Freeness and the Transpose

Matrices just wanna be free

Jamie Mingo (Queen's University)

with Mihai Popa

COSy, June 26, 2014

GUE random matrices

- ▶ $Ω = M_N(\mathbf{C})_{s.a.} \simeq \mathbb{R}^{N^2}$, dX is Lebesgue measure on \mathbb{R}^{N^2} , $dP = C \exp(-N \text{Tr}(X^2)/2) dX$ is a probability measure on Ω (C is a normalizing constant, $\text{Tr}(I_N) = N$)
- ► $X : \Omega \to M_N(\mathbf{C})$, $X(\omega) = \omega$, the *Gaussian Unitary Ensemble*, is a matrix valued random variable on the probability space (Ω, P)
- ▶ if $X = \frac{1}{\sqrt{N}}(x_{ij})$, then $E(x_{ij}) = 0$, $E(|x_{ij}|^2) = 1$ and $\{x_{ij}\}_{i \le j}$ are independent complex Gaussian random variables (real on diagonal)

Wigner's semi-circle law (1955)

0.1

 5×5 Gue sampled 10,000 times.

 100×100 gue sampled once.

 $4000\times4000~\text{GUE}$ sampled once.

This is the same distribution as $S + S^*$ on $\ell^2(\mathbb{N})$ with respect to the vector state ω_{ξ_0} with $\xi_0 = (1, 0, 0, \dots)$ and S is the unilateral shift.

Wishart matrices and the Marchenko-Pastur law

► *G* is a $M \times N$ random matrix $G = (g_{ij})_{ij}$ with $\{g_{ij}\}_{ij}$ independent complex Gaussian random variables with mean 0 and (complex) variance 1, i.e. $E(|g_{ij}|^2) = 1$. $W = \frac{1}{N}G^*G$ is a *Wishart* random matrix

$$c = \lim_{N \to \infty} \frac{M}{N} > 0$$
 $a = (1 - \sqrt{c})^2, b = (1 + \sqrt{c})^2$
 $d\mu_c = (1 - c)\delta_0 + \frac{\sqrt{(b - t)(t - a)}}{2\pi t}dt$

M=50 N=100 Wishart matrix sampled 3,000 times, the curve shows the eigenvalue distribution as $M,N\to\infty$ with $M/N\to1/2$

Eigenvalue distributions and the transpose

► Let X_N be the $N \times N$ GUE. (dotted curves show limit distributions)

- ► The GOE is the same idea as the GUE except we use real symmetric matrices
- ▶ if we let Y_N be the $N \times N$ GOE then $Y_N + (Y_N^2)^t = Y_N + Y_N^2$; so we would *not* get different pictures

Haar unitaries

▶ let U_N be the $N \times N$ Haar distributed unitary matrix

$$U_{10} + U_{10}^*$$
 sampled 100 times

 $U_{10} + U_{10}^* + (U_{10} + U_{10}^*)^t$ sampled 100 times

tensor and free independence

Tensor version

- ▶ A, B unital C^* -algebras, $\phi_1 \in S(A)$, $\phi_2 \in S(B)$, states
- $A_1 = A \otimes 1 \subset A \otimes B$, $A_2 = 1 \otimes B \subset A \otimes B$ are tensor independent with respect to $\varphi = \varphi_1 \otimes \varphi_2$
- if $x \in A_1$, $y \in A_2$, then x and y are tensor independent so $\varphi(x^{m_1}y^{n_1}\cdots x^{m_k}y^{n_k}) = \varphi(x^{m_1+\cdots+m_k})\varphi(y^{n_1+\cdots+n_k})$

Free version

- $A_1 = A *_{\mathbf{C}} 1 \subset A *_{\mathbf{C}} B$, $A_2 = 1 *_{\mathbf{C}} B \subset A *_{\mathbf{C}} B$ are freely independent with respect to $\varphi = \varphi_1 *_{\mathbf{C}} \varphi_2$
- if $x \in \mathcal{A}_1$ an $y \in \mathcal{A}_2$ then $\varphi(x^{m_1}y^{n_1}x^{m_2}y^{n_2}) = \varphi(x^{m_1+m_2})\varphi(y^{n_1})\varphi(y^{n_2}) + \\ \varphi(x^{m_1})\varphi(x^{m_2})\varphi(y^{n_1+n_2}) \varphi(x^{m_1})\varphi(x^{m_2})\varphi(y^{n_1})\varphi(y^{n_2})$
- ▶ if $a_1, ..., a_n \in A_1 \cup A_2$ are alternating i.e. $a_i \in A_{j_i}$ with $j_1 \neq j_2 \neq \cdots \neq j_n$ and centered i.e. $\varphi(a_i) = 0$; then the product $a_1 \cdots a_n$ is centered, i.e. $\varphi(a_1 \cdots a_n) = 0$.

