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e to describe certain hyperbolic dynamical
systems called Smale spaces

e to describe C*-algebras constructed from
them

e to find algebraic invariants for them, and
show how the C*-algebras provided key ideas
in their construction



Smale spaces (D. Ruelle)

(X,d) compact metric space,

@ . X — X homeomorphism 0 < A < 1,

For z in X and ¢ > 0 and small, there is a
local stable set X%(x,e) and a local unstable

set X%(x,e) which satisfy:

1. X%(x,¢) x XY (x,e) is homeomorphic to a
neighbourhood of z,

2. @-invariance,

3.

d(e(y),e(z)) <Xd(y,z), y,z € X°(x,¢),
de (), 1 (2)) < Ad(y,2), y,z€ X%x,e),



That is, we have a local picture:

Global stable and unstable sets:

X(z) = {y/ Limood(son(w),wn(y))=0}

n

{y | lim d(e "(x),¢ "(y)) =0}

n—-+o0o

X% ()

T hese are equivalence relations and

X%(x,e) C X5(x),
X%z, e) C X% (x).



Example 1(from linear algebra)

The linear map

A=<1 1>:R2—>R2

1 O
is hyperbolic. Let v > 1 be the golden mean,
(v,1)A = ~(v,1)
(_17’7)14 — _7_1(_177)

Of course, R2 is not compact, but letting X =
R2/72, as det(A) = —1, A induces a map with
the same local structure, but is a Smale space.

X% and X% are Kronecker foliations with lines
of slope —~v~1 and ~.



Example 2 (from topology)

Let Xg =D x S1, be the solid torus and define
wo - Xg — Xp with image as shown:

It is not onto, but if we let

X = ﬂn21@8(XO) Y = S00|X7

then (X, p) is a Smale space. The unstable set
is the S1 coordinate, while the stable set is a
totally disconnected subset of D.



Example 3 (from number theory)

For a prime p, Qp is the p-adic numbers. It is
a field and a metric space which is the com-
pletion of Q. It is totally disconnected. Multi-
plication by p contracts by a factor p_l, while
multiplication by any integer relatively prime
to p is an isometry.

Let p < g be primes. On Qp X R x Qq, define

o(z,y,2) = (p Lqz,p 1qy,p 1qz).

It expands the first factor and the second (p <
q), but contracts the third.

But the space is not compact. However,

X =Qp xR xQq/Z[1/pq]

IS, ¢ induces a homeomorphism which has the
same local structure.



Example 4: Shifts of finite type (SFTs)

Let G = (G9,G1,4,t) be a finite directed graph.
Then we have the shift space of bi-infinite
paths and shift map:

Yo = {(Miz_ e eah,
i(eP T = t(e¥), for all n}
o(e)f = eFT1 "ieft shift”

The metric d(e, f) = 2%, where k& > 0 is the
least integer where (e~ %, eF) £ (f=F, ).

The local stable and unstable sets at some
point e are:

S5(e, 1) = {(...,%,x,x,¢e% e, e, ..)}
U e, 1) ={(...,e %, e 1, el %, %, %,...)}

Note that 2 is totally disconnected; if fact,
these are precisely the totally disconnected Smale
spaces.



C*-algebra: C*(X?%)

For C*-algebras of equivalence relations, it is
nice if we can find an abstract transversal, as
in Muhly, Renault, Williams.

Space:

X"(O(z)) = Upez X (" (2)),
(Caution: in a new topology, not the relative
topology!)

Equivalence relation:

X(0(2))” = X° N (X*(O(=z)) x X*(O(z)))

This is an étale equivalence relation and we
consider S(X,p,x) = C*(X%*(O(x))%).

Alternately, we could study
U(X,p,z) = C*(X*(O(x))").

Up to Morita equivalence these are indepen-
dent of the choice of =x.



Our original map ¢ induces a homeomorphism

of the space X%(O(x)) and an automorphism

of X¥(O(x))?® and hence automorphisms of S(X, o, ),
as well as U(X, p,x). We can also look at

S(X,p,x) XpZ, U(X,p,x) Xy, Z

Case 1: Shifts of finite type (Krieger)

S(X,p,x) is an AF-algebra.

AL AT
Ko(S(Zq,0,2)) 2limzY =S zN & ...

where A is the adjacency matrix of the graph
G.

The same for U(X,¢,z) (change A} to Ag).

Moreover, we have

S(Za,0,2) Xp Z=O IC.
(Go-aj)SO Ag@
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Case 2: One-dimensional solenoids

Klaus Thomsen : C*-algebras fall under ElI-
liott's classification program. (Torsion can oc-
cur in K-theory!)

Case 3: General properties

P-Spielberg : amenability, simplicity, purely in-
finite, etc.
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Back to dynamics...

Smale spaces have a large supply of periodic
points and it is interesting to count them.
Theorem 1. Let A; be the adjacency matrix
of the graph G. For any p > 1, we have

#{e € g | oP(e) = e} = Tr(A}).

This is reminiscent of the Lefschetz fixed-point
formula for smooth maps of compact mani-
folds.

Question 2 (Bowen). Is the right hand side
actually the result of o acting on some homol-
ogy theory of (X ,0)7 Is there a more general
version of the theory for Smale spaces?

