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Abstract

With Charles Read we have introduced and studied a new notion of (real)
positivity in operator algebras, with an eye to extending certain C-algebraic
results and theories to more general algebras. As motivation note that
the ‘completely’ real positive maps on C∗-algebras or operator systems are
precisely the completely positive maps in the usual sense; however with real
positivity one may develop a useful order theory for more general spaces
and algebras. This is intimately connected to new relationships between an
operator algebra and the C∗-algebra it generates, and in particular to what
we call noncommutative peak interpolation, and noncommutative peak sets.
We report on the state of this theory (joint work with Read, and some with
Matt Neal, some in progress at the time of writing) and on the parts of
it that generalize further to certain classes of Banach algebras (joint work
with Narutaka Ozawa).



Part I. Noncommutative topology and ‘interpolation’

• We make a noncommutative generalization of function theory, and in
particular the theory of algebras of continuous functions on a topological
space (function algebras/uniform algebras), where historically there was an
interesting kind of ‘relative topology’ going on (peak sets).



Part I. Noncommutative topology and ‘interpolation’

• We make a noncommutative generalization of function theory, and in
particular the theory of algebras of continuous functions on a topological
space (function algebras/uniform algebras), where historically there was an
interesting kind of ‘relative topology’ going on (peak sets).

Noncommutative function algebra: an algebra of continuous linear opera-
tors T : H → H on a Hilbert space H. Henceforth: an operator algebra.
Equivalently, a subalgebra A of a C∗-algebra.

Unital if there is an identity of norm 1. Approximately unital if there is a
contractive approximate identity (cai).



• We will describe a way to merge theories:

[C∗-algebra] + [function algebras] ; nc func algebras/nc func theory



• We will describe a way to merge theories:

[C∗-algebra] + [function algebras] ; nc func algebras/nc func theory

Remarks. 1) Do not think of this as producing a ‘poor mans C∗-algebra
theory’, but rather as a noncommutative function theory

2) Which theory...which hundreds of theorems... one ends up with, really
depends on which nc topology is used. What are the open/closed/compact
sets, topological theorems, etc?



• There have been many approaches over the last century to noncom-
mutative topology. Commonly, ‘noncommutative topology’ is the study
of noncommutative algebras with the same algebraic structure as C0(K),
namely C∗-algebras.

• But then: what are the open/closed/compact sets? What theorems
from your topology course generalize?

• We take what I think of as the most literal approach to the above good
question: Akemann’s noncommutative topology which we describe later.
As opposed to other approaches, such as the spectrum etc., which have
different advantages/difficulties. This distinction is key, as we said on the
last slide.



• What is classical ‘interpolation’? And then what is the ‘interpolating
between Hilbert space operators’ of the title?
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functions’ in A which ‘do what you want’.

• If A is a operator algebra, I will define ‘interpolation’ as ‘building oper-
ators’ in A which ‘do what you want’.



• What is classical ‘interpolation’? And then what is the ‘interpolating
between Hilbert space operators’ of the title?

• If A is a function algebra, I will define classical ‘interpolation’ as ‘building
functions’ in A which ‘do what you want’.

• If A is a operator algebra, I will define ‘interpolation’ as ‘building oper-
ators’ in A which ‘do what you want’.

• Lets look at some examples of ‘which do what you want’: Urysohn
lemma, Tietze extension, Bishop’s peak interpolation, ‘order-interpolation’/Brown-
Akemann-Pedersen’s C∗-algebraic interpolation/semicontinuity theory.



The ‘grand-daddy’ interpolation result: Urysohn’s lemma

Given: disjoint closed subsets E,F of compact K ... there exists f ∈
C(K) with 0 ≤ f ≤ 1 and f = 0 on E and f = 1 on F .



• This is perhaps the most important result in topology for analysts, cer-
tainly the most important result in topology for function-algebraists, and
constitutes the first steps in building more complicated functions with pre-
scribed values or behaviors on given subsets of K.



Three ‘what if’s’

• What if we insist f is in a fixed given subalgebra A of C(K)? For
example, the disk algebra of continuous functions on a disk that are analytic
in the interior.

This is the starting point of a subject called peak interpolation, which we
will survey quickly on the next slides
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• What if we want to replace functions by operators on a Hilbert space?
Or replace C(K) above by a C∗-algebra (this is the starting point of non-
commutative C∗-algebraic interpolation (Akemann, Pedersen, Brown, ...).

