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GUE random matrices

» O =Mpn(Clsy = ]RN dX is Lebesgue measure on ]RN
dP = C exp(— NTr(Xz) /2)dX is a probability measure on QO
(C is a normalizing constant, Tr(Iy) = N)

» X:Q — My(C), X(w) = w, the Gaussian Unitary Ensemble,
is a matrix valued random variable on the probability
space (Q, P)

» if X = f(xz]) then E(x;;) = 0, E(Ixi]-IZ) =1 and {x;};<; are
independent complex Gaussian random variables (real on
diagonal)



Wigner’s semi-circle law (1955)
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5 x 5 cue sampled 10,000 times. 100 x 100 cue sampled once.

This is the same distribution as
S+ S* on €2(IN) with respect to
the vector state wg, with

2 & =1(1,0,0,...) and Sis the
4000 x 4000 cuE sampled once. unilateral shift.
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Wishart matrices and the Marchenko-Pastur law

» GisaM x N random matrix G = (glj)l] with {glj}l]
independent complex Gaussian random variables with
mean 0 and (complex) variance 1, i.e. E(Igijlz) =1.

W = £G*G is a Wishart random matrix

M
c=Jim 5 >0

=(1— )% b=(1+ /c)?
= (1— )5+ VL Zt)(t_a)dt

M =50 N = 100 Wishart matrix sampled 3,000 times, the curve
shows the eigenvalue distribution as M, N — oo with
M/N —1/2



Eigenvalue distributions and the transpose

» Let Xy be the N x N GUE. (dotted curves show limit
distributions)

X000 + X300 Xi00 + (X3o0)! X000 + (X3000)"
» The GOE is the same idea as the GUE except we use real
symmetric matrices

» if we let Yyy be the N x N GOE then Yy + (Y%)! = Yy + Y3;
so we would not get different pictures



Haar unitaries

» let Uy be the N x N Haar distributed unitary matrix
0.5

Uy + Uj, sampled 100 times

Uy + UTO + (Uyo + Uiko)t
sampled 100 times

the arcsine law

-2 0 2 4

Kesten’s law on F,
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tensor and free independence
Tensor version

» A, B unital C*-algebras, @1 € S(A), @2 € S(B), states

» A1=AR1CAR®RB, Ay =19 B C AR B are tensor
independent with respect to @ = @1 ® @2

» if x € Ay, y € Ay, then x and y are tensor independent so
(p(xmlynl .. ,xmkynk) — (p(xm1+-'~+mk)(p(yn1+--~+nk)

Free version

» A1 =Axcl1 CAxcB, Ay =1xcB C Axc B are freely
independent with respect to ¢ = @1 *c @2

» if x € Aj any € A; then
@(xMymamy") = @(x™M ") o (y™ )@ (y"?) +
e(™) (™) (y" ") — @(x™)@(x™) @ (y™) @ (y™)

» ifay, ..., a, € Ay U A, are alternating i.e. a; € Aj, with
j1# jo # -+ # jn and centered i.e. @(a;) = 0; then the
product a; - - - a, is centered, i.e. ¢(aj---a,) =0.



the method of moments (and cumulants)

>

how do you prove the central limit theorem? i.e. that a
certain limit distribution is Gaussian

E(¢iXn) "Z2° E(e'X) where X is Gaussian

take a logarithm, expand as a power series and check
(it)?
2

the R-transform is the free version of log E(eX),
G(R(z) 4+ 1/z) = zwhere G(z) = E((z — X)™1).

for the semicircle law R(z) = z i.e. all free cumulants
vanish except variance is 1

for Marchenko-Pastur R(z) = ¢/(1 — z), i.e. all free
cumulants equal to c

convergence term by term; use log E(e'X) =

X and Y are free if and only if mixed free cumulants vanish
(also true for tensor independence-this is why cumulants
were first used 100 yrs ago)



unitarily invariant ensembles

» a N x N random matrix, X = (x;;), is unitarily invariant if
for all U, a N x N unitary matrix, we have

E(xiyjy Xiyj, = Xijn) = BWirjiYingy *** Yijn)
where Y = UXU ! = (y;);j forall iy, ..., iy and j1, ... jm
» if for all k, Z}grgo E(tr(Xé‘\])) exists, then we say {Xy}y has a
limit distribution

» oM (M. & Popa) if {Xy}n has a limit distribution and is
unitarily invariant then X and X' are asymptotically free

» GUE, Wishart, and Haar distributed unitary are all
unitarily invariant so out theorem applies



(Block) Wishart Random Matrices: My, (C) ® My, (C)

» Suppose Gy, ..., Gy, are d; x p random matrices where
Gi=( g}]j) )jx and g].(,? are complex Gaussian random
variables with mean 0 and (complex) variance 1, i.e.

