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Preface

Universal C*-algebras involving an automorphism realized via an
implementing unitary, or an endomorphism via an isometry, have
played a fundamental role in operator algebras. Such maps
preserve algebraic structure.

A map of a C*-algebra defined via an implementing partial
isometry does not preserve algebra structure. It is, however, a
completely positive *-linear map.

We consider *-semigroups S , matricial partial order orders on S ,
along with a universal C*-algebra associated with S and a matricial
ordering on S .
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For a particular example of a matrically ordered *-semigroup S
along with complete order map on S , we obtain a
C*-correspondence over the associated C*-algebra of S . The
complete order map is implemented by a partial isometry in the
Cuntz-Pimsner C*-algebra associated with the correspondence.

The resulting Cuntz-Pimsner C*-algebra for this example is the
universal C*-algebra P generated by a partial isometry.

It is known that P is nonunital, nonexact, residually finite
dimensional, and Morita equivalent to the universal C*-algebra
generated by a contraction.
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*-semigroups

A *-semigroup is a semigroup, so a set S with an associative binary
operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying
semigroup.

Examples:

Any abelian semigroup (with a∗ = a)

A group G , or an inverse semigroup S , are examples of
*-semigroups, where a∗ = a−1.

For B a C*-algebra, the contractions (or strict contractions) in B
viewed as a semigroup under multiplication, with * the usual
involution. In particular, for H a Hilbert space and B = B (H) .
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Matricial order

For a semigroup S the set of k × k matrices with entries in S ,
Mk(S), does not inherit much algebraic structure through S .
However, the *-structure, along with multiplication of specific
types of matrices over S is sufficient to provide some context for
an order structure.

For k ∈ N, let [ni ] denote an element [n1, ..., nk ] ∈ M1,k(S), the
1× n matrices with entries in S .

Then [ni ]
∗ ∈ Mk,1(S), a k × 1 matrix over S ,

and the element [ni ]
∗[nj ] = [n∗i nj ] ∈ Mk(S)sa.
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For the case of a C*-algebra B, the sequence of partially ordered
sets Mk(B)sa satisfy some basic interconnections among their
positive elements.

For example, if (
a1,1 a1,2
a2,1 a2,2

)
is positive in M2(B)sa then a1,1 a1,2 a1,2

a2,1 a2,2 a2,2
a2,1 a2,2 a2,2


is also positive in M3(B)sa.
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We may describe this property using d-tuples of natural numbers
as ordered partitions of k where zero summands are allowed.

Notation:
For d , k ∈ N and d ≤ k , set

P(d , k) =

{
(t1, ..., td) ∈ (N0)d |

d∑
r=1

tr = k

}
.

Each τ = (t1, ..., td) ∈ P(d , k) yields a *-map
ιτ : Md(B)→ Mk(B). For [ai ,j ] ∈ Md(B) the element
ιτ ([ai ,j ]) := [ai ,j ]τ ∈ Mk(B) is the matrix obtained using matrix
blocks; the i , j block of [ai ,j ]τ is the ti × tj matrix with the
constant entry ai ,j .
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The following Lemma shows that the maps ιτ map positive
elements to positive elements.

Lemma
For τ = (t1, ..., td) ∈ P(d , k) and [bi ,j ] ∈ Mr ,d(B). There is
[ci ,j ] ∈ Mr ,k(B), whose entries appear in [bi ,j ] , such that

ιτ ([bi ,j ]
∗ [bi ,j ]) = [ci ,j ]

∗ [ci ,j ] .

Proof.
For 1 ≤ i ≤ r let the r × k matrix [ci ,j ] have i-th row

[bi1, ..., bi1, bi2, ..., bi2, ..., bid , ..., bid ]

where each element bij appears repeated tj consecutive times.
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Note that the maps ιτ are defined even if the matrix entries are
from a set, so in particular for matrices with entries from a
*-semigroup S , and although there is no natural ’posi-
tivity’ for matrices with entries in S one can still use partial orderings.

Definition
A *-semigroup S is matricially ordered, write (S ,�,M), if there is
a sequence of partially ordered sets (Mk(S),�),
Mk(S) ⊆ Mk(S)sa (k ∈ N), with M1(S) = S sa, satisfying (for
[ni ] ∈ M1,k(S))

a. [ni ]
∗[nj ] = [n∗i nj ] ∈Mk(S)

b. if [ai ,j ] � [bi ,j ] in Mk(S) then [n∗i ai ,jnj ] � [n∗i bi ,jnj ] in Mk(S)

c. the maps ιτ :Md(S)→Mk(S) are order maps for all
τ ∈ P(d , k).
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The lemma above showed that a C*-algebra B has a matricial
order where Mk(B) is the usual partially ordered set Mk(B)sa.

We may define *-maps β : S → T of matricially ordered
*-semigroups S and T that are complete order maps - so
βk :Mk(S)→Mk(T ) is defined, and an order map of partially
ordered sets. A completely positive map of C*-algebras is then a
complete order map.

A complete order representation of a matricially ordered
*-semigroup S into a C*-algebra is a *-homomorphism which is a
complete order map.
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C*-algebras of S

If F is a specified collection of *-representations of S in
C*-algebras, for example *-representations, contractive
*-representations, or complete order *-representations, then the
universal C*-algebra of S is a C*-algebra C ∗F (S) along with a
*-semigroup homomorphism ι : S → C ∗F (S) in F satisfying the
universal property

S
↓ ι ↘ γ ∈ F
C ∗(S) πγ 99K C

Given γ : S → C , γ ∈ F , there is a unique *-homomorphism
πγ = π : C ∗F (S)→ C with πγ ◦ ι = γ.

