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1. The Whitney Extension Problem

Let C2(R2) be the space of two

times continuously differentiable

functions on R
2 whose partial deri-

vatives of the second order are

bounded function on R
2. We

equip this space with the semi-

norm

‖F‖C2(R2) :=

sup
z∈R2
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Let E ⊂ R
2 be a finite subset,

and let f : E → R
2.
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Problem. How can we extend a

function f : E → R to a function

F ∈ C2(R2) with minimal ‖F‖C2(R2)?

What is the order of magnitude

of this minimal C2-norm, i.e.,

‖ f ‖C2(R2)|E
= inf{‖F‖C2(R2) : F|E = f }?

Something of the history:

H. Whitney, TAMS, (1934);

[W1] Analytic extension of dif-

ferentiable functions defined in

closed sets.
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An extension problem for jets:

Given a family of polynomials

{Px ∈ P1(R
2) : x ∈ E} find a func-

tion F ∈ C2(R2) such that the

Taylor polynomial of the first or-

der of F at x

T1
x [F] = Px for every x ∈ E

[W2] Differentiable functions de-

fined in closed sets. I.

(A description of C2(R)|E via

divided differences of the second

order of f on E.)
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2. The finiteness principle.

The Whitney problem of cha-

racterization of the trace space

C2(R2)|E: we have to restore

in an optimal way all partial deri-

vatives of the second order of a

function f : E → R using only the

values of f on E.

In many cases Whitney-type

problems (for different spaces of

smooth functions) can be reduced

to the same kinds of problems,

but for finite sets with prescribed

number of points.
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Theorem 2.1 (Sh. [1982])

Let E ⊂ R
2 be a finite set and

let f : E → R.

Suppose that the restriction f |E′

to every E′ ⊂ E of card E′ ≤ 6 can

be extended to a function

FE′ ∈ C2(R2) with the norm

‖FE′‖C2(R2) ≤ 1

Then f itself can be extended

to a function F ∈ C2(R2) with

‖F‖C2(R2) ≤ 12.
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Theorem 2.2 For every finite

set E ⊂ R
2 and for every f : E → R

‖ f ‖C2(R2)|E
∼

sup
z0,z1,z2∈ E
z1∈(z0,z2)
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−
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[ f ]‖

RZ1
+ RZ2

+ diam(Z1 ∪ Z2)
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3. A geometrical approach to

the Whitney problem: main ideas.

Theorem (E. Helly,1913).

Let K be a family of convex sets

in R
n. Suppose that K is finite or

that each member of K is compact.

If every n + 1 members of K

have a common point, then

there is a point common to all

members of K.
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The Whitney Extension Problem

for the space C2(R2)

Let E ⊂ R
2 be finite and let

f : E → R.

Theorem (Whitney). (Necessity)

Suppose ∃ F ∈ C2(R2), F|E = f .

Let ~g = ∇F|E and λ = ‖F‖C2(R2).

Then for every x, y ∈ E

| f (y)− ( f (x)+ 〈~g(x), y − x〉)| ≤ Cλ ‖x− y‖2

and

‖~g(x)−~g(y)‖ ≤ Cλ ‖x − y‖

where C is an absolute constant.

The first inequality is an esti-

mate of the Taylor reminder of

F of the first order at points x, y.
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(Sufficiency). Let f : E → R.

Suppose that ∃ λ > 0 and

a mapping ~g : E → R
n such that

for every x, y ∈ E

| f (y)− ( f (x)+ 〈~g(x), y − x〉)| ≤ λ ‖x− y‖2

and

‖~g(x)−~g(y)‖ ≤ λ ‖x − y‖

Then ∃ F ∈ C2(R2) such that

F|E = f , ∇F|E = ~g, and

‖F‖C2(R2) ≤ C λ
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The conditions

| f (x)− f (y)−〈~g(x), x − y〉| ≤ λ ‖x− y‖2

and

‖~g(x)−~g(y)‖ ≤ λ ‖x − y‖

where x, y ∈ E, are a chain (sys-

tem) of inequalities.

Our goal is to find the min-

imal λ > 0 (up to an absolute

constant) such that this system

has a solution with respect to

~g : E → R
2.
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The second condition ⇔

~g ∈ Lip(M; R
2)

Here M := (E, ρ) where

ρ(x, y) := ‖x − y‖

Lip(M; R
2) denotes the space of

all Lipschitz mappings from M

into R
2 equipped with the semi-

norm

‖~g‖Lip(M;R2) := sup
x,y∈M

‖~g(x)−~g(y)‖

ρ(x, y)

We call ~g a Lipschitz selection

of the set-valued mapping G.
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4. Lipschitz selections

of set-valued mappings.