E.g. Akemann’s Urysohn lemma for C∗-algebras is a noncommutative in-
terpolation result of a selfadjoint flavor, and this result plays a role in recent
approaches to the important Cuntz semigroup.



Three ‘what if’s’

• What if we insist f is in a fixed given subalgebra A of C(K)? For
example, the disk algebra of continuous functions on a disk that are analytic
in the interior.

This is the starting point of a subject called peak interpolation, which we
will survey quickly on the next slides

• What if we want to replace functions by operators on a Hilbert space?
Or replace C(K) above by a C∗-algebra (this is the starting point of non-
commutative C∗-algebraic interpolation (Akemann, Pedersen, Brown, ...).

E.g. Akemann’s Urysohn lemma for C∗-algebras is a noncommutative in-
terpolation result of a selfadjoint flavor, and this result plays a role in recent
approaches to the important Cuntz semigroup.

•What if we want to do both? So now want f in an operator algebra, that
is, in a subalgebra A of a C∗-algebra (noncommutative peak interpolation,
Blecher-Hay-Neal-Read)



• One can do the same ‘what ifs’ for e.g. the Tietze extension theorem,
or ‘order-interpolation’ (fitting a function from A (or its real part), between
two given functions).



Setting for classical peak interpolation:

Given: a fixed algebra A of continuous scalar functions on a compact (for
convenience in this talk) Hausdorff space K, ...

... and one tries to build functions in A which have prescribed values or
behaviour on a fixed closed subset E of K (or on several disjoint subsets),
without increasing the sup norm.

• The sets E that ‘work’ for this are the p-sets, namely the closed sets
whose characteristic functions are in the ‘second annihilator’ A⊥⊥ (or weak*
closure) of A in C(K)∗∗



Tietze-type extension:

Given: again A is a fixed algebra of continuous scalar functions on K, and
E is a p-set. Suppose g is given on E

... and one tries to build a function f ∈ A extending g, without increasing
the sup norm, and whose ‘values’ lie in the same convex set as the values
of g.



• The sets E that ‘work’ for peak interpolation are the p-sets, namely
the closed sets whose characteristic functions are in the ‘second annihilator’
A⊥⊥ (or weak* closure) of A in C(K)∗∗

Glicksberg’s peak set theorem characterizes these sets as the intersections
of peak sets, i.e. sets f−1({1}) for a norm 1 function f in A.

• In the separable case, they are just the peak sets (one doesnt need
intersections)



Peak set: E = f−1({1}) for a norm 1 function f in A. One may rechoose
f such that |f | < 1 on Ec, in which case fn→ χE.

Figure 1: A peak set E



A primary example of a peak interpolation result, which originated in re-
sults of Errett Bishop, and continued by Gamelin, says:

Theorem If h is a continuous strictly positive scalar valued function on
K, then the continuous functions on E which are restrictions of functions
in A, and which are dominated in modulus by the ‘control function’ h on
E, have extensions f in A with |f (x)| ≤ h(x) for all x ∈ K.

Figure 2: Errett Bishop

We will return from time to time to this result, so we shall refer to it as
the Bishop-Gamelin theorem



Figure 3: Extension dominated by control function



Figure 4: Extension dominated by control function



• A special case of interest is when h = 1; for example when this is applied
to the disk algebra one obtains the well known Rudin-Carleson theorem which
tells you exactly when one can extend a continuous function on a subset of
the circle, to a function in the disk algebra (so continuous on the circle and
analytic inside the circle), without increasing the supremum norm of the
function.



• ‘Classical peak interpolation’ also yields ‘Urysohn type lemmas’ in which
we find functions in A which are 1 on F and zero on a closed set E disjoint
from F (or close to zero, depending on the type of closed set).

• These constitute the first steps in building more complicated functions
in A with prescribed values or behaviors on given closed subsets of K.

• The above theory ‘goes noncommutative’ – in only one way right now.



Final example of what I mean by ‘interpolation’: order interpolation, and
Brown-Akemann-Pedersen’s C∗-algebraic interpolation/semicontinuity the-
ory.