the method of moments (and cumulants)

- ► how do you prove the central limit theorem? i.e. that a certain limit distribution is Gaussian
- ► $E(e^{itX_n}) \stackrel{n\to\infty}{\to} E(e^{itX})$ where *X* is Gaussian
- ► take a logarithm, expand as a power series and check convergence term by term; use $\log E(e^{itX}) = \frac{(it)^2}{2!}$
- ► the *R*-transform is the free version of log $E(e^{itX})$, G(R(z) + 1/z) = z where $G(z) = E((z X)^{-1})$.
- for the semicircle law R(z) = z i.e. all free cumulants vanish except variance is 1
- for Marchenko-Pastur R(z) = c/(1-z), i.e. all free cumulants equal to c
- ► *X* and *Y* are free if and only if mixed free cumulants vanish (also true for tensor independence—this is why cumulants were first used 100 yrs ago)

unitarily invariant ensembles

▶ a $N \times N$ random matrix, $X = (x_{ij})_{ij}$, is unitarily invariant if for all U, a $N \times N$ unitary matrix, we have

$$E(x_{i_1j_1}x_{i_2j_2}\cdots x_{i_mj_m}) = E(y_{i_1j_1}y_{i_2j_2}\cdots y_{i_mj_m})$$
where $Y = UXU^{-1} = (y_{ij})_{ij}$ for all i_1, \dots, i_m and $j_1, \dots j_m$

- ► if for all k, $\lim_{N\to\infty} \mathrm{E}(\mathrm{tr}(X_N^k))$ exists, then we say $\{X_N\}_N$ has a *limit distribution*
- ► THM (M. & Popa) if $\{X_N\}_N$ has a limit distribution and is unitarily invariant then X and X^t are asymptotically free
- ► GUE, Wishart, and Haar distributed unitary are all unitarily invariant so out theorem applies

(Block) Wishart Random Matrices: $M_{d_1}(\mathbf{C}) \otimes M_{d_2}(\mathbf{C})$

▶ Suppose G_1, \ldots, G_{d_1} are $d_2 \times p$ random matrices where $G_i = (g_{jk}^{(i)})_{jk}$ and $g_{jk}^{(i)}$ are complex Gaussian random variables with mean 0 and (complex) variance 1, i.e. $E(|g_{jk}^{(i)}|^2) = 1$. Moreover suppose that the random variables $\{g_{jk}^{(i)}\}_{i,j,k}$ are independent.

$$W = \frac{1}{p} \left(\frac{G_1}{\vdots \atop G_{d_1}} \right) \left(G_1^* \mid \cdots \mid G_{d_1}^* \right) = (G_i G_j^*)_{ij}$$

is a $d_1d_2 \times d_1d_2$ Wishart matrix. We write $W = (W_{ij})_{ij}$ as $d_1 \times d_1$ block matrix with each entry the $d_2 \times d_2$ matrix $G_iG_i^*$.

Partial Transposes

- G_i a $d_2 \times p$ matrix
- $W_{ij} = \frac{1}{p}G_iG_i^*$, a $d_2 \times d_2$ matrix,
- ► $W = (W_{ij})_{ij}$ is a $d_1 \times d_1$ block matrix with entries W_{ij}
- ► $W^{T} = (W_{ji}^{T})_{ij}$ is the "full" transpose
- $W^{\mathsf{T}} = (W_{ji})_{ij}$ is the "left" partial transpose
- $W^{\Gamma} = (W_{ij}^{\mathrm{T}})_{ij}$ is the "right" partial tarnspose
- we **assume** that $\frac{p}{d_1d_2} \to \alpha$ and $0 < \alpha < \infty$
- eigenvalue distributions of W and W^T converge to Marchenko-Pastur with parameter α
- eigenvalues of W^T and W^Γ converge to a shifted semi-circular with mean 1 and variance $1/\alpha$ (Aubrun)
- ► W and W^T are asymptotically free (M. and Popa)
- what about W^{Γ} and W^{γ} ?

