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Overview of Noncommutative Geometry

Classical NCG
Manifold M Spectral Triple (A, #, D)
Vector Bundle E over M Projective Module £ over A

E=eAd, ec My(A), e?=e

de Rham Homology/Cohomology Cyclic Cohomology/Homology
Atiyah-Singer Index Formula Connes-Chern Character Ch(D)
indDge = [ A(RM) A Ch(FF) ind Dge = (Ch(D), Ch(€))

Characteristic Classes Cyclic Cohomology for Hopf Algebras




Spectral Triples

A spectral triple (A,H, D) consists of
@ A Zo-graded Hilbert space H = H™ & H ™.
@ An involutive algebra A represented in H.
© A selfadjoint unbounded operator D on H such that
O D maps H* to HF.
@ (D +i)7tis compact.
© [D, a] is bounded for all a € A.




Spectral Triples

A spectral triple (A,H, D) consists of
@ A Zo-graded Hilbert space H = H™ & H ™.
@ An involutive algebra A represented in H.
© A selfadjoint unbounded operator D on H such that
O D maps H* to HF.
@ (D +i)7tis compact.
© [D, a] is bounded for all a € A.

Example (Dirac Spectral Triple)

(C(M), Lz (M, $).D,).

where (M", g) is a compact Riemanian spin manifold (n even),
$ =987 ®$§ s the spinor bundle, and [Dé, is the Dirac operator.




Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A, H, D), consists of
@ A Zp-graded Hilbert space H = H™ @& H .

@ An involutive algebra A represented in H together with an
automorphism o : A — A such that o(a)* = o~1(a*) for all
ac A

© A selfadjoint unbounded operator D on H such that
® D maps H* to HTF.
@ (D= /)7t is compact.
© [D,a], := Da— o(a)D is bounded for all a € A.
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Example (Conformal Deformation of Spectral Triples)
Given an ordinary spectral triple (A, H, D), let k € A, k > 0. Then

(A, H, kDk),, o(a) = k’ak™2, ac A,

is a twisted spectral triple.




Example (Conformal Deformation of Spectral Triples)
Given an ordinary spectral triple (A, H, D), let k € A, k > 0. Then

(A, 1, kDk),, o(a) = k’ak™2, ac A,

is a twisted spectral triple.

Example (Conformal Change of Metric)

Let (C®(M), L3(M, §), [, ) be a Dirac spectral triple. Consider
the conformal change of metric,

g=k32g, ke C™®M), k>0.

2 . . . .
Then (C>°(M), L3(M, $),D;) is unitarily equivalent to

(CX(M), L (M, 8), VKD k).
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Further Examples

Further Examples

e Conformal Dirac spectral triple (Connes-Moscovici).
@ Twisted spectral triples over NC tori associated to conformal
weights (Connes-Tretkoff).

@ Poincaré duals of some ordinary spectral triples (RP+HW,
Part 3).

@ Twisted spectral triples associated to quantum statistical
systems (e.g., Connes-Bost systems, supersymmetric Riemann
gas) (Greenfield-Marcolli-Teh ‘13).




o-Connections

Definition (Bimodule of o-Differential Forms)

QIDJ(.A) = Span{ad,b; a,b € A} C L(H),
where d,b := [D, b], = Db — o(b)D.
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Let £ be a finitely generated projective module over A.
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o-Connections

Definition (Bimodule of o-Differential Forms)

Qb ,(A) = Span{ad,b; a,b € A} C L(H),
where d,b := [D, b], = Db — o(b)D.

Definition (o-Connection)

Let £ be a finitely generated projective module over A.

© A o-translate is a finitely generated projective module £
together with a linear isomorphism ¢ : £ — £ such that

of(€a) =0%(€)o(a) VE€EVae A

@ A o-connection is a given by a o-translate £7 and a linear
map V& : & — €7 ® Qp ,(A) such that

VE(¢a) = (§) @ dra+ (VEE)a Vac AVEEE.