E(] g].(]f) 2) = 1. Moreover suppose that the random variables

{g].(,f )}i,j,k are independent.

(G
Gy,

is a dydy x dyd, Wishart matrix. We write W = (Wj;);; as
dy x dq block matrix with each entry the d x d, matrix
G;Gr.

]

Gy

144

| Gy > = (GiG})jj

_1
p



Partial Transposes

>

>

>

G; ady x p matrix

Wij = %GiG;‘, a d, x dp matrix,

W = (W) is a d1 x d block matrix with entries Wj;
WT = (Wﬁ)i]- is the “full” transpose

Wil = Wii)ij is the “left” partial transpose

Wg)i]- is the “right” partial tarnspose

we assume that dl]% —aand 0 < & < o0
eigenvalue distributions of W and WT converge to
Marchenko-Pastur with parameter «

eigenvalues of W'and W' converge to a shifted
semi-circular with mean 1 and variance 1/ (Aubrun)

W and WT are asymptotically free (M. and Popa)
what about W™ and W2



Semi-circledand Marchenko-Pastur Distributions
Suppose Rt BN 1 and —= — 1 and o = oy (c =1/«x.)

1 VP x

» limit eigenvalue distribution of W (Marchenko-Pastur)

1 #(o)—1 1 #(yo1)—1
lim E(tr(W") = Y ((X> -y <a>

o€eNC(n) o€eNC(n)

(here #(0) is the number of blocks of o,y = (1,...,n) and
vo~!is the “other” Kreweras complement)
» limit eigenvalue distribution of W' (semi-circle)

1 #yo1)—1
HmE(tr(W)") = > <)

x
GGNC]’z(n)

NCj»(n) is the set of non-crossing partitions with only
blocks of size 1 and 2. (c.f. Fukuda and Sniady (2013) and
Banica and Nechita (2013))



main theorem

» tum: The matrices {W, W1, W', WT} form an asymptotically
free family

» let (e,m) € {—1,17 = Z%.

W if (e,m) =(1,1)
W1 if (e,n) = (—1,1)
(em) — ’ ’
> letW WE i () = (1, 1)
WL if (e,m) = (—1,—-1)

> let (€1/n1)1~ sy (en/nn) € ZZ

E(Tr(W(elfnl) e W(enﬁ‘ln)))

e(0) (o)
-y (‘7’1>f (d2>f” O3 e (@) (o))
O'GSn \/ﬁ \/ﬁ

where fe (o) = #(edy15yde V 660~ 1) ( “\V” means the sup of
partitions and # means the number of blocks or cycles)



Computing Moments via Permutations, I

» [di] =1{1,2,...,d1},

v

v

v

v

giveniy, ..., i, € [d1] we think of this n-tuple as a function
i:[n] — [dq]
ker(i) € P(n) is the partition of [n] such that i is constant on

the blocks of ker(7) and assumes different values on
different blocks

if 0 € S, we also think of the cycles of ¢ as a partition and
write 0 < ker(i) to mean that i is constant on the cycles of o

given o € S, we extend o to a permutation on
[£n] —{ n,...,—1,1,...,n} by setting o(—k) = —k for k > 0

vy=(012...,n ) 5(k) = —k
5Y_15Y5=(1,— )(2,-1)---(n,—(n—1))
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Computing Moments via Permutations, 11
> &y 1oyd = (1,—n)(2,—1) -+ (n,—(n— 1))
» if Ay = (ai(jk)),-j then

N
_ (1) (2) (n) _ (1) (n)
Tr(Al .. An) — Z ailizai2i3 .. .al},il — Z ai1i71 N ainl;n

il/---rin:1 ij:lr---/i:tn
5y 16vys<ker(i)

where 5y 18y5 < ker(i), edy16yde < ker(j).andj =ioe



Computing Moments via Permutations, III

Tr(W(EI’m) o W(Gn,ﬂn)) = Z Tr<wh] 1 W](n?jn))
jil ~~~~~ ] +n

with e&y~16yde < ker(j). Lets = r om then for &y 18y8 < ker(r)