Semi-circle and Marchenko-Pastur Distributions

Suppose
$$\frac{d_1}{\sqrt{p}} \to \frac{1}{\alpha_1}$$
 and $\frac{d_2}{\sqrt{p}} \to \frac{1}{\alpha_2}$ and $\alpha = \alpha_1 \alpha_2$ ($c = 1/\alpha$.)

▶ limit eigenvalue distribution of *W* (Marchenko-Pastur)

$$\lim E(\operatorname{tr}(W^n)) = \sum_{\sigma \in NC(n)} \left(\frac{1}{\alpha}\right)^{\#(\sigma)-1} = \sum_{\sigma \in NC(n)} \left(\frac{1}{\alpha}\right)^{\#(\gamma\sigma^{-1})-1}$$

(here $\#(\sigma)$ is the number of blocks of σ , $\gamma = (1, ..., n)$ and $\gamma \sigma^{-1}$ is the "other" Kreweras complement)

▶ limit eigenvalue distribution of W^{Γ} (semi-circle)

$$\lim E(\operatorname{tr}((W^{\Gamma})^n)) = \sum_{\sigma \in NC_{1,2}(n)} \left(\frac{1}{\alpha}\right)^{\#(\gamma\sigma^{-1})-1}$$

 $NC_{1,2}(n)$ is the set of non-crossing partitions with only blocks of size 1 and 2. (*c.f.* Fukuda and Śniady (2013) and Banica and Nechita (2013))

main theorem

- ► THM: The matrices $\{W, W^{\mathsf{T}}, W^{\mathsf{T}}, W^{\mathsf{T}}\}$ form an asymptotically free family
- ► let $(\epsilon, \eta) \in \{-1, 1\}^2 = \mathbb{Z}_2^2$.

$$\blacktriangleright \text{ let } W^{(\epsilon,\eta)} = \left\{ \begin{array}{ll} W & \text{if } (\epsilon,\eta) = (1,1) \\ W^T & \text{if } (\epsilon,\eta) = (-1,1) \\ W^\Gamma & \text{if } (\epsilon,\eta) = (1,-1) \\ W^T & \text{if } (\epsilon,\eta) = (-1,-1) \end{array} \right.$$

• let $(\varepsilon_1, \eta_1), \ldots, (\varepsilon_n, \eta_n) \in \mathbb{Z}_2^n$

$$E(\operatorname{Tr}(W^{(\epsilon_1,\eta_1)}\cdots W^{(\epsilon_n,\eta_n)}))$$

$$=\sum_{\sigma\in S_n} \left(\frac{d_1}{\sqrt{p}}\right)^{f_{\epsilon}(\sigma)} \left(\frac{d_2}{\sqrt{p}}\right)^{f_{\eta}(\sigma)} p^{\#(\sigma)+\frac{1}{2}(f_{\epsilon}(\sigma)+f_{\eta}(\sigma))-n}.$$

where $f_{\epsilon}(\sigma) = \#(\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \vee \sigma \delta \sigma^{-1})$ ("\varphi" means the sup of partitions and # means the number of blocks or cycles).

Computing Moments via Permutations, I

- ► $[d_1] = \{1, 2, \ldots, d_1\},$
- ▶ given $i_1, ..., i_n \in [d_1]$ we think of this n-tuple as a function $i : [n] \to [d_1]$
- ▶ $ker(i) \in \mathcal{P}(n)$ is the partition of [n] such that i is constant on the blocks of ker(i) and assumes different values on different blocks
- ▶ if $\sigma \in S_n$ we also think of the cycles of σ as a partition and write $\sigma \leq \ker(i)$ to mean that i is constant on the cycles of σ
- ▶ given $\sigma \in S_n$ we extend σ to a permutation on $[\pm n] = \{-n, \dots, -1, 1, \dots, n\}$ by setting $\sigma(-k) = -k$ for k > 0
- $\delta \gamma^{-1} \delta \gamma \delta = (1, -n)(2, -1) \cdots (n, -(n-1))$

Computing Moments via Permutations, II

- $\bullet \delta \gamma^{-1} \delta \gamma \delta = (1, -n)(2, -1) \cdots (n, -(n-1))$
- if $A_k = (a_{ii}^{(k)})_{ii}$ then

$$\operatorname{Tr}(A_1 \cdots A_n) = \sum_{i_1, \dots, i_n = 1}^{N} a_{i_1 i_2}^{(1)} a_{i_2 i_3}^{(2)} \cdots a_{i_n i_1}^{(n)} = \sum_{\substack{i_{\pm 1}, \dots, i_{\pm n} \\ \delta \gamma^{-1} \delta \gamma \delta \leqslant \ker(i)}} a_{i_1 i_{-1}}^{(1)} \cdots a_{i_n i_{-n}}^{(n)}$$

