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Smale spaces

e (X,d): A compact metric space,
° Y a homeomorphism of X.

e (X, ) is a Smale space <

{Xs(x,e), £ < gy X>(x, &)
X¥(x,2), e<g
X% e)

d(p(), 9(y)) < Ad(x,y) on X°(x,€)
d(e~1(x), 0 1(y) < Ad(x,y) on X“(x,¢)

Figure: The local stable and unstable coordinates
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Smale spaces

Definition

Let (X, ) and (Y, %) be Smale spaces and let

7w (Y,9¥) = (X, ) be a map. We say that 7 is s-bijective (or
u-bijective) if, for any y in Y, its restriction to Y*(y,€) (or
Y!(y,€), respectively) is a local homeomorphic to X*(7(y),€) (or
XY(m(y),€), respectively).
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Smale spaces

Examples of Smale spaces:
@ The basic sets for Smale’s Axiom A systems,
@ Substitution tiling spaces,
@ Shifts of finite type spaces,
o

One-dimensional solenoids.

Homology for one-dimensional solenoids



Introduction
®0

Shift of finite type

Shift of finite type spaces




Introduction
oe

Shift of finite type

Let G be a finite (directed)graph:

Y = {(e")kez | € € Gy and t(ek) = i(ekTY), for all k € Z}.

The map 0 : £ — X is the left shift: o(e)* = ek*1, for all
eEdg.

(XG,0) = is called a shift of finite type space and it is a Smale
space with

Yi(e, 27 ) ={f|fi=¢i>1-K}

Ys(e, 27 ) ={f | fi=¢i<k+1}
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One-dimensional solenoids

e Example of one-dimensional solenoid:
X: A wedge of two clockwise circles a, b with a unique vertex p
And

f:a— aab, b — abb.
A
a
% b
p
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One-dimensional solenoids

X = lim_X (—f X...= {(Xo,Xl,XQ, ) ’f(X,'_,_l) = Xj,i € NU{O}}

((Xl) =0 .VI)/ 22 ’d Xl>yl

o f((x0,x1,x2,..)) = ((f(x0), f(x1), f(x2),..) = ((fx0), x0, X1, --)

(X, f) is an example of one-dimensional solenoids.
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One-dimensional solenoids

{ (X.W:X%X S lf x#p=7m1tx—€ex+e)~

)ieNu{o} — X0
(x — €,x + €) x Sequence space

How about point p:

f(Up) ~ (—1,1) (The flatting condition)

n‘l(Up) ~ (—1,1) x sequence set

ra
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One-dimensional solenoids

Definition

[Williams, Yi, Thomsen|Let X be a finite (unoriented), connected
graph with vertices V and edges E. Consider a continuous map
f: X — X. We say that (X, f) is a pre-solenoid if the following
conditions are satisfied for some metric d giving the topology of X:

«) (expansion) there are constants C > 0 and A > 1 such that
d(f"(x),f"(y)) > CA"d(x,y) for every n € N when
x,y € e € E and there is an edge € € E with
f"([x,y]) C € ([x,y] is the interval in e between x
and y),

3) (non-folding) f" is locally injective on e for each e € E and
each n € N,

v) (Markov) f(V) C V,
for every edge e € E,
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One-dimensional solenoids

) (mixing) there is m € N such that X C f™(e),for each e € E.

€) (flattening) there is | € N such that for all x € X there is a

neighbourhood U, of x with f/(U,) homeomorphic
to (—1,1).
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One-dimensional solenoids

Suppose that (X, f) is a pre-solenoid:
Y = {(Xi)?io € XNU{O} : f(XH-l) = Xf7i - 07 ]-7 27 o }

Then X is a compact metric space with the metric:

H(( ) =0> yl 22 ’d Xla.yl

We also define f : X — X by

Definition

Let (X, f) be a pre-solenoid. The system (X, f) is called a
generalized one-dimensional solenoid.
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One-dimensional solenoids

[Thomsen]One-dimensional generalized solenoids are Smale spaces
whose X“(x, €) is homeomorphism to (—1,1) and X*(x,€) is
disconnected set for every x € X

[Williams] Let (X, f) be a 1-solenoid. Then there is an integer n_
and pre-solenoid (X', f") such that (X, f") is conjugate to (X', ')
and X' has a single vertex That is, X' is a wedge of circles.
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One-dimensional solenoids

Orientable,

One — dimensionalSolenoids : .
Unorientable.

X: A wedge of two clockwise circles a, b with a unique vertex p
And
g:a— atha,b— b lab.

= (X, g) represents an unorientable one-dimensional solenoids.
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One-dimensional solenoids

An s/u-bijective pair (Y, 1,7, Z,(,m,):

s (Y,¥) — (X, ) is s—bijective map and Y"(y,€) is
totally disconnected set,

71 (Z,¢) — (X, ) is u—Dbijective map and Z%(z, ¢) is totally
disconnected set,

For (X, f):

(Y,)=?, ms="and (Z,¢)=(X,f), 7, =k
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One-dimensional solenoids

Suppose that (X, f) is a pre-solenoid with a single vertex p. Let
E ={ey,...em} be the edge set of X with a given orientation. For
each edge e; € E, we can give e; — f "{p} the partition

{eij},1 <j < j(i) such that f(eij) € E.

According to this partition, we define a gragh G:
GO, The edges of X

G: 1
G , € — g & f(e,-/) = €.

Suppose (X, f) is one-dimensional solenoids. Then there is a factor
map p: (Xg,0) — (X, f) such that p is s-bijective and at most
two to one.
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One-dimensional solenoids

(Z6,0,p, X, f, k) is an s/ u-bijective pair for each one-dimensional
solenoids.
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One-dimensional solenoids

@ According to the flatting Axiom, there are two edges e, &
such that f(Up) C €1 U ep.

O W = Ti(en)=F(eyy)=er® ~ Tr(en)=f(eyy)=e® € LG

(X,f): f:a— aabb — abb
(X,g): f:a—, alba— bb~lab

L

= But (X,f)=w=0, (X,g)=w=a—-b#0

Let (X, f) be a pre-solenoid. Then w = 0 if and only if (X, f) is
orientable.
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One-dimensional solenoids

3 3 \J
D(ZO,O) — D(ZOJ) — D(Zog) —
3 ] \J
D(ZI.O) — D(le) — D(ZLQ) —
3 ] \J
D(%20) — D(X21) — D(X22) —
3 ] \J
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Theorem

Let (X, f) be a pre-solenoid and (X, f) be its associated
one-solenoid. If (X, f) is orientable, then

DS(Sx,0) N =0,
Hy (X, F)={ Z N =1,
0 N #0,1.

If (X, f) is not orientable, then

H3, (X, F) = { ODS(Zx,O’)/< 2[w,1] > x;g
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Let (X, f) be a pre-solenoid and (X, f) be its associated
one-solenoid. If (X, f) is orientable, then

DU(Sx,0) N=0,

Hy(X,f) =< Z N=1,
0 N #0,1.

If (X, f) is not orientable, then
Ker(w*) N =0,

HY(X,F) = Z» N=1,
0 N #0,1.
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