• Here in the classical variant one is given two functions f ≤ g in
B = C(K)sa and one wishes to find a function k ∈ A (or maybe its real
part) ‘between’ f and g

• In Brown’s variant (see e.g. Canad. J. Math. (1988) and many recent
papers on the ArXiv), A and B are C∗-algebras, usually A = B, and f and
g are respectively uppersemicontinuous and lowersemicontinuous elements
in A∗∗

• Akemann’s Urysohn lemma (next) is a special case of the latter, here
f, g are also projections



• Similarly, our Urysohn lemmas (later) are such ‘order interpolation’
results, and we will see other examples later



Noncommutative topology and Urysohn

The C∗-algebra case. If one rephrases Urysohns lemma algebraically, in
terms of the algebra B = C(K), one gets Akemann’s Urysohns lemma:

• subsets E of K, are replaced by its characteristic function p = χE, a
projection (namely p = p2 = p∗)

Given: p, q closed (uppersemicontinuous) projections in B∗∗, with pq = 0
there exists f ∈ B with 0 ≤ f ≤ 1 and fp = 0 and fq = q.



Akemann’s noncommutative Urysohn lemma: Given p, q closed projections
in B∗∗, with pq = 0 there exists f ∈ B with 0 ≤ f ≤ 1 and fp = 0 and
fq = q.

• A projection q ∈ B∗∗ is open iff q⊥ is closed (these are lowersemicon-
tinuous projections in B∗∗).

• A projection q ∈ B∗∗ is compact iff there exists b ∈ B with qb = q.

Thus topology has become the theory of a certain class of projections in
the second dual B∗∗. This is Akemann’s noncommutative topology.

• Of course, B∗∗ is a von Neumann algebra. Can work in a smaller space
than B∗∗ if you want to.



• Nc Urysohn is a nice tool for C∗-algebras, and it obviously generalizes
the classical Urysohn

Next: Replace the C∗-algebra B with a closed subalgebra A ⊂ B.

Question: What replaces ‘positivity’ in Urysohn’s lemma?

Answer: The ‘positivity’ or ‘near-positivity’ of [B-Read], which we will
discuss more later in the talk.

• In the theory of C∗-algebras, positivity and the existence of positive
approximate identities is crucial.



In place of positivity for an operator algebra A we use real positive ele-
ments: a ∈ A : a+a∗ ≥ 0 (and certain subsets of these with more powerful
properties)

• n-th roots of such a have spectrum and numerical radius within a cigar
which is as thin as we like, and are as close as we like to an operator (namely
Re a) which is positive in the usual sense



Relative noncommutative topology

Our setting is a closed subalgebra A of a C∗-algebra B. We define open,
closed, compact projections in A∗∗, and develop their theory analogously
to the C∗-algebra case (that is, reprise the noncommutative variants of the
facts and theorems from topology).



Relative noncommutative topology

Our setting is a closed subalgebra A of a C∗-algebra B. We define open,
closed, compact projections in A∗∗, and develop their theory analogously
to the C∗-algebra case (that is, reprise the noncommutative variants of the
facts and theorems from topology).

• I will not go into this theory too much today. There are intrinsic defini-
tions, but e.g. p is open in A∗∗ iff p ∈ A∗∗ and p is open in B∗∗. It turns
out to be not so relative; nothing depends for example on which particular
containing C∗-algebra you use.

• For example, the disk algebra A(D) generates C(S1), C(D̄), and the
Toeplitz C∗-algebra



B-Neal-Read noncommutative Urysohn lemma Let A be an operator alge-
bra (unital for simplicity). Given p, q closed projections in A∗∗, with pq = 0
there exists f ∈ Ball(A) ‘nearly positive’ and fp = 0 and fq = q.

• Can also do this with q closed in B∗∗, where B is the containing C∗-
algebra, but now need an ε > 0 (i.e. f ‘close to zero’ on p; that is ||fp|| <
ε).



B-Neal-Read noncommutative Urysohn lemma Let A be an operator alge-
bra (unital for simplicity). Given p, q closed projections in A∗∗, with pq = 0
there exists f ∈ Ball(A) ‘nearly positive’ and fp = 0 and fq = q.

• Can also do this with q closed in B∗∗, where B is the containing C∗-
algebra, but now need an ε > 0 (i.e. f ‘close to zero’ on p; that is ||fp|| <
ε).

B-Read Strict noncommutative Urysohn lemma This is the variant that
under a natural (and necessary) countability hypothesis on the projections,
one can find such f as above with also 0 < f < 1 ‘on’ q − p.