$$\operatorname{Tr}(W^{(\epsilon_{1},\eta_{1})}\cdots W^{(\epsilon_{n},\eta_{n})})$$

$$= \sum_{i_{1},\dots,i_{n}}\operatorname{Tr}((W^{(\epsilon_{1},\eta_{1})})_{i_{1}i_{2}}\cdots (W^{(\epsilon_{n},\eta_{n})})_{i_{n}i_{1}})$$

$$= \sum_{i_{\pm 1},\dots,i_{\pm n}}\operatorname{Tr}((W^{(\epsilon_{1},\eta_{1})})_{i_{1}i_{-1}}\cdots (W^{(\epsilon_{n},\eta_{n})})_{i_{n}i_{-n}})$$

$$= \sum_{Tr}(W^{(\eta_{1})}_{j_{1}j_{-1}}\cdots W^{(\eta_{n})}_{j_{n}j_{-n}})$$

where $\delta \gamma^{-1} \delta \gamma \delta \leqslant \ker(i)$, $\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \ker(j)$ and $j = i \circ \epsilon$

Computing Moments via Permutations, III

$$\operatorname{Tr}(W^{(\epsilon_1,\eta_1)}\cdots W^{(\epsilon_n,\eta_n)}) = \sum_{\substack{j+1,\dots,j+n}} \operatorname{Tr}(W^{(\eta_1)}_{j_1j_{-1}}\cdots W^{(\eta_n)}_{j_nj_{-n}})$$

with $\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \ker(j)$. Let $s = r \circ \eta$ then for $\delta \gamma^{-1} \delta \gamma \delta \leqslant \ker(r)$

$$\operatorname{Tr}(W_{j_{1}j_{-1}}^{(\eta_{1})}\cdots W_{j_{n}j_{-n}}^{(\eta_{n})})$$

$$= \sum_{r_{\pm 1},\dots,r_{\pm n}} (W_{j_{1}j_{-1}}^{(\eta_{1})})_{r_{1}r_{-1}}\cdots (W_{j_{n}j_{-n}}^{(\eta_{n})})_{r_{n}r_{-n}}$$

$$= \sum_{s_{\pm 1},\dots,s_{\pm n}} (W_{j_{1}j_{-1}})_{s_{1}s_{-1}}\cdots (W_{j_{n}j_{-n}})_{s_{n}s_{-n}}$$

$$= p^{-n} \sum_{s_{\pm 1},\dots,s_{\pm n}} (G_{j_{1}}G_{j_{-1}}^{*})_{s_{1}s_{-1}}\cdots (G_{j_{n}}G_{j_{-n}}^{*})_{s_{n}s_{-n}}$$

$$= p^{-n} \sum_{s_{\pm 1},\dots,s_{\pm n}} \sum_{t_{1},\dots,t_{n}} g_{s_{1}t_{1}}^{(j_{1})} \overline{g_{s_{-1}t_{1}}^{(j_{-1})}}\cdots g_{s_{n}t_{n}}^{(j_{n})} \overline{g_{s_{-n}t_{n}}^{(j_{-n})}}$$

Gaussian entries

$$E(\operatorname{Tr}(W^{(\epsilon_{1},\eta_{1})} \dots W^{(\epsilon_{1},\eta_{1})}))$$

$$= p^{-n} \sum_{j_{\pm 1},\dots,j_{\pm n}} \sum_{s_{\pm 1},\dots,s_{\pm n}} \sum_{t_{1},\dots,t_{n}} E(g_{s_{1}t_{1}}^{(j_{1})} \overline{g_{s_{-1}t_{1}}^{(j_{-1})}} \dots g_{s_{n}t_{n}}^{(j_{n})} \overline{g_{s_{-n}t_{n}}^{(j_{-n})}})$$

$$= p^{-n} \sum_{j_{\pm 1},\dots,j_{\pm n}} \sum_{s_{\pm 1},\dots,s_{\pm n}} \sum_{t_{1},\dots,t_{n}} E(g_{s_{1}t_{1}}^{(j_{1})} \dots g_{s_{n}t_{n}}^{(j_{n})} \overline{g_{s_{-1}t_{1}}^{(j_{-1})}} \dots \overline{g_{s_{-n}t_{n}}^{(j_{-n})}})$$