Krieger: Ko(S(X,0,2)) or Kog(U(X,0,x)), which
we will now denote by D%(X,0) and D%(%,0),
respectively.
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Bowen’s Theorem
Theorem 3 (Bowen). For a non-wandering Smale
space, (X, ), there exists a SFT (X,0) and

(X, 0) = (X, p),

with mo o = @ om, continuous, surjective and
finite-to-one.

Problem Does a map « : (Y,v) — (X, p) in-
duce a x--homomorphism between the C*-algebras?
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A map 7 : (Y,v) — (X,p) map between Smale
spaces is w is s-bijective if, for all y in'Y

w1 Y (y,€) = X5(m(y), €)

IS a local homeomorphism.

Theorem 4. Let 7w : (Y,v) — (X,p) be a fac-
tor map between Smale spaces and y in'Y be
periodic and such that «|O(y) is injective.

If w isu-bijective, then there is a x-homomorphism

 S(Y,¥,y) = S(X, o, m(y)).

If 7 is s-bijective, then there is a x-homomorphism

T U(X, o, m(y)) = U, 9, y).
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If = is u-bijective
m:Y*(O(y)) — X“(O(n(y)))

IS a homeomorphism and

T x m(Y*(O(y)))” € X“(O(n(y)))”

IS an open subgroupoid.

If = is s-bijective

mx 7w YHO0(y))” = X (O(x(y)))”

IS a proper morphism of groupoids.
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A better Bowen’s Theorem

Let (X,p) be a Smale space. We look for a
Smale space (Y,v) and a factor map

Ts - (Yaw) — (Xa 90)

satisfying:

1. 75 is s-bijective,

2. dim(Y%(y,e)) = 0.

That is, Y¥(y,¢) is totally disconnected, while
YS(y,e) is homeomorphic to X*4(mws(y),€).

This is a “one-coordinate” version of Bowen's
T heorem.
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Similarly, we look for a Smale space (Z,¢() and
a factor map m, : (Z,() — (X, ) satisfying
dim(Z%(z,e)) = 0, and my, is u-bijective.

We call = = (Y, ¢, 7s,Z,(,m,) a s/u-bijective
pair for (X, ).

Theorem 5 (Better Bowen). If (X, p) is a non-
wandering Smale space, then there exists an
s/u-bijective pair.

Fibred product recovers Bowen's (3, 0):

)
2
(£,0) (X, )

(Z,¢)

with
T = Pg O Ty — Py O Ts.
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A homology theory

For L, M > 0, we define

ZL,M(T‘-) — {(y07"'7yLazO7°°°7zM) ‘
Yl EY,Zm < Z?

Ws(yl) — WU(Zm)}-
Each of these is a SFT.

Moreover, the maps

o, © 2ZLM— 2L-1,M>
Sm ' LM~ 2L M-1

which delete y; and z,, are s-bijective and u-
bijective, respectively.
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We get a double complex:

D¥(X02)"—D%(X1 2)""—D*(Z32) ™" —

D3(Z0,1)"—D%(X1 1) —D*(Z2 1) —

D*(Z0,0)" ~—D*(X1,0)" —D*(£2,0) " —

Oy S m=nD*(Zp p)¥
— S m=N_1D5(Zp ar)*

O = Tho(-1)f + XA (—1)m M5

H () = ker(8%,)/Im (95 11).

19



Topology Dynamics
open cover Bowen's Theorem
U]_,,UI 7T3,7TU:Y,Z—>X
multiplicities multiplicities
Uig N+ NU; 70 >p,m(m)
groups groups
CN DS(ZN(W))alt

20



Theorem 6. The groups H3};(m) depend on
(X, ), but not the choice of s/u-bijective pair

™ — (Y7¢77T8727C77TU>'

From now on, we write H3 (X, ).

Theorem 7. The functor H{ (X, ¢) is covariant
for s-bijective factor maps, contravariant for u-

bijective factor maps.

Theorem 8. The groups H} (X, ¢) are all finite
rank and non-zero for only finitely many N € 7.
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Theorem 9 (Lefschetz Formula). Let (X, p)
be any non-wandering Smale space and let p >
1.

S (1N Trl(p®)P: H{ (X, ¢)®Q
NEeZ

— Hy (X, ¢) ® Q]

#{z € X | P(2) = 2}
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Example 4: Shifts of finite type

If (X,p)=(X,0), then Y =% = Z is an s/u-
bijective pair.

The only non-zero group in the double complex
occurs at (0,0).

Hp (%=, 0)
Hy(X,0)

D*(X),
0,N # 0.

Example 3: %-solenoid[N. Burke-P.]
Let p < g be primes and (X, ) the ]%-solenoid.

Z = X, Y is the full ¢g-shift and it maps down
so that it is two-to-one on a full p-shift.

H§(X,p) = Z[1/4]
Hi(X,p) & Z[1/p]
H$(X,¢) = 0,N#0,1.
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Example 2: 2°°-solenoid [Bazett-P.]

H§(X, )
Hi(X,¥)

HY (X, ¢)

12112

Generalized 1-solenoids

sen): done by Amini, P,

Z[1/2],
4,
0,N #£0,1

(Williams, Yi, Thom-
Saeidi Gholikandi and

you can hear more at 4:00 PM.

Example 1: 2-torus[Bazett-P.]:

1 1
1 0O

) ' R?/Z% — R? /72

N |HY (X, 9)  ¢f
—1 Z, 1
1 1
2
0| z (1 O)
1 7, —1.
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