value relevant for weakly holomorphic modular
forms, the seed simplifies to

f(r) = (2 — w) ( 5" i i) >

@ Forw < 0,thevalue s=1— Z liesin the convergence domain,
but 7(1 — 7, s, w) is in general NOT holomorphic, but rather a
weakly harmonic Maass form,

P = Z amq™ +me VYo (1 — w,4rmm) g™
m=—k
@ For any such form, D& = 72" where W = > m>1 bmq™ is @
holomorphic cusp form of weight 2 — w, the shadow of the Mock
modular form &~ =35> anq™.
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Niebur-Poincaré series |V

@ If |w| is small enough, the negative frequency coefficients by,
vanish and @ is in fact a weakly holomorphic modular form:

w | F(1 - 4,1, w)
0 j+24

—2 | BIEEs/A
—4 51 E2/A
-6 7! B/ A
-8 9l E4/A
10 1110 4
—12 131/A
14 151044

where ¢_49 and ¢_44 are Mock modular forms with shadow
2.8402... x A and 1.3061... x E4 A.
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Niebur-Poincaré series V

@ Theorem (Bruinier) : any weakly holomorphic modular form of
weight w < 0 with polarpart® =5"_ _ . o amq” +O(1)isa
linear combination of Niebur-Poincaré series

]
®=Tre—w

Z amF(1— %, mw)+ & dwo

—k<m<0

(The same holds for congruence subgroups of SL(2,Z), including
contributions from all cusps)

@ Weakly almost holomorphic modular forms of weight w < 0 can
similarly be represented as linear combinations of
F(1—%+nmw)with —x <m<0,0<n< pwhere pis the
depth. This fails for positive weight, as such forms are not
necessarily harmonic !
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Niebur-Poincaré series VI

<& ° ° ® ° °
\\/
N
\e\l’f <O
Sy &
® GQ{. '36\
e % ° ¢ ° N .
N 7 3 X Q
5 2 A D Q 2
N AQ E4 / A /bO N \Q
. 60/ . X ° . @Q’ °
e e 1* ——————— R ° -
jH24.  EZEs/A
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Unfolding the modular integral

@ By Bruinier’s thm, any modular integral is a linear combination of

Tyika(8,5) = RN, / A Tario(G. B, Y) F(s. 5, —)
].'
@ Using the unfolding trick, one arrives at the BPS state sum

Taikd(s, k) =(4rr)'~ F(S+2d+k 1)

2d+k

XZ F- (S— 4, S+ 2d+k —-1; 2s; 4—”) ('DE>1_S_4
BPS = 4’ A 4r

Bruinier; Angelantonj Florakis BP
where Y "pps = >, 6(PF — Pz — 4x). This converges absolutely for
Re(s) > 22K and can be analytically continued to Re(s) > 1 with
a simple pole at s = 294k,
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Unfolding the modular integral

@ For values s =1 — 4 + nrelevant for almost holomorphic modular
forms, the summand can be written using elementary functions,

e.g.

k/2

Torko(1 4+ §0) =~ T2+ 5) ) '°9< >+Z ( >e

BPS

@ The result is manifestly O(I' 4« ¢) invariant, and requires no
choice of chamber in Narain modular space. Singularities on
Gy kg arise when p? = 0 for some lattice vector.
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Fourier-Jacobi expansion |

@ For d =2,k = 0, the Fourier expansion in T (or Uy) is obtained
by solving the BPS constraint. E.g. for x = 1, all solutions to
min' + mon? =1 are

{m1:b+dM,n‘:—c _(a b
d

o — 2+ oM. 2 — c d>el'oo\SL(2,Z),MeZ

@ After Poisson resumming over M, the sum over ~ neatly produces
a Niebur-Poincaré series in U,

Z(s,1) =225V4xT (s — )T} 5(U; s)

+4>° TZK 1(27NT,) |#NT F (s, N, 0; U) + cc
N>0

-2
@ Moreover, recall (s, N,0) = Hy - F(s,1,0)...
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Fourier-Jacobi expansion |l

@ For s = 1, relevant for weakly holomorphic modular forms, one
recovers the usual Borcherds products,