For an arbitrary *-semigroup one can also form the universal
C*-algebra where F is the collection of contractive
*-representations.
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Hilbert modules

Definition
Let β : S → T be a *-map of a *-semigroup S to a matricially
ordered *-semigroup (T ,�,M). The map
βk has the Schwarz property for k, if

βk([ni ])
∗βk([nj ]) � βk([ni ]

∗[nj ])

in Mk(T ) for [ni ] ∈ M1,k(S). Here βk([ni ])
∗βk([nj ]) is the

selfadjoint element [β(ni )
∗β(nj)] in Mk(T ).

A *-homomorphism σ : S → T of *-semigroups has the Schwarz
property (since σk([ni ])

∗σk([nj ]) = σk([ni ]
∗[nj ]) for

[ni ] ∈ M1,k(S)).

Note that if β : R → S and σ : S → T are complete order maps, β
with the Schwarz property and σ a *-semigroup homomorphism,
then σβ is a complete order map with the Schwarz property.



Hilbert modules

Definition
Let β : S → T be a *-map of a *-semigroup S to a matricially
ordered *-semigroup (T ,�,M). The map
βk has the Schwarz property for k, if

βk([ni ])
∗βk([nj ]) � βk([ni ]

∗[nj ])

in Mk(T ) for [ni ] ∈ M1,k(S). Here βk([ni ])
∗βk([nj ]) is the

selfadjoint element [β(ni )
∗β(nj)] in Mk(T ).

A *-homomorphism σ : S → T of *-semigroups has the Schwarz
property (since σk([ni ])

∗σk([nj ]) = σk([ni ]
∗[nj ]) for

[ni ] ∈ M1,k(S)).

Note that if β : R → S and σ : S → T are complete order maps, β
with the Schwarz property and σ a *-semigroup homomorphism,
then σβ is a complete order map with the Schwarz property.



A (complete) Schwarz map to a C*-algebra C is necessarily
completely positive:

Definition
A *-map β : S → C from a *-semigroup S into a C*-algebra C is
completely positive if the matrix [β(n∗i nj)] is positive in Mk(C ) for
any finite set n1, ..., nk in S .

Completely positive maps yield Hilbert modules; so for β : S → C
completely positive from a *-semigroup S into a C*-algebra C then
X = C[S ]⊗alg C has a C valued (pre) inner product (for
x = s ⊗ c , y = t ⊗ d , with s, t ∈ S , c , d in C

set 〈x , y〉 = 〈c , β(s∗t)d〉 = c∗β(s∗t)d),

After moding out by 0 vectors and completing obtain a right
Hilbert module EC .
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In general there is a well defined left action of S on the dense
submodule X/ ∼ of the Hilbert module EC , although not
necessarily by adjointable, or even bounded, operators.

Assume there is a *-map α : S → S which is a complete order map
satisfying the Schwarz inequality for all k ∈ N.

Then since ι : S → C ∗((S ,�,M)) is a complete order
representation, the composition β = ι ◦ α : D1 → C ∗((D1,�,M))
is a complete order map satisfying the (complete) Schwarz
inequality.

The map β is therefore completely positive and we can form the
Hilbert module EC∗(S ,�,M)).
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Furthermore, if the left action of S extends to an action by
adjointable maps on the Hilbert module EC , and if

l : S → L(EC∗((S ,�,M)))

is additionally a complete order representation of the matricially
ordered *-semigroup S , the universal property yields a
*-representation

φ : C ∗((S ,�,M))→ L(EC∗((S,�,M)))

defining a correspondence E over the C*-algebra C ∗((S ,�,M)).



There is a *-semigroup D1 for which one can describe an ordering,
and matricial ordering, where the steps in this process hold. It is
nonunital, and not left cancellative, so existing procedures for
forming C*-algebras from semigroups, which seem largely
motivated by versions of a ’left regular representation’, do not
apply.

The three universal C*-algebras C ∗F (S) for the three families F of
contractive *-representations, order representations, and complete
order representations are not (canonically) isomorphic.

A relative Cuntz-Pimsner C*-algebra associated with the above
C*-correspondence over the C*-algebra C ∗((D1,�,M)) is
isomorphic to the universal C*-algebra P generated by a partial
isometry.
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There are elementary *-semigroups which are quotients of D1

which yield basic C*-algebras.

For example with S the single element *-semigroup consisting of
the identity, and α the only possible map on S , this process yields
the universal C*-algebra generated by a unitary. The orderings play
no role here.

Let S be the two element unital (unit u) two element *-semigroup
{u, s} with s a selfadjoint idempotent and α the map sending both
elements to u. The above Cuntz-Pimsner algebra over the
C*-algebra of this semigroup is the universal C*-algebra generated
by an isometry.
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The free *-semigroup generated by a single element is
Ac
∼= N+ ∗ N−, it consists of reduced words of nonzero integers

(n0, n1, ..., nk) alternating in sign, multiplication is concatenation,
and (n0, n1, ..., nk)∗ = (−nk ,−nk−1, ...,−n0).

The *-semigroup A is a quotient of Ac . Form the equivalence
relation generated by the relation

(n0, n1, ..., nk) ∼ (n0, n1, ..., ni−1 ± 1 + ni+1, ...nk)

whenever ni = ±1 for 1 ≤ i ≤ k − 1.

The map α : A→ A is defined by α(n) = (−1)n(1).
The elements (−1, 1) and (1,−1) of A0 are idempotents, and
α(1.− 1)) = (−1, 1).

The *-semigroup D1 is the smallest α-closed (*-)subsemigroup of
A containing the element (1,−1).
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