What is noncommutative peak interpolation?:

f = g on E becomes fq = gq

where q is the closed projection playing the role of (the characteristic
function of) E

Our idea: So we want to take the classical interpolation results (like the
Bishop-Gamelin theorem), and replace A ⊂ C(K) by a subalgebra A of a
C∗-algebra, replace closed sets E by closed projections q, and replace ‘set
statements’ with ‘algebra statements’ like f = g on E by fq = gq.



Exercise: What does |f | ≤ h on E become?

Answer: f∗qf ≤ h∗qh , or ...

• This is the only theory at this point in time that literally and simultane-
ously generalizes both the classic function theoretic peak interpolation, and
the C∗-algebraic interpolation I mentioned.



Noncommutative peak interpolation started in the PhD thesis of student
Damon Hay

• Over the years we with coauthors (particularly Hay, Neal, and Read) have
developed many noncommutative peak interpolation results, which when
specialized to the case B = C(K) collapse to classical peak interpolation
theorems.



Noncommutative peak interpolation started in the PhD thesis of student
Damon Hay

• Over the years we with coauthors (particularly Hay, Neal, and Read) have
developed many noncommutative peak interpolation results, which when
specialized to the case B = C(K) collapse to classical peak interpolation
theorems.

• Moreover, in the course of this investigation important applications have
emerged to the theory of one-sided ideals or hereditary subalgebras of opera-
tor algebras, the theory of approximate identities, noncommutative topology,
noncommutative function theory, etc.

There should be many more such applications.



Theorem (Noncommutative Bishop-Gamelin) Suppose that A is a unital
(resp. not necessarily unital) operator algebra, a subalgebra of a unital C∗-
algebra B. Suppose that q is a closed (resp. compact) projection in A∗∗. If
b ∈ A with bq = qb, and qb∗bq ≤ qh for an invertible positive h ∈ B which
commutes with q, then there exists an element f ∈ A with fq = qf = bq,
and f∗f ≤ h.



Theorem (Noncommutative Bishop-Gamelin) Suppose that A is a unital
(resp. not necessarily unital) operator algebra, a subalgebra of a unital C∗-
algebra B. Suppose that q is a closed (resp. compact) projection in A∗∗. If
b ∈ A with bq = qb, and qb∗bq ≤ qh for an invertible positive h ∈ B which
commutes with q, then there exists an element f ∈ A with fq = qf = bq,
and f∗f ≤ h.



Very recently: Such peak interpolation theorems but with the interpolating
element ‘positive’ in the new senses, or with ‘prescribed’ numerical range
(Tietze theorem).



Very recently: Such peak interpolation theorems but with the interpolating
element ‘positive’ in the new senses, or with ‘prescribed’ numerical range
(Tietze theorem).

• Such interpolation results are ‘new relationships between an operator
algebra and the C∗-algebra it generates’



Sample application: As a corollary, one obtains the theorem of Read on
contractive approximate identities (cai’s), which is one of the more important
results in the theory (and actually is essentially equivalent to many of the
results in the talk):

Read’s theorem If A is an operator algebra with a cai, then A has a cai
(et) with positive real parts, indeed satisfying ‖1− 2et‖ ≤ 1 (indeed nearly
positive, i.e in the thinnest of cigars) for all t.



Sample application: As a corollary, one obtains the theorem of Read on
contractive approximate identities (cai’s), which is one of the more important
results in the theory (and actually is essentially equivalent to many of the
results in the talk):

Read’s theorem If A is an operator algebra with a cai, then A has a cai
(et) with positive real parts, indeed satisfying ‖1− 2et‖ ≤ 1 (indeed nearly
positive, i.e in the thinnest of cigars) for all t.

In turn, from Read’s theorem it is not hard to show the noncommutative
version of Glicksberg’s peak set theorem which we mentioned earlier.



Reminder: The sets E that ‘work’ for classical peak interpolation are
the p-sets, namely the closed sets whose characteristic functions are in the
‘second annihilator’ (or weak* closure) of A in C(K)∗∗

Glicksberg’s peak set theorem characterizes these sets as the intersections
of peak sets, i.e. sets E = f−1({1}) for a norm 1 function f in A.