• (M, ρ) – a finite metric space;

• K(R2) – all convex closed subsets

of R
2;

• F : M → K(R2) – a set-valued

mapping.

The Lipschitz Selection Problem.

Let f be a Lipschitz selection of

F, i.e., a mapping f : M → R
2:

(i) f (x) ∈ F(x), x ∈ M.

(ii) f ∈ Lip(M; R
2)

How small can its Lipschitz semi-

norm ‖ f ‖Lip(M;R2) be?
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Theorem 4.1 Let (M, ρ) be a

finite metric space and let

F : M → K(R2) be a set-valued

mapping.

Suppose that for every subset

M′ ⊂ M consisting of at most 4

elements the restriction F|M′ has

a Lipschitz selection

fM′ : M′ → R
2

such that

‖ fM′‖Lip(M′;R2) ≤ 1

Then F on all of the set M has

a Lipschitz selection f : M → R
2

with

‖ f ‖Lip(M;R2) ≤ 5
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This theorem is also true for

pseudometric spaces, i.e., ρ(x, y)

may take the value 0 for x 6= y.

Example 4.2 Let ρ ≡ 0. Let

F : M → K(R2) be a set-valued

mapping and let f : M → R
2 be

its Lipschitz selection. Then

‖ f (x)− f (y)‖ ≤ ρ(x, y) = 0 ∀ x, y ∈ M

so that f (x) = c ∈ R
2, x ∈ M.

Since f (x) ∈ F(x), x ∈ M, =⇒

c ∈ F(x), ∀x ∈ M
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Thus F has a Lipschitz selec-

tion with respect to ρ ≡ 0 ⇐⇒

⋂
{F(x) : x ∈ M} 6= ∅

By Helly’s Theorem

⋂
{F(x) : x ∈ M} 6= ∅

⇐⇒

⋂
{F(x) : x ∈ M′} 6= ∅

for every M′ ⊂ M, cardM ≤ 3,

⇐⇒ F|M′ has a Lipschitz

selection for every subset

M′ ⊂ M, cardM ≤ 3

192

















We introduce a family of

ordered pairs of points from M:

M̃ := {x̃ = (x1, x2) : x1, x2 ∈ M, x1 6= x2}

Given x̃ = (x1, x2) ∈ M̃ we put

C(x̃) := C(x1, x2), c(x̃) := c(x1, x2),

r(x̃) := r(x1, x2) and

B(x̃) := B(c(x1, x2), r(x1, x2))

We know that

dH(F(x1)∩B(x̃), F(x2)∩B(x̃)) ≤ ρ(x1, x2)

Prove that

dist(B(x̃), B(x̃
′)) ≤ ρ(x1, x

′
1)

for every

x̃ = (x1, x2), x̃
′ = (x

′
1, x

′
2) ∈ M̃
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In fact, let

A := fM′(x1), A′ := fM′(x′1)

Then A ∈ B(x̃) and A′ ∈ B(x̃′).

Furthermore,

‖A − A′‖ ≤ ρ(x1, x′1)

Hence A ∈ K(x̃) and A′ ∈ K(x̃′),

and

‖A − A′‖∞ ≤ ρ(x1, x′1)

Step 2. Given

x̃ = (x1, x2), x̃′ = (x′1, x′2) ∈ M̃

let

ρ̃(x̃, x̃′) := ρ(x1, x′1)
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Let

K := K(x̃), x̃ ∈ M̃

be a set-valued mapping from

M̃ into the family of all squares

in R
2.

We have proved that the re-

striction K|{x̃,x̃′} to every subset

{x̃, x̃′} of M̃ has a Lipschitz se-

lection (with respect to ρ̃) with

the Lipschitz constant (in ℓ2
∞
) at

most 1.

Then K on all of M̃ has a Lip-

schitz selection g : M̃ → R
2 with

‖g‖
Lip(M̃,ℓ2

∞
)
≤ 1.
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Since g is a selection of K, for

every x̃ = (x, y) ∈ ˜M we have

g(x) = g(x̃) ∈ K(x̃), y ∈ M.

But K(x̃) ⊂
√

2 ◦ B(x̃) so that

g(x) ∈
√

2◦B(x̃) = B(c(x, y),
√

2r(x, y)).

By dilation with respect to c(x, y)

dH(F (x)∩
√

2◦B(x̃), F (y)∩
√

2◦B(x̃))

≤
√

2ρ(x, y)
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