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Universal C*-algebras involving an automorphism realized via an
implementing unitary, or an endomorphism via an isometry, have
played a fundamental role in operator algebras. Such maps
preserve algebraic structure.

A map of a C*-algebra defined via an implementing partial
isometry does not preserve algebra structure. It is, however, a
completely positive *-linear map.

We consider *-semigroups S, matricial partial order orders on S,
along with a universal C*-algebra associated with S and a matricial
ordering on S.
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C*-correspondence over the associated C*-algebra of S. The
complete order map is implemented by a partial isometry in the
Cuntz-Pimsner C*-algebra associated with the correspondence.
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For a particular example of a matrically ordered *-semigroup S
along with complete order map on S, we obtain a
C*-correspondence over the associated C*-algebra of S. The
complete order map is implemented by a partial isometry in the
Cuntz-Pimsner C*-algebra associated with the correspondence.

The resulting Cuntz-Pimsner C*-algebra for this example is the
universal C*-algebra P generated by a partial isometry.

It is known that P is nonunital, nonexact, residually finite
dimensional, and Morita equivalent to the universal C*-algebra
generated by a contraction.
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*_semigroups

A *_semigroup is a semigroup, so a set S with an associative binary
operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying
semigroup.

Examples:
Any abelian semigroup (with a* = a)

A group G, or an inverse semigroup S, are examples of

*_semigroups, where a* = a~ 1.

For B a C*-algebra, the contractions (or strict contractions) in B
viewed as a semigroup under multiplication, with * the usual
involution. In particular, for 7 a Hilbert space and B = B(H).
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Matricial order

For a semigroup S the set of k x k matrices with entries in S,
Mk(S), does not inherit much algebraic structure through S.
However, the *-structure, along with multiplication of specific
types of matrices over S is sufficient to provide some context for
an order structure.

For k € N, let [n;] denote an element [ny, ..., nk] € My ,(S), the
1 x n matrices with entries in S.

Then [nj]* € My 1(S), a k x 1 matrix over S,
and the element [n;]*[n;] = [n}n;] € M,(S)*.
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For the case of a C*-algebra B, the sequence of partially ordered
sets My (B)*? satisfy some basic interconnections among their

positive elements.
a1 aip2
a1 a2

is positive in M(B)*? then

For example, if

a1l a12 a2
a1l a2 a2
a1l a2 a2

is also positive in M3(B)*.
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We may describe this property using d-tuples of natural numbers
as ordered partitions of k where zero summands are allowed.

Notation:
For d,k € N and d < k, set

d
P(d, k) = {(th ota) €(No) | Dty = k} :
r=1

Each 7 = (t1, ..., tq) € P(d, k) yields a *-map

tr : Mg(B) = My(B). For [a;j] € My(B) the element

tr([aij]) = [aij], € Mk(B) is the matrix obtained using matrix
blocks; the i, j block of [a;;]_is the t; x t; matrix with the
constant entry a; ;.
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The following Lemma shows that the maps ¢ map positive
elements to positive elements.

Lemma
For T = (t17 ey td) (S P(d, k) and [be] S Mr’d(B). There is
[cij] € M, k(B), whose entries appear in [b;j], such that

Lr([big]" [big]) = [cig]” [cij] -

Proof.

For 1 < < r let the r x k matrix [c;j] have i-th row

[bi1, ..., bi1, bi2, ..., bi2, ..., bid, ..., bjd]

where each element b;; appears repeated t; consecutive times.



Note that the maps ¢, are defined even if the matrix entries are
from a set, so in particular for matrices with entries from a
*_semigroup S, and although there is no natural 'posi-

tivity' for matrices with entries in S one can still use partial orderings.



Note that the maps ¢, are defined even if the matrix entries are
from a set, so in particular for matrices with entries from a
*_semigroup S, and although there is no natural 'posi-

tivity' for matrices with entries in S one can still use partial orderings.

Definition

A *-semigroup S is matricially ordered, write (S, <, M), if there is
a sequence of partially ordered sets (M(S), <),

M (S) € Mk(S)*? (k € N), with M;(S) = 5%, satisfying (for
[ni] € M1k(S5))

a. [ni]*[n;] = [n¥nj] € Mk(S)

b. if [a,-d-] < [b,’J] in Mk(S) then [n;f‘a;Jnj] = [n}kb,-d-nj] in Mk(S)

c. the maps ¢, : My4(S) = M (S) are order maps for all
T € P(d, k).
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The lemma above showed that a C*-algebra B has a matricial
order where M (B) is the usual partially ordered set M(B)*2.

We may define *-maps §: S — T of matricially ordered
*_semigroups S and T that are complete order maps - so

Bk : M(S) = My(T) is defined, and an order map of partially
ordered sets. A completely positive map of C*-algebras is then a
complete order map.