• In the separable case, they are just the peak sets (one doesnt need
intersections)



Theorem (Noncommutative Glicksberg peak set theorem of B-Read)
The closed (resp. compact) projections in A⊥⊥ are precisely the decreasing
limits (or infima) of peak projections. If A is separable, they are just the
peak projections.

• There are many equivalent ways to define peak projections (see Hay’s
thesis, etc). In fact they are the weak* limits of fn for f ∈ Ball(A) in the
cases that such limit exists.

•We now understand these noncommutative peak sets and how they work.



Section II. Real positivity (B-Read 2011-2013, B-Ozawa 2014)

• In a possibly nonunital operator algebra A, say that x ∈ A is real
positive (or accretive) if x + x∗ ≥ 0. More generally, an element x in a
Banach algebra A is real positive if Re ϕ(x) ≥ 0 for every state ϕ on A1.
(Below 1 is the identity of the unitization.)

• Write rA for the set of real positive elements.

• This contains FA = {a ∈ A : ||1− a|| ≤ 1}, and the cone R+FA. Let
us write CA for either of these cones.



Section II. Real positivity (B-Read 2011-2013, B-Ozawa 2014)

• In a possibly nonunital operator algebra A, say that x ∈ A is real
positive (or accretive) if x + x∗ ≥ 0. More generally, an element x in a
Banach algebra A is real positive if Re ϕ(x) ≥ 0 for every state ϕ on A1.
(Below 1 is the identity of the unitization.)

• Write rA for the set of real positive elements.

• This contains FA = {a ∈ A : ||1− a|| ≤ 1}, and the cone R+FA. Let
us write CA for either of these cones.

Proposition If A has a cai then R+FA = rA

• These will play the role for us of positive elements in a C∗-algebra; the
main goal is to generalize certain nice C∗-algebraic results, or nice function
space results, which use positivity or positive cai’s. For example, we saw
this in our new Urysohn lemmas above.



• As we said earlier, if T +T ∗ ≥ 0 then T
1
n has numerical range in ‘cigar’

centered on [0, 1] that thins to [0, 1] as n→∞.

• Fact: If the numerical range W (T ) ⊂ [0, 1]× [−ε, ε] then Re(T ) ≥ 0
and ‖T − Re(T )‖ ≤ ε

‘Nearly positive’ : if in a given theorem you can choose the element as
close as one wishes to a positive in the usual sense.



Four variants of ‘positivity’ (these are pictures of the region containing the
numerical range of T )



Recall that T : A → B between C∗-algebras (or operator systems) is
completely positive if T (A+) ⊂ B+, and similarly at the matrix levels

Definition (Bearden-B-Sharma) A linear map T : A → B between
operator algebras or unital operator spaces is real completely positive, or
RCP, if T (rA) ⊂ rB and similarly at the matrix levels. (Later variant of a
notion of B-Read.)



Recall that T : A → B between C∗-algebras (or operator systems) is
completely positive if T (A+) ⊂ B+, and similarly at the matrix levels

Definition (Bearden-B-Sharma) A linear map T : A → B between
operator algebras or unital operator spaces is real completely positive, or
RCP, if T (rA) ⊂ rB and similarly at the matrix levels. (Later variant of a
notion of B-Read.)

Theorem A (not necessarily unital) linear map T : A→ B between C∗-
algebras or operator systems is completely positive in the usual sense iff it
is RCP



(Extension and Stinespring-type) Theorem A linear map T : A→ B(H)
on an approximately unital operator algebra or unital operator space is RCP
iff T has a completely positive (usual sense) extension T̃ : C∗(A)→ B(H)

This is equivalent to being able to write T as the restriction to A of
V ∗π(·)V for a ∗-representation π : C∗(A) → B(K), and an operator
V : H → K.



The induced ordering is obviously b 4 a iff Re(a−b) ≥ 0 (or equivalently,
or for Banach algebras, iff a− b accretive (i.e. numerical range in right half
plane))



The induced ordering is obviously b 4 a iff Re(a−b) ≥ 0 (or equivalently,
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• Of course many C∗-algebra results involving order dont generalize, or
are harder largely because our functional calculus is not as good



The induced ordering is obviously b 4 a iff Re(a−b) ≥ 0 (or equivalently,
or for Banach algebras, iff a− b accretive (i.e. numerical range in right half
plane))

• Of course many C∗-algebra results involving order dont generalize, or
are harder largely because our functional calculus is not as good

An ‘order interpolation result’: If an approximately unital operator algebra
A generates a C∗-algebra B, then A is order cofinal in B: given b ∈ B+

there exists a ∈ A with b 4 a. Indeed can do this with b 4 a 4 ‖b‖ + ε

Indeed can do this with b 4 Cet 4 ‖b‖ + ε, for a nearly positive cai (et)
for A

(This and the results on next page are trivial if A unital)



Theorem Let A be an operator algebra which generates a C∗-algebra B,
and let UA = {a ∈ A : ‖a‖ < 1}. The following are equivalent:

(1) A is approximately unital.