Operator Dye

Proposition (RP-+HW)

@ The data of a o-connection V¢ defines a closed unbounded
operator,

0 Dge I + -
DW:(D; g) Doe :E@HT — E° @HT.

© The operators Dég are Fredholm.
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Operator Dye

Proposition (RP-+HW)

@ The data of a o-connection V¢ defines a closed unbounded
operator,

0 Dge I + -
Dvg:<D§£ g) Doe :E@HT — E° @HT.

© The operators Dég are Fredholm.

Definition (Index of Dye)

ind Dv.S =
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Operator Dye

Proposition (RP-+HW)

@ The data of a o-connection V¢ defines a closed unbounded
operator,

0 Dge I + -
Dvg:<D§£ g) Doe :E@HT — E° @HT.

© The operators Dég are Fredholm.

Definition (Index of Dye)

1
ind Dye = 5 (ind D%F'S —ind D;S) ,

where ind Dés = dim ker Dé[g — dim coker Dég.
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Operator Dye

Proposition (RP-+HW)

@ The data of a o-connection V¢ defines a closed unbounded
operator,

0 Dge I + -
DVS:(D; g) Doe :E@HT — E° @HT.

© The operators Dés are Fredholm.

Definition (Index of Dye)

1
ind Dye = 5 (ind Dég —ind D;S) ,

where ind Dés = dim ker Dés — dim coker Dég.

In all the main examples ind Dye is actually an integer.

10/21




Index Map and Connes-Chern Character

Proposition (Connes-Moscovici, RP+HW)

There is a unique additive map indp , : Ko(A) — %Z such that

indp[] = ind Dge V(& V).
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Index Map and Connes-Chern Character

Proposition (Connes-Moscovici, RP+HW)

There is a unique additive map indp , : Ko(A) — %Z such that

indp[] = ind Dge V(& V).

Theorem (Connes-Moscovici, RP+HW)

Assume that Tr |D|™P < oo for some p > 1. Then there is a

(periodic) cyclic cohomology class Ch(D), € HP°(A) , called
Connes-Chern character, such that

ind Dge = (Ch(D),,Ch(E))  Y(E,V9),

where Ch(&) is the Chern character in periodic cyclic homology.

11/21



Conformal Dirac Spectral Triple

@ M?" is a compact spin oriented manifold (n even).

12 /21



Conformal Dirac Spectral Triple

@ M?" is a compact spin oriented manifold (n even).

@ C is a conformal structure on M.

12 /21



Conformal Dirac Spectral Triple

@ M?" is a compact spin oriented manifold (n even).

@ C is a conformal structure on M.

© G is a group of conformal diffeomorphisms preserving C.
Thus, given any metric g € C and ¢ € G,

g = ;2g with kg € C®(M), ks > 0.
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Conformal Dirac Spectral Triple

@ M?" is a compact spin oriented manifold (n even).

@ C is a conformal structure on M.

© G is a group of conformal diffeomorphisms preserving C.
Thus, given any metric g € C and ¢ € G,

b8 = kg with ky € C¥(M), ky > 0.
Q C°°(M) x G is the (discrete) crossed-product algebra, i.e.,

C®(M)x G = {Z faug, Ty € CSO(M)}a

Uy = u;l = Uy-1, ugf = (f o ¢~ )uy.
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Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)
For ¢ € G define Uy : Lz,(M,,i?) — LE(M,$) by

Ug = k; 2 0.6 VE € L2(M,$).
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Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)
For ¢ € G define Uy : Lz,(M,,i?) — LE(M,$) by

UgE = k; 20,6 V€ € L2(M,$).

Then Uy is a unitary operator, and

Us DgUs = /oDy s
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Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)
For ¢ € G define Uy : L;(M,,ﬁ?) — Lg(l\/l,,?;) by

UgE = k; 20,6 V€ € L2(M,$).