N
A =8 Ress_1 [T} %(s; V)] +2 Z C’WT HY - [i(U) + 24] + cc

— —24log [Tzugyn( T)n(U)| } 2Zc(MN log(1 - a¥atf) + c.c]

= —24log | ToUeln(T)n(U)|*] ~log li(T) ~ j(U) "

where we have used F(1,1,0; U) = j(U) + 24, j(U) = 3 c(M)g"

Borcherds; Harvey Moore
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Fourier-Jacobi expansion lll

@ For s =1+ n, relevant for almost holomorphic modular forms of
depth p > n, we can use

TqY =2(-2N)"VNTK j(27NTe) e ?miNTy

D71 :(2n)!(—27rT2) "/n!

Dy F(n+1,x,—2n; U) = (2k)"nt F(n+1,x,0; U)
D} E(n+1,-2n;U) = (2m)"E(U;n+1)/n!

to express Ip»(n+ 1, 1) as the iterated derivative of a generalized
prepotential formally of weight (—2n, —2n),

(—DtrDy)"
n!

2272(n+1,1):4Re fn(T U)
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Fourier-Jacobi expansion IV

@ The resulting prepotential is holomorphic in T but harmonic in U,

fn(T, U) =2 (27r)2”+1 E(n +1,-2n; U)

+> 2/\/ I F(n+1,N,~2n; U)
N>0

@ One can turn f, into a holomorphic function 7,7(T, U) by replacing
E(n+1,-2n;U) and F(n+ 1, N, —2n; U) by their analytic parts
without affecting the real part of its iterated derivative.

Gangl Zagier

@ The generalized holomorphic prepotential f,( T, U) now transforms
as an Eichler integral of weight (—2n, —2n) under
SL(2,Z)T x SL(2,Z)y % (T + U).
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Fourier-Jacobi expansion V

@ The generalized Yukawa coupling 92"+, is an ordinary modular
form of weight (2n + 2, —2n), e.g for n =1

(u)  Ea(U)Es(U) _ E4(T)E4(U)Es(V)

3%, N =
03, Nz;ho Hy A(U) AO)[(T) - j(U)]

@ The case n = 1 describes the standard prepotential appearing in
string vacua with A/ = 2 supersymmetry. Its modular anomaly was
discussed by Antoniadis, Ferrara, Gava, Narain, Taylor in 1995,
which is the first occurrence of Eichler integrals in string theory !

@ The case n = 2 has appeared in the context of 1/4-BPS
amplitudes in Het/Ks.

Lerche Stieberger 1998
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Rankin-Selberg method at higher genus |

@ String amplitudes at genus h < 3 take the form

40,0,
= dup I B, Y;Q)o(Q dup = ——r o
Ap /Fh tth Tark,a,n(G, B, Y, Q) (Q) ,  dup (det 0y]h

e Fjis a fundamental domain of the action of ' = Sp(2h,Z) on
Siegel’'s upper half plane {Q = Q! € C"" Q, > 0}
e I4ik.a.n a Siegel-Narain theta series of signature (d + k, d)

T'yik.a,n = [det Qz]d/Z Z eiWTr(QPLPz)fiﬂ'Tr(QPRPE)
(Fask,d)"
o ®(Q) a Siegel modular form of weight —k/2.

@ We would like to generalize the previous methods to the case
where ¢(Q) is an almost holomorphic modular form with poles
inside Fp, such as 1/x1o. As afirst step, take k =0, » = 1.
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Rankin-Selberg method at higher genus |l

@ The genus h analog of £*(s; 7) is the non-holomorphic
Siegel-Eisenstein series

[h/2]
En(si) =¢r(2s) [ ¢*4s—-2) > [y
j=1 YEM\I

where Iy = {(A ‘?,)} CT,[Q| = | detImQ).