(2) For any positive b ∈ UB there exists a ∈ cA with b 4 a.

(2’) Same as (2), but also a ∈ 1
2FA and nearly positive.

(3) For any pair x, y ∈ UA there exist nearly positive a ∈ 1
2FA with x 4 a

and y 4 a.

(4) For any b ∈ UA there exist nearly positive a ∈ 1
2FA with −a 4 b 4 a.

(5) For any b ∈ UA there exist x, y ∈ 1
2FA with b = x− y.

(6) CA is a generating cone (that is, A = CA − CA).



• An operator algebra or function algebra may have no positive elements
in the usual sense, but we saw in Read’s theorem that if it has a cai then it
has a cai in 1

2FA, and even ‘nearly positive’

We also just saw: An operator algebra A has a cai iff A = CA − CA

Theorem If operator algebra A has no cai then D = CA − CA is the
biggest subalgebra with a cai. It is a HSA (that is, DAD ⊂ D).



• An operator algebra or function algebra may have no positive elements
in the usual sense, but we saw in Read’s theorem that if it has a cai then it
has a cai in 1

2FA, and even ‘nearly positive’

We also just saw: An operator algebra A has a cai iff A = CA − CA

Theorem If operator algebra A has no cai then D = CA − CA is the
biggest subalgebra with a cai. It is a HSA (that is, DAD ⊂ D).

• So for operator algebras, cai’s are manifestations of our cone CA, just
as we will see that a nice class of one-sided ideals are manifestations of CA



• x 7→ x(1 + x)−1 maps rA into FA, with inverse map x 7→ x(1− x)−1

(This is related to the Cayley transform). For operator algebras the range
of this map is UA ∩ 1

2FA

• We recall that the positive part of the open unit ball UB of a C∗-algebra
B is a directed set, and indeed is a net which is a positive cai for B. The
following generalizes this to operator algebras:

Corollary If A is an approximately unital operator algebra, then UA∩ 1
2FA

is a directed set in the 4 ordering, and with this ordering UA ∩ 1
2FA is an

increasing cai for A.

• The first part is also true for a large class of Banach algebras



• How about for Banach algebras?

In fact variants of much of this goes through, for ‘nice’ Banach algebras.
First,

Theorem A Banach algebra A with a sequential cai and a smooth-
ness property, has a sequential cai in FA. Under a stronger property than
smoothness, e.g. if A is an M -ideal in its unitization A1, then A has a cai
in 1

2FA.



• How about for Banach algebras?

In fact variants of much of this goes through, for ‘nice’ Banach algebras.
First,

Theorem A Banach algebra A with a sequential cai and a smooth-
ness property, has a sequential cai in FA. Under a stronger property than
smoothness, e.g. if A is an M -ideal in its unitization A1, then A has a cai
in 1

2FA.

Proposition If A has a cai then rA and FA are closed under roots

Theorem For ‘nice’ Banach algebras the cone CA is generating again
(and has others of the nice order properties in the earlier 6 part theorem)

• ‘Nice’ includes all unital Banach algebras, or those with a countable
cai and/or weak* closed quasistate space, or those which are Hahn-Banach
smooth in A1, etc



Application: understanding ideal structure of an algebra

An r-ideal is a closed right ideal with a left cai

An `-ideal is a closed left ideal with a right cai

• For Banach algebras we ask that these cai are in rA. For operator
algebras it is automatic that one can choose them in rA.