Then Uy is a unitary operator, and
Uy DgU;’; = \/kd)LDg\/k(p.

Proposition (Connes-Moscovici)

The datum of any metric g € C defines a twisted spectral triple
(c™(M) % 6, L2(M.$).D, ) given by
@ The Dirac operator ) p as§ociated to g.
@ The representation fuy, — fUy of C**(M) x G in LE(M,,$).
@ The automorphism og(fuy) := k(;lfud).
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Conformal Connes-Chern Character

Theorem (RP4+HW)

© The Connes-Chern character Ch(D, ), € HPO(C>®(M) x G)
is an invariant of the conformal structure C.
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Conformal Connes-Chern Character

Theorem (RP4+HW)
© The Connes-Chern character Ch(D, ), € HPO(C>®(M) x G)
is an invariant of the conformal structure C.
@ For any cyclic homology class n € HPo(C*>°(M) % G), the
pairing,

(Ch®g)og:m),

is a conformal invariant.

14 /21



Computation of Ch(D,),,
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© Thanks to the conformal invariance we can choose any metric
g € C to compute Ch(D,)o, -
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Computation of Ch(D,),,

© Thanks to the conformal invariance we can choose any metric
g € C to compute Ch(D,)o, -

@ If the conformal structure C is nonflat, then it contains a G
invariant metric C.

@ If g € C is G-invariant, then o, = 1, and so the conformal
Dirac spectral triple (COO(I\/I) x G, Lé(l\/l,$),lpg) is an

g,

ordinary spectral triple. ‘
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Computation of Ch(D,),,

© Thanks to the conformal invariance we can choose any metric
g € C to compute Ch(D,)o, -

@ If the conformal structure C is nonflat, then it contains a G
invariant metric C.

@ If g € C is G-invariant, then o, = 1, and so the conformal
Dirac spectral triple (COO(I\/I) x G, LE(M,$),4Dg)Gg is an
ordinary spectral triple.

@ In this case, the Connes-Chern character is computed as a
consequence of a new heat kernel proof of the local
equivariant index theorem of Atiyah-Segal, Donelly-Patodi,
Gilkey.
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@ C is a nonflat conformal structure on M.

@ g is a G-invariant metric in C.
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@ C is a nonflat conformal structure on M.

@ g is a G-invariant metric in C.

Let p € G. Then
o M? is the fixed-point set of ¢;
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@ C is a nonflat conformal structure on M.

@ g is a G-invariant metric in C.

Let p € G. Then
o M? is the fixed-point set of ¢; this is a disconnected sums of
submanifolds,
M?® = | |M¢, dimM¢ = a (a even).
o N¢ = (TM?)* is the normal bundle (vector bundle over M?).
@ Over M?, with respect to TM|M¢ = TM? & N?, there are
decompositions,

¢ = Ly VM — gTM? g oM
0 ¢|N’¢’
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Local Index Formula in Conformal Geometry
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric g € C,
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric g € C, the Connes-Chern character

Ch(D, ), is represented by the periodic cyclic cocycle ¢ = (p2m)
given by

902m(f0u¢07 T f2m“¢>2m) =

()2 3 A(RTMS N\ A £0 71 A0
(2m)! 3 (2n)7 AR ), (R )/\f dFLA. - AdFET

" 0<a<n
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric g € C, the Connes-Chern character

Ch(D, ), is represented by the periodic cyclic cocycle ¢ = (p2m)
given by

S02m(f0u¢oa ) f2m“¢>2m) =
(—i)2 —a/ Ao TME N9 r 20 31 22
E 2m) "2 AR )M, (R )/\f df A -AdFT,
(2m)| OSaSn( ) M? ( ) d’

where ¢ := ¢go -+ 0 Pom,
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric g € C, the Connes-Chern character