@ The sum converges absolutely for Re(s) > ’7+1 and can be
meromorphically continued to the full s plane The analytic
continuation is invariant under s — ”’2” s, and has a simple pole

at s = ™ with constant residue r, = } HWZ] (2 +1)
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Rankin-Selberg method at higher genus |l

@ For any cusp form F(Q), the Rankin-Selberg transform can be
computed by unfolding the integration domain against the sum,

Ri(F; ) = /f dyin F(Q) E1(9. )

[h/2]
~c(2) [ tas—2) [ af[0 " Ro(92)

e GL(h,Z)\Ps

where Py, is the space of positive definite real matrices, and
Fo(Q2) = fo dQ4 F(Q) is the constant term of F.

h+1

@ Theresidue at s = is proportional to the average of F,

Res h+-1 R;(F, S) =Ip F.
=2 Fh
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Rankin-Selberg method at higher genus IV

@ The Siegel-Narain theta series is not a cusp form, instead its
zero-th Fourier mode is

0 — I

Fé,,&,h(g, B; Q) = |Q]%/2 Z g~ T (MPQ2)
(mia,nia)EZZdXh,ml(vaniﬁ):o

where

MZ? = (mp + Byn)g(m]’ + Byn'”) + n'* g;n’?

Terms with Rk(m¢", n'®) < h do not decay rapidly at Q» — co. For
d < h, this is always the case.

@ The Siegel-Eisenstein series £(£2, s) similarly has non-decaying
constant term of the form 3", e~ (7%2) with Rk(T) < h.
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Rankin-Selberg method at higher genus V

@ The regularized Rankin-Selberg transform is obtained by
subtracting non-suppressed terms, and yields a field theory-type
amplitude, with BPS states running in the loops,

dQ T
Rn(Ta,0,n; S) :/ 7201 Z o Tr(MPQ)
GL(h,Z)\'Pp, |Qz|h+1—s—§ BPS
hii-d_
=Mp(s — )Y {det MZ}
BPS

] h—1
= Y e =" (s %)
BPS (mIQ,n"fX)GZZdXh, k=0

m{® i) —0,det M2£0
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Rankin-Selberg method at higher genus VI

@ This is recognized as the Langlands-Eisenstein series of
SO(d, d, Z) with infinitesimal character p — 2(s — =5=2)\p,
associated to A"V where V is the defining representa’uon

Ri(Ta0: 8) o Egn (s — bl=d)  (h> )

@ For h=d, A"V = S2 ¢ C? where S, C are spinor representations,

Rn(Thpn S) o< 5so(h h)( 1)+ Sso(h h)(23 —1)

@ The modular integral of I'y 4 4 is proportional to the residue of
Ri(Tg,0.n S) at s =51, up to a scheme dependent term 5. For
d < h, the entire result comes from 6.
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Rankin-Selberg method at higher genus VII

@ Ford=1,any h,

h
Ap=Vp(R"+ R, v, = / dup =2 [ ¢*(2))
Fh =1

@ For h=d = 2, either by computing the BPS sum, or by unfolding
the Siegel-Narain theta series, one finds

R5(I22, ) =2¢*(2s)¢* (25 — 1)¢*(2s — 2)
X [EX(T;25 — 1) + E:(U; 25 — 1)]

hence Ap = 20%(2) [E4(T; 2) + EX(U; 2)]

proving the conjecture by Obers and BP (1999).

B. Pioline (CERN & LPTHE) Rankin-Selberg methods Toronto 2013



Rankin-Selberg method at higher genus VI

@ Forh=d =3,
R3(M33;8) =¢*(2s) (*(25 — 1) (*(2s — 2) (*(25 — 3)
65590 (25 - 1) + £5°03F (25 1))
hence

Ag = 2¢°(2)¢*(4) [€559°9(3) + £5°009(3)]
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Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. The result is expressed as a field theory
amplitude with BPS states running in the loop.

@ T-duality and singularities from enhanced gauge symmetry are
manifest. Fourier-Jacobi expansions can be obtained in some
cases by solving the BPS constraint.

@ The RSZ method also works at higher genus, at least for h=2,3.
For computing modular integrals with ® # 1 it will be important to
develop Poincaré series representations for Siegel modular forms
with poles at Humbert divisors, such as 1/®4¢.

@ Non-BPS amplitudes where ¢ is not almost weakly holomorphic
are challenging ! So are amplitudes with h > 4|

B. Pioline (CERN & LPTHE) Rankin-Selberg methods Toronto 2013 38/38



	Modular integrals with trivial elliptic genus
	Modular integrals with non-trivial elliptic genus
	Rankin-Selberg method at higher genus