In earlier work with Read, we completely classified these ideals, and with
Ozawa we extended much of this to Banach algebras:
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We now discuss how r-ideals are built for Banach algebras A from our
‘positive’ elements
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Application: understanding ideal structure of an algebra

We now discuss how r-ideals are built for Banach algebras A from our
‘positive’ elements

• For operator algebras, and separable Banach algebras, there is a non-
trivial correspondence between the r-ideals and `-ideals

Actually, these one-sided ideals turn out to be ‘manifestations’ of our
cone SA, or if preferred, ‘nearly positive’ elements:

Theorem The r-ideals in an operator algebra A are exactly EA for some
subset E ⊂ CA. Then the matching `-ideal is AE

• If A (or the r-ideal) is separable can take E singleton

Theorem Let A be any Banach algebra. The r-ideals in A, are precisely
the closures of increasing unions of ideals of the form xA, for x ∈ CA.



Theorem Let A be a commutative approximately unital Banach algebra.
The closed ideals in A with a bai in rA are precisely the ideals of the form
EA for some subset E ⊂ FA. They are also the closures of increasing
unions of ideals of the form xA for x ∈ FA. Under a countability condition,
only one such x is needed (and can drop the ‘commutative’ hypothesis).

• For all operator algebras can drop the ‘commutative’ and the ‘approxi-
mately unital’ assumption ([BR] 2011)



Corollary If A is a Banach algebra, then A has a sequential real positive
cai iff there exists an x ∈ CA with A = xA = Ax = xAx.

• A separable Banach algebra with a real positive cai of course is of this
form

• Of course a cai is (x
1
n)



• There are nice connections to the classical theory of ordered spaces
(Krein, Ando, Alfsen, etc)

Theorem If A is an approximately unital operator algebra, or ‘nice’ Banach
algebra, then the real positive f : A→ C are just the nonnegative multiples
of states of A

• In fact the latter is essentially equivalent to the quasistate space being
weak* closed

Corollary (Kaplansky density type result) The ball of rA is weak* dense
in the ball of rA∗∗



Remark. We use states a lot .... However for a general approximately
unital Banach algebra A with cai (et), the definition of ‘state’ is problematic.
There are several natural notions, and which is best depends on the situation.
We haven’t noticed this discussed in the literature though....?

• Under a smoothness hypothesis though they all coincide.



There is a nonselfadjoint ‘Tietze’ extension theorem, a noncommutative
version of:

Theorem Suppose that A is a function algebra on a compact Hausdorff
space K, and E is a peak (or p-) set for A. If f ∈ A with f (E) ⊂ F ,
where F is closed convex set F in the plane, then there exists a function
g ∈ A which agrees with f on E, which has norm ‖g‖K = ‖f|E‖E, and

which has range g(K) ⊂ F (or g(K) ⊂ L̂ if conv(f (E)) is a line segment
L, where L̂ is a thin triangle given in advance, whose one side is L).

• Essentially a result of Smith et al, and this one generalizes to the case
A is a Banach algebra satisfying a reasonable condition.

Corollary Can lift ‘positives’ in quotients A/J to ‘positives’ in A (if J is
nice)



When xA is closed/pseudoinvertibility

The C∗-algebra result:

We recall that ‘well supported’ operators are those operators x that have
a ‘spectral gap’ for |x| at 0, that is 0 is absent from, or is isolated in, the
spectrum of |x|.

Theorem (Harte-Mbekhta) An element x of a C∗-algebra A is well
supported iff xA is closed, and iff there exists y ∈ A with xyx = x.



When xA is closed/pseudoinvertibility

The C∗-algebra result:

We recall that ‘well supported’ operators are those operators x that have
a ‘spectral gap’ for |x| at 0, that is 0 is absent from, or is isolated in, the
spectrum of |x|.

Theorem (Harte-Mbekhta) An element x of a C∗-algebra A is well
supported iff xA is closed, and iff there exists y ∈ A with xyx = x.

Such a y is called a generalized inverse or pseudoinverse.

We get a similar result, about pseudoinvertibility in nonselfadjoint operator
algebras, and with ‘spectral gap’ for x not |x|, for our cone.



Theorem For any Banach algebra A with cai, if x ∈ CA, then the following
are equivalent:

(i) xA is closed.

(ii) Ax is closed.

(iii) There exists y ∈ A with xyx = x.

(iv) alg(x) is unital.

Also, the latter conditions imply

(v) 0 is isolated in, or absent from, SpA(x).

Finally, if further alg(x) is semisimple, then conditions (i)–(v) are all equiv-
alent.



Theorem These xA are equal to eA for a projection in A.