Ch(D, ), is represented by the periodic cyclic cocycle ¢ = (p2m)
given by

S02m(f0u¢oa ) f2m“¢>2m) =
(—i)2 —a/ Ao TME N9 r 20 31 22
E 2m) "2 AR )M, (R )/\f df A -AdFT,
(2m)| OSaSn( ) M? ( ) d’

where ¢ :== ¢g o -0 ¢popm, and fi = fjogl)alo”-o JT_11,
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric g € C, the Connes-Chern character

Ch(D, ), is represented by the periodic cyclic cocycle ¢ = (p2m)
given by

902m(f0u¢07 R f2m“¢>2m) =

(_,-)5 —a/ S pTME N 0421 22
om)3 [ AR\ (R )/\f dFiA- - AdF2M,

a2 @ [ ARy

where ¢ := ¢ 0 -+ 0 ¢om, and f1 ;= flogglo---o Jf_ll, and

. RTM? /2
A(R™?) .= ) AR i
( ) det? sinh (RTM?/2) |’

¢
vs (RV") 1= det™ [1 — e R } .
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Local Index Formula in Conformal Geometry

Remark
The n-th degree component of ¢ is given by

0 n _ foOd?l/\/\d?n ifd)oo...ogbn:l,
(pn(f Ugyg s ,f U¢n) { 0 if(/,oo,_'o%#

[y

This represents Connes’ transverse fundamental class of M/G.
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Cyclic Homology of C*(M) x G

Let p € G. Then
@ (¢) is the conjugation class of ¢.
o Gy, ={1Y € G; po¢p=¢or}is the stabilizer of ¢.
o H*(M2) is the Gg-invariant cohomology of Mg
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Cyclic Homology of C*(M) x G

Let p € G. Then
@ (¢) is the conjugation class of ¢.

o Gy ={¢ € G; Yo¢p=¢or} is the stabilizer of ¢.
o H*(M2) is the Gg-invariant cohomology of Mg

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

Pa(C(M EB D HM

y 0<a<n
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Construction of Geometric Cycles

Proposition (Brylinski-Getzler, Crainic, RP+HW)

© To any Ggy-invariant closed diff. form w on Mg’ is naturally
associated an even cyclic cycle n,, on C>*(M) x G.
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Construction of Geometric Cycles

Proposition (Brylinski-Getzler, Crainic, RP+HW)

© To any Ggy-invariant closed diff. form w on Mg’ is naturally
associated an even cyclic cycle n,, on C>*(M) x G.

Q Ifw=fOdf' A--- Adf™, then

Ny = Z 6(0)?0 ®fM)g...gfolm-1) o fg(m)u¢,
c€Gm

where f/ is a suitable smooth extension of fi to M.
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Conformal Invariants

Theorem (RP+HW)

Let w be as in the previous slide. For any metric g € C define

lg(w) = <Ch(@g)0'g ) o) -

Then
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Conformal Invariants

Theorem (RP+HW)

Let w be as in the previous slide. For any metric g € C define

lg(w) = <Ch(@g)0'g ) o) -

Then
@ I;(w) is an invariant of the conformal structure C depending
only on the class of w in H*(MZ)%.

21/21



Conformal Invariants

Theorem (RP+HW)

Let w be as in the previous slide. For any metric g € C define

lg(w) = (Ch(@)og > w)-

Then
@ I;(w) is an invariant of the conformal structure C depending
only on the class of w in H*(MZ)%.

@ For any G-invariant metric g € C, we have

) = /w AR™) A vy (RY) Aw.
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Conformal Invariants

Theorem (RP+HW)
Let w be as in the previous slide. For any metric g € C define

lg(w) = (Ch(@)og > w)-

Then
@ I;(w) is an invariant of the conformal structure C depending
only on the class of w in H*(MZ)%.

@ For any G-invariant metric g € C, we have

) = /w AR™) A vy (RY) Aw.

Remark

The above invariants are not of the same type as those considered
by S. Alexakis in his solution of the Deser-Swimmer conjecture.
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