[subject to the condition that $\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \ker(j)$ and $\eta \delta \gamma^{-1} \delta \gamma \delta \eta \leqslant \ker(s)$]

$$=p^{-n}\sum_{j_{\pm 1},\ldots,j_{\pm n}}\sum_{s_{\pm 1},\ldots,s_{\pm n}}\sum_{t_1,\ldots,t_n}E(g_{\alpha(1)}\cdots g_{\alpha(n)}\overline{g_{\beta(1)}}\cdots\overline{g_{\beta(n)}})$$

where
$$g_{\alpha(k)} = g_{s_k t_k}^{(j_k)}$$
 and $g_{\beta(k)} = g_{s_{-k} t_k}^{(j_{-k})}$. Using $E(g_{\alpha(1)} \cdots g_{\alpha(n)} \overline{g_{\beta(1)}} \cdots \overline{g_{\beta(n)}}) = |\{\sigma \in S_n \mid \beta = \alpha \circ \sigma\}|$

$$E(Tr(W^{(\varepsilon_1,\eta_1)}\cdots W^{(\varepsilon_1,\eta_1)}))$$

$$= p^{-n} \sum_{j_{\pm 1},\dots,j_{\pm n}} \sum_{s_{\pm 1},\dots,s_{\pm n}} \sum_{t_1,\dots,t_n} |\{\sigma \in S_n \mid \text{"various conditions"}\}|$$

$$= \sum_{\sigma \in S_n} p^{-n} |\{(j,s,t) \mid \text{"various conditions"}\}|$$

$$= \sum_{\sigma \in S_n} d_1^{g_1(\sigma,\epsilon)} d_2^{g_2(\sigma,\epsilon)} p^{g_3(\sigma)}$$

where "various conditions" means

- $\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \ker(j)$
- $\eta \delta \gamma^{-1} \delta \gamma \delta \eta \leqslant \ker(s)$
- $j_{-k} = j_{\sigma(k)}$ which is equivalent to $\sigma \delta \sigma^{-1} \leqslant \ker(j)$
- $s_{-k} = s_{\sigma(k)}$ which is equivalent to $\sigma \delta \sigma^{-1} \leqslant \ker(s)$
- ► $t_k = t_{\sigma(k)}$ which is equivalent to $\sigma \leq \ker(t)$

$$E(\operatorname{Tr}(W^{(\epsilon_1,\eta_1)}\cdots W^{(\epsilon_1,\eta_1)}))$$

$$= p^{-n} \sum_{j_{\pm 1},\dots,j_{\pm n}} \sum_{s_{\pm 1},\dots,s_{\pm n}} \sum_{t_1,\dots,t_n} |\{\sigma \in S_n \mid \text{"various conditions"}\}|$$

$$= \sum_{\sigma \in S_n} p^{-n} |\{(j,s,t) \mid \text{"various conditions"}\}|$$

$$= \sum_{\sigma \in S_n} d_1^{g_1(\sigma,\epsilon)} d_2^{g_2(\sigma,\epsilon)} p^{g_3(\sigma)}$$

$$= \sum_{\sigma \in S_n} (Tr(W^{(\epsilon_1,\eta_1)} \cdots W^{(\epsilon_n,\eta_n)}))$$

$$=\sum_{\bullet}\left(\frac{d_1}{\sqrt{p}}\right)^{f_{\epsilon}(\sigma)}\left(\frac{d_2}{\sqrt{p}}\right)^{f_{\eta}(\sigma)}p^{\#(\sigma)+\frac{1}{2}(f_{\epsilon}(\sigma)+f_{\eta}(\sigma))-n}.$$

where $f_{\epsilon}(\sigma) = \#(\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \vee \sigma \delta \sigma^{-1})$ ("\varphi" means the sup of partitions)

finding the highest order terms

- ▶ general fact: if p and q are pairings then $\#(p \lor q) = \frac{1}{2}\#(pq)$. In fact we can write the permutation pq as a product of cycles $c_1c_1' \cdots c_kc_k'$ where $c_i' = qc_i^{-1}q$ and the blocks of $p \lor q$ are $c_i \cup c_i'$
- $\qquad \qquad + \ \# (\varepsilon \delta \gamma^{-1} \delta \gamma \delta \varepsilon \vee \sigma \delta \sigma^{-1}) = \tfrac{1}{2} \# (\delta \gamma^{-1} \delta \gamma \cdot \varepsilon \delta \sigma \delta \sigma^{-1} \varepsilon)$
- ▶ if π , $\sigma \in S_n$ and $\langle \pi, \sigma \rangle$ (the subgroup generated by π and σ) has only one orbit then there is an integer g (the "genus") such that

$$\#(\pi) + \#(\pi^{-1}\sigma) + \#(\sigma) = n + 2(1 - g)$$

and g = 0 only when π is planar or non-crossing with respect to σ .