]n] n
_ (Mn)
- Z ]1] 1 r1r71 (anrj}jn)rnhn
41, 40
- Z ]1] 1 s15_1 (I/v]‘n]?n)s,,s_,1
St1se54n
= p_n Z (G]1 G]* l)SlS 1 T (ijlG;‘k—n)SnS,n
S41s0/5+n

=p" ) ngmgs )L gl

S41,-/54n t1,m



Gaussian entries

E(Tr(Wlerm) ... wleim)y)

Z Z Z E gsﬂl)gs(]:ltl) gsntngs],n';n)

Ja£ 1y en SEL/Skn Ee.
Z Z Z E( () o Un) (J;n))
gsltl gs,,t,, gs 1t1 gs,ntn
]in 541540 H,eeertn

[subject to the condition that ey 18yde < ker(j) and
ndy'oyom < ker(s)]

Z Y D Bt 8«mEp) 8B

wosfbn SE1sSn Fecsbn

(k)
where g i) = g1t/ and gg 1) = g./4). Using
E(§x(1) " 8am)8p(1) " 8pm)) =Ho €Sy | B = oo}




Thus
E(Tr(Wlerm) ... wleimly)

Z Z Z {o € S, | “various conditions”}|

]j:n S410--/54n t]

= Z p " l{(j,s,t) | “various conditions”}|
0ESy,

_ Z d%’l((f,e)d(gz(dﬁ)pgﬂd)
oES,
where “various conditions” means
» by 1oyde < ker())
ndy 18ysn < ker(s)

> j_k = jo(k) which is equivalent to o560~
1

\4

ker(j)
ker(s)

NN

> S_i = Sy(x) Which is equivalent to 060~

> =1, Wthh is equivalent to o < ker(f)



Thus
E(Tr(Wlerm) ... wleim)y)

Z Z Z {o € S, | “various conditions”}|

woosfbn 1St Fpecsbn

= Z p " l{(j,s,t) | “various conditions”}|
o€Sy

_ Y a0 o)

o€EeS,

E(Tr(W'erm) ... wlenmnnly)

o) n(G)
Z( > (dz>f PO+ (e () ()=
s, VP
o) =

where fe (o) = #(edy 16yde V 060~ 1) ( “\V/” means the sup of

partitions)
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finding the highest order terms

>

general fact: if p and g are pairings then #(p \V q) = %#(pq).
In fact we can write the permutation pg as a product of
cycles cicf - - cxcf where ¢! = gc; 'q and the blocks of p \/ g
are c; U/

#(edy 16yde V odo 1) = %#(6}/*161/ - edodole)

if T, 0 € S, and (7, 0) (the subgroup generated by 7 and o)
has only one orbit then there is an integer g (the “genus”)
such that

#(m0) + #( o) + #(o) =n+2(1 —9)

and ¢ = 0 only when 7t is planar or non-crossing with
respect to o.

&y~ 18y has two cycles so (5y '8y, 5080 Le) can have
either 1 or 2 orbits

if (5y~18y, 080~ L€) has one orbit then

#(edy16yde V odo ) +#(0) <n
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E(tr(W(etm) .. wlenmnly)

)1/ g N\ falo)—1 )
— Z < ) <2> p#(G)Jrz(fe(Uan(U))f(nH)-
VP VP

oES,

» o will not contribute to the limit unless
(6y~15y, e5050 €) has two orbits, i.e. € is constant on the
cycles of o (write e5060 e = deoed(eoe) ™)

» if € is constant on the cycles of o there is 0 € S, such that
edodole = édeécrgl (if o =cicp -, then o = ci‘l ,i"‘
where A is the sign of € on ;)

» then 1#(6}/*161/ edodole) = #(yo )

> ) + fe(0) = #(0c) + #(yos!) < n+ 1 with equality only
1f O¢ is non- crossmg

» #(0) + frn(0) =#(0on) + #(ycr;l) < n + 1 with equality only
if oy, is non-crossing

N
9
[N



E(tr(wlerm) .. pylennaly)

B ) ()

oES,
where the sum runs over o such that

» ¢ and n are constant on the cycles of o and

» both o, and oy, are non-crossing.

» if € # 1 on a cycle of o then this cycle must be either a fixed
point or a pair; 0. = oy and so fe(0) = f(0)

» o can only connect WD to another WD) a W(=11) ¢o
another W=D a W(L—1) to another W1, and a
W11 to another W(—1—1)

» this is the rule for a free family, thus {W, WT WT, WT form
an asymptotically free family

» this can be extended to M, (C) ® - - - ® My, (C), same
calculation