In fact more is true. A closed right ideal J in A is algebraically finitely
generated if there exist x1, · · · , xn ∈ A with J = x1A + · · · + xnA.

Theorem The algebraically finitely generated closed right ideals in A
that have a left cai, actually are singly generated, indeed equal eA for an
idempotent e in FA (in 1

2FA if A is an operator algebra).



Section IV. Where can this lead?

•Main answer at this point: Generalizing results and theories that are only
known for C∗-algebras, to more general algebras of operators on a Hilbert
space, thus expanding the theory of such algebras in useful ways. I call this
C∗-theory for operator algebras, and we already have several examples of
this.

• Also, generalizing more of the classical applications from function algebra
theory/function theory of peak sets, to operator algebras.



Akemann’s noncommutative topology

Question: What kind of projections correspond exactly to closed sets in
K?

Answer: E is an open set in K iff χE is a increasing (weak) limit of
positive elements in B = C(K) (a good word here is ‘semicontinuous’)

We can view χE as a projection in the second dual B∗∗, which is known
to be a C∗-algebra. (This is because by the Riesz representation theorem
C(K)∗ is a space of measures µ on K, and any such measure µ may be
paired with E.)



Thus it is natural to declare a projection q ∈ B∗∗ to be open if it is a
increasing (weak*) limit of positive elements in B

• Define a projection q to be closed if 1− q is open.

Exercise: A projection q ∈ C(K)∗∗ is open (resp. closed) iff it is the image
as above of the characteristic function of an open (resp. closed) set in E.



Thus it is natural to declare a projection q ∈ B∗∗ to be open if it is a
increasing (weak*) limit of positive elements in B

• Define a projection q to be closed if 1− q is open.

Exercise: A projection q ∈ C(K)∗∗ is open (resp. closed) iff it is the image
as above of the characteristic function of an open (resp. closed) set in E.

Thus topology has become the theory of a certain class of projections in
the second dual B∗∗. This is Akemann’s noncommutative topology.

• As we said, B∗∗ is known to be a C∗-algebra, indeed it is a von Neumann
algebra. Can work in a smaller space than B∗∗ if you want to.



We will not discuss Akemann’s noncommutative topology much today, but
with the definitions above one can now try to prove noncommutative versions
of the basic results in topology. E.g. 0 and 1 are both open and closed
projections, Unions of sets are replaced by suprema ∨i pi of projections,
Intersections of sets are replaced by infima ∧i pi of projections.



We will not discuss Akemann’s noncommutative topology much today, but
with the definitions above one can now try to prove noncommutative versions
of the basic results in topology. E.g. 0 and 1 are both open and closed
projections, Unions of sets are replaced by suprema ∨i pi of projections,
Intersections of sets are replaced by infima ∧i pi of projections.

( If we are thinking of A∗∗ as linear operators on H, then a projection
p ∈ A corresponds to a closed subspace p(H) of H. Then ∨i pi is the
projection onto the closure of the span of the pi(H). And ∧i pi is the
projection onto ∩i pi(H).)



• Open projections arise naturally in functional analysis. For example,
they come naturally out of the ‘ spectral theorem/functional calculus’: the
spectral projections of a selfadjoint operator T corresponding to open (resp.
closed) sets in the spectrum of T , are open (resp. closed) projections.



• Open projections arise naturally in functional analysis. For example,
they come naturally out of the ‘ spectral theorem/functional calculus’: the
spectral projections of a selfadjoint operator T corresponding to open (resp.
closed) sets in the spectrum of T , are open (resp. closed) projections.

The range projection of an operator a, that is the smallest projection p
with pa = a, is an open projection.

Conversely, every open projection is a supremum (increasing limit) of range
projections.



• Open projections arise naturally in functional analysis. For example,
they come naturally out of the ‘ spectral theorem/functional calculus’: the
spectral projections of a selfadjoint operator T corresponding to open (resp.
closed) sets in the spectrum of T , are open (resp. closed) projections.

The range projection of an operator a, that is the smallest projection p
with pa = a, is an open projection.

Conversely, every open projection is a supremum (increasing limit) of range
projections.

• A final very cool thing about open projections: they are in one-to-one
correspondence with the closed right ideals in B, via the support projection.
(Or the left ideals.) So you can interpret the results above in terms of the
one-sided ideal structure in B