A complete order representation of a matricially ordered
*_semigroup S into a C*-algebra is a *-homomorphism which is a
complete order map.
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If Fis a specified collection of *-representations of S in
C*-algebras, for example *-representations, contractive
*_representations, or complete order *-representations, then the
universal C*-algebra of S is a C*-algebra C£(S) along with a
*-semigroup homomorphism ¢ : S — C£(S) in F satisfying the
universal property
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C*-algebras of S

If Fis a specified collection of *-representations of S in
C*-algebras, for example *-representations, contractive
*_representations, or complete order *-representations, then the
universal C*-algebra of S is a C*-algebra C£(S) along with a
*-semigroup homomorphism ¢ : S — C£(S) in F satisfying the
universal property

)

e Ny €F
C*(S) m --> C

Given v: S — C, v € F, there is a unique *-homomorphism
my =m: CES) = C with 1y 00 =17.

For an arbitrary *-semigroup one can also form the universal
C*-algebra where F is the collection of contractive
*_representations.
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Hilbert modules

Definition

Let 3:S — T be a *-map of a *-semigroup S to a matricially
ordered *-semigroup (T, <, M). The map

Bk has the Schwarz property for k, if

Bi([mi])* Bic(ni]) = Bic([mi]*[m;])

in My(T) for [nj] € My k(S). Here Bi([ni])*Bk([n;]) is the
selfadjoint element [3(n;)*B(n;)] in M (T).

A *-homomorphism o : S — T of *-semigroups has the Schwarz
property (since ok ([ni])*ox([n;]) = ok ([ni]*[n;]) for

[n,-] € Mlyk(S)).

Note that if 3: R — S and o : S — T are complete order maps, 3
with the Schwarz property and o a *-semigroup homomorphism,
then o3 is a complete order map with the Schwarz property.
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A (complete) Schwarz map to a C*-algebra C is necessarily
completely positive:

Definition

A *-map 3:S — C from a *-semigroup S into a C*-algebra C is
completely positive if the matrix [3(n}n;)] is positive in My (C) for
any finite set nq, ..., ng in S.

Completely positive maps yield Hilbert modules; so for 5: S — C
completely positive from a *-semigroup S into a C*-algebra C then
X = C[S] ®aig C has a C valued (pre) inner product (for
x=s5®Rc,y=t®d,withs,t€S,¢c,din C

set (x,y) = {c, B(s*t)d) = c*B(s"t)d),

After moding out by 0 vectors and completing obtain a right
Hilbert module &¢.
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necessarily by adjointable, or even bounded, operators.
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In general there is a well defined left action of S on the dense
submodule X/ ~ of the Hilbert module ¢, although not
necessarily by adjointable, or even bounded, operators.

Assume there is a *-map « : S — S which is a complete order map
satisfying the Schwarz inequality for all kK € N.

Then since ¢ : S — C*((S, <, M)) is a complete order
representation, the composition 8 = 1o« : Dy — C*((D1, <, M))
is a complete order map satisfying the (complete) Schwarz
inequality.

The map S is therefore completely positive and we can form the
Hilbert module Ecx(s < am))-



Furthermore, if the left action of S extends to an action by
adjointable maps on the Hilbert module £¢, and if

/.S — ‘C(gC*((S,j,M)))

is additionally a complete order representation of the matricially
ordered *-semigroup S, the universal property yields a
*_representation

¢ CH((S, =, M) = L(Ecx((s,<,m)))

defining a correspondence £ over the C*-algebra C*((S, %, M)).
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and matricial ordering, where the steps in this process hold. It is
nonunital, and not left cancellative, so existing procedures for
forming C*-algebras from semigroups, which seem largely
motivated by versions of a 'left regular representation’, do not
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There is a *-semigroup D; for which one can describe an ordering,
and matricial ordering, where the steps in this process hold. It is
nonunital, and not left cancellative, so existing procedures for
forming C*-algebras from semigroups, which seem largely
motivated by versions of a 'left regular representation’, do not

apply.

The three universal C*-algebras C£(S) for the three families F of
contractive *-representations, order representations, and complete
order representations are not (canonically) isomorphic.

A relative Cuntz-Pimsner C*-algebra associated with the above
C*-correspondence over the C*-algebra C*((Dy, X, M)) is
isomorphic to the universal C*-algebra P generated by a partial
isometry.
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There are elementary *-semigroups which are quotients of D;
which yield basic C*-algebras.

For example with S the single element *-semigroup consisting of
the identity, and « the only possible map on S, this process yields
the universal C*-algebra generated by a unitary. The orderings play
no role here.

Let S be the two element unital (unit u) two element *-semigroup
{u, s} with s a selfadjoint idempotent and a the map sending both
elements to u. The above Cuntz-Pimsner algebra over the
C*-algebra of this semigroup is the universal C*-algebra generated
by an isometry.
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The free *-semigroup generated by a single element is

Ac = NT x N7, it consists of reduced words of nonzero integers
(no, n, ..., ng) alternating in sign, multiplication is concatenation,
and (no, n, ..., I‘Ik)>|< = (—nk, —Nk_1,..., —no).

The *-semigroup A is a quotient of A.. Form the equivalence
relation generated by the relation

(no, n, ...y ni) ~ (no, Ny, .oy nimy £ 14 njyg,...ng)

whenever n; = 1 for 1 </ < k — 1.

The map o : A — Ais defined by a(n) = (—1)n(1).

The elements (—1,1) and (1, —1) of A° are idempotents, and

a(l. — 1)) = (~1,1).

The *-semigroup D; is the smallest a-closed (*-)subsemigroup of
A containing the element (1, —1).