- ► $\delta \gamma^{-1} \delta \gamma$ has two cycles so $\langle \delta \gamma^{-1} \delta \gamma, \epsilon \delta \sigma \delta \sigma^{-1} \epsilon \rangle$ can have either 1 or 2 orbits
- if $\langle \delta \gamma^{-1} \delta \gamma, \epsilon \delta \sigma \delta \sigma^{-1} \epsilon \rangle$ has one orbit then $\#(\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \vee \sigma \delta \sigma^{-1}) + \#(\sigma) \leqslant n$

$$E(tr(W^{(\varepsilon_1,\eta_1)}\cdots W^{(\varepsilon_n,\eta_n)}))$$

$$=\sum_{\sigma\in S_n}\left(\frac{d_1}{\sqrt{p}}\right)^{f_{\epsilon}(\sigma)-1}\left(\frac{d_2}{\sqrt{p}}\right)^{f_{\eta}(\sigma)-1}p^{\#(\sigma)+\frac{1}{2}(f_{\epsilon}(\sigma)+f_{\eta}(\sigma))-(n+1)}.$$

- σ will not contribute to the limit unless $\langle \delta \gamma^{-1} \delta \gamma, \epsilon \delta \sigma \delta \sigma^{-1} \epsilon \rangle$ has two orbits, i.e. ϵ is constant on the cycles of σ (write $\epsilon \delta \sigma \delta \sigma^{-1} \epsilon = \delta \epsilon \sigma \epsilon \delta (\epsilon \sigma \epsilon)^{-1}$)
- if ϵ is constant on the cycles of σ there is $\sigma_{\epsilon} \in S_n$ such that $\epsilon \delta \sigma \delta \sigma^{-1} \epsilon = \delta \sigma_{\epsilon} \delta \sigma_{\epsilon}^{-1}$ (if $\sigma = c_1 c_2 \cdots c_k$ then $\sigma_{\epsilon} = c_1^{\lambda_1} \cdots c_k^{\lambda_k}$ where λ_i is the sign of ϵ on c_i)
- then $\frac{1}{2}$ # $(\delta \gamma^{-1} \delta \gamma \cdot \epsilon \delta \sigma \delta \sigma^{-1} \epsilon) = #(\gamma \sigma_{\epsilon}^{-1})$
- ▶ $\#(\sigma) + f_{\epsilon}(\sigma) = \#(\sigma_{\epsilon}) + \#(\gamma \sigma_{\epsilon}^{-1}) \le n + 1$ with equality only if σ_{ϵ} is non-crossing
- $\#(\sigma) + f_{\eta}(\sigma) = \#(\sigma_{\eta}) + \#(\gamma \sigma_{\eta}^{-1}) \le n + 1$ with equality only if σ_{η} is non-crossing

$$E(\operatorname{tr}(W^{(\epsilon_1,\eta_1)}\cdots W^{(\epsilon_n,\eta_n)}))$$

$$= \sum_{\sigma\in S_n} \left(\frac{d_1}{\sqrt{p}}\right)^{f_{\epsilon}(\sigma)-1} \left(\frac{d_2}{\sqrt{p}}\right)^{f_{\eta}(\sigma)-1} + O\left(\frac{1}{p^2}\right).$$

where the sum runs over σ such that

- ϵ and η are constant on the cycles of σ and
- ▶ both σ_{ε} and σ_{η} are non-crossing.
- ▶ if $\epsilon \neq \eta$ on a cycle of σ then this cycle must be either a fixed point or a pair; $\sigma_{\epsilon} = \sigma_{\eta}$ and so $f_{\epsilon}(\sigma) = f_{\eta}(\sigma)$
- ▶ σ can only connect $W^{(1,1)}$ to another $W^{(1,1)}$, a $W^{(-1,1)}$ to another $W^{(1,-1)}$, a $W^{(1,-1)}$ to another $W^{(1,-1)}$, and a $W^{(-1,-1)}$ to another $W^{(-1,-1)}$
- ► this is the rule for a free family, thus $\{W, W^T, W^T, W^T\}$ form an asymptotically free family
- ▶ this can be extended to $M_{d_1}(\mathbf{C}) \otimes \cdots \otimes M_{d_k}(\mathbf{C})$, same calculation