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Motivation: Orthogonal Groups and Gaussian Random
Variables

I The goal of this talk is discuss some interesting connections
between quantum groups and free probability theory.

I As a motivation, consider the N × N orthogonal group ON

with its Haar measure dg .

I Denote by
vij : g ∈ ON 7→ gij ∈ R

be the (i , j)-th coordinate function on ON . Then

L∞(ON) = {vij}′′1≤i ,j≤N ⊂ B(L2(ON)).

We will simultaneously think of {vij}i ,j as functions and as
random variables over (ON , dg).

I There are two interesting ways in which ON appears in in
connection to independent Gaussian random variables.
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Motivation: Orthogonal Groups and Gaussian RVs
1. Rotational Symmetry: Consider a real, i.i.d. N(0, 1) Gaussian

vector x = (x1, x2, . . . , xN) ⊂ L∞−(Ω, µ). Then the joint
distribution of x and the “randomly rotated vector”

y = (y1, . . . , yN); yi =
N∑
j=1

vij ⊗ xj ∈ L∞(ON)⊗ L∞−(Ω, µ)

are the same:

(ι⊗ Eµ)(P(y)) = Eµ(P(x))1L∞(ON) ∀P ∈ C〈X1, . . . ,XN〉.

2. Asymptotic Gaussianity in (ON , dg): Let
X = {xij}i ,j∈N ⊂ L∞−(Ω, µ) be a real, i.i.d. N(0, 1) Gaussian
array. Then the rescaled random variables

√
Nvij ∈ L∞(ON)

satisfy the following convergence result:

{
√
Nvij}1≤i ,j≤N −→ X in distribution as N →∞. I.e,

lim
N→∞

∫
ON

P({
√
Nvij})dg = Eµ(P(X)) (P ∈ C〈Xij : i , j ∈ N〉).
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From Classical to Free Probability

I Replace L∞−(Ω, µ) with a vN algebra (M, ϕ) equipped with a
n.f. state ϕ (a non-commutative probability space).

I Replace classical independence with Voiculescu’s free
independence with respect to ϕ. (−→ free probability theory).

I The free probability analogue of a Gaussian vector x is a free
semicircular system s = (s1, s2, . . . , sN) ⊂ (M, ϕ), determined
by si = s∗i and joint distribution

ϕ(si(1)si(2) . . . si(k)) := |NC i(1),...,i(k)
2 (k)| (1 ≤ i(r) ≤ N).

I Important Fact: (W ∗(s1, . . . , sN), ϕ) ∼= (L(FN), trace), the
free group factor on N generators.

Question
What do distributional symmetries of free semicircular systems
s = (s1, . . . , sN) look like?
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The Distributional Symmetries of s = (s1, . . . , sN)
I Consider a generic“random rotation” of s = (s1, . . . , sN) given

by

si 7→ yi :=
N∑
j=1

uij ⊗ sj (1 ≤ i ≤ N)

where {uij}1≤i ,j≤N ⊆ A are the coordinate functions
implementing the symmetry and A is the unital ∗-algebra they
generate.

I If s = (s1, . . . , sN) is invariant under this transformation, then
the invariance condition

(ι⊗ ϕ)(P(y)) = ϕ(P(s))1A (P ∈ C〈X1, . . . ,XN〉)

imposes certain relations on the generators uij of A.
I It turns out that the only relations imposed are

1. U := [uij ] ∈ MN(A) is unitary (R1)
2. U = U, where U = [u∗ij ]. (R2).

I These are the same relations as for {vij} ⊂ L∞(ON) BUT
{uij} are not required to commute!
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The Quantum Group O+
N

I This leads us to define a universal (non-commutative) unital
C∗-algebra
C (O+

N ) = C ∗
(
{uij}1≤i ,j≤N

∣∣ U = [uij ] unitary &U = U
)
.

I The algebra C (O+
N ) encodes all the symmetries of a free

semicircular system s = (s1, . . . , sN).

Theorem (Wang ’93)

C (O+
N ) is the C∗-algebra of a compact quantum group - the free

orthogonal quantum group O+
N .

In particular, we have a coproduct

∆ : C (O+
N )→ C (O+

N )⊗ C (O+
N ); ∆(uij) =

∑
k

uik ⊗ ukj

and a ∆-bi-invariant Haar state

hN : C (O+
N )→ C; (ι⊗ hN)∆ = (hN ⊗ ι)∆ = hN(·)1.

Note: ON is a quantum subgroup of O+
N .
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O+
N and Free Semicircular Systems

Let L∞(O+
N ) = {uij}′′1≤i ,j≤N ⊂ B(L2(hN)). In summary, we obtain

the following:

Theorem (Curran ’09)

Free semicircular systems are invariant under quantum rotations.
In particular, there is a trace-preserving quantum group action
O+

N yα L(FN) given by a unital injective normal ∗-homomorphism

α : L(FN) = W ∗(s1, . . . , sN)→ L∞(O+
N )⊗L(FN); α(si ) =

∑
j

uij ⊗ sj

satisfying (ι⊗ α) ◦ α = (∆⊗ ι) ◦ α and (ι⊗ ϕ) ◦ α = ϕ(·)1.



O+
N and Free Semicircular Systems

By replacing ON with O+
N , we also obtain a free analogue of the

asymptotic Gaussianity result for ON .

Theorem (Banica-Collins ’07, B. ’13)

The normalized generators {
√
Nuij}1≤ij≤N ⊂ (L∞(O+

N ), hN) are
(strongly) asymptotically free and semicircular: Let S = {sij}i ,j∈N
be a free semicircular array, then for any NC polynomial P,

lim
N

hN

(
P({
√
Nuij})

)
= ϕ(P(S))

and lim
N
‖P({

√
Nuij})‖L∞(O+

N ) = ‖P(S)‖L(FN).



Type III Deformations of O+
N

The QG O+
N can be “deformed” to get many more interesting QGs.

Theorem (Van Daele-Wang ’95)

For any F ∈ GL(N,C) such that FF ∈ C1, there exists a compact
quantum group O+

F with

C (O+
F ) = C ∗

(
uij , 1 ≤ i , j ≤ N | U = [uij ] unitary and U = FUF−1

)
,

and ∆(uij) =
N∑
j=1

uik ⊗ ukj .

Note: In most cases (i.e., F /∈ CUN), the Haar state hF on O+
F is

non-tracial (L∞(O+
F ) is a type III vN algebra).

Questions
Do these deformed O+

F have any connections with free probability?
- Does free independence appear in the large rank limit?
- Does O+

F act on interesting NC probability spaces (M, ϕ)?
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Shlyakhtenko’s Free Araki-Woods Factors
The answer is yes to both of these questions! The relevant NC
probabilistic objects (M, ϕ) are given by certain free Araki-Woods
factors:

I Fix an orthogonal representation (Ut)t∈R of R on a real
Hilbert space HR (dimHR ≥ 2).

I Extend Ut to the complexified Hilbert space HC, and write
Ut = Ait ∈ U(HC) for some (unbounded) A > 0.

I The generator A induces a new inner product

〈ξ|η〉U =
〈 2

1 + A−1
ξ
∣∣η〉 on HC with ‖ξ‖U = ‖ξ‖ ∀ξ ∈ HR.

This yields an isometric embedding HR ↪→ H = HC
‖·‖U .

I Consider the full Fock space

F(H) = CΩ⊕
⊕
n≥1

H⊗n

and the canonical left creation operators

`(ξ) ∈ B(F(H)) (ξ ∈ H).
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Shlyakhtenko’s Free Araki-Woods Factors

I The free Araki-Woods factor is the von Neumann algebra

Γ(HR,Ut)
′′ = {`(ξ) + `(ξ)∗ : ξ ∈ HR}′′ ⊆ B(F(H)).

I Γ(HR,Ut)
′′ has a n.f. state ϕΩ(·) = 〈·Ω|Ω〉 - the free

quasi-free state.

I ϕΩ is tracial iff Ut = id for all t.

I Γ(HR, id) = L(FdimHR). In fact, if (ei )i is an ONS for HR, then
s = (`(ei ) + `(ei )

∗)Ni=1 is a free semicircular system wrt. ϕΩ.

I For non-trivial Ut , Γ(HR,Ut)
′′ is a full type IIIλ factor for

some 0 ≤ λ ≤ 1 (Shlyakhtenko).



O+
F and Free Araki-Woods Factors

Theorem (B.-Kirkpatrick ’14)

Given any O+
F with dimF = N, there exists a free Araki-Woods

factor (Γ(RN ,UF
t )′′, ϕΩ) with canonical generators (c1, . . . , cN)

and a faithful ϕΩ-preserving action

O+
F yα Γ(RN ,UF

t )′′ given by α(ci ) =
∑
j

uij⊗cj (1 ≤ i ≤ N).

Theorem (B.-Kirkpatrick ’14)

For any almost periodic representation Ut on HR, there exists a
sequence of quantum groups {O+

F (n)}n≥1 s.t. ((Γ(HR,Ut)
′′, ϕΩ)

arises as the Haar distributional limit of normalized generators of
(L∞(O+

F (n)), hF (n)).

Bonus: When dimHR <∞, we can even take dimF (n) =
constant for all n! (A purely non-unimodular phenomenon).
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