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1. The Whitney Extension Problem

Let C?(R?) be the space of two
times continuously differentiable
functions on R? whose partial deri-
vatives of the second order are
bounded function on R%2. We
equip this space with the semi-

norm
HFHC2(R2) "=
[|92F 92F P2F, |
ZS;llfzmaX <\ ﬁ(Z) ’ Bxay(z) ’ a—yz(z) }>

Let £ C R? be a finite subset,
and let f:E — R2.



Problem. How can we extend a

function f: E — R to a function

F € C*(R?) with minimal |Ellc2(r2)?

What is the order of magnitude

of this minimal C?-norm, i.e.,

Ifllc2(ry), = InfU][Fllcaggay = FlE = f37

Something of the history:
H. Whitney, TAMS, (1934);

[W1] Analytic extension of dif-
ferentiable functions defined iIn

closed sets.



An extension problem for jets:

Given a family of polynomials
{Py € P1(R?) : x € E} find a func-
tion F € C%(R?) such that the
Taylor polynomial of the first or-
der of F at «x

T.[F] =P, for every xcE

[W2] Differentiable functions de-
fined in closed sets. 1.

(A description of C?(R)|r via
divided differences of the second

order of f on E.)



2. The finiteness principle.

The Whitney problem of cha-
racterization of the trace space
C%(R?)|g: we have to restore

iIn an optimal way all partial deri-

vatives of the second order of a

function f: E — R using only the

values of f on E.

In many cases Whitney-type
problems (for different spaces of
smooth functions) can be reduced
to the same Kinds of problems,
but for finite sets with prescribed

number of points.




Theorem 2.1 (Sh. [1982])

Let £ c R? be a finite set and
let f: E — R.

Suppose that the restriction f|,
to every E/ C E of card E/ < 6 can
be extended to a function
Fpr € C?(R?) with the norm

|Ferllcamey < 1

Then f itself can be extended
to a function F € C?(R?) with



The finiteness number N = 6
for the space C2(R?) is sharp.



Let 0 < e < 1/4 and
- {(1 ——E,O),(—l,-—Ez),
(—14¢,0),(1—¢,0),(1,e2)(14¢,0)}.
Define f: A: — R by
f(l,EQ) =, He)=0, £& AE\{(I?EQ)}
]

$(A,)=¢
2(Ac)=0 $(Au)=0 ”: "
451 g “LL[QH o g2 : Al
e =g o
/wzr II ’ 1‘*‘*—-7.4
s-(P‘ \ 65 #(ﬂ: = s{AI\ 0
; =

For each A’ C A-, card A’ = 5,
fl 4 extends to an F, € C?(R2),

||FA;|' C2(R2) S < 1. However,



T heorem 2.2 For every finite

set E C R? and for every f:E - R

fllc2r2y), ~
f(z0)—f(z1)  f(z1)—f(22)
|zo—z1| 21—z
sup T
20,21,20€ E ‘ 20 — 42 ‘
z1€(20,22)

up IVPz [f] = VPz,[f]l
7. 7,k Rz, + Rz, +diam(Z; U Z;)






3. A geometrical approach to
the Whitney problem: main ideas.

Theorem (E. Helly,1913).

Let IC be a family of convex sets
in R". Suppose that K is finite or
that each member of K is compact.

If every n+1 members of

have a commmon point, then

there is a point commmon to all

members of .
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The Whithey Extension Problem
for the space C?(R?)

Let E C R? be finite and let
f:E—R.

Theorem (Whitney). (Necessity)
Suppose 3 F € C%(R?), F|p = f.
Let §=VF|g and A= HFHCZ(Rz)-
Then for every x,y € E

Fy) = (F(x) +(F(x),y = x))| < CA[lx —y]|>

and

1§(x) —§W)|| < CAllx —y|
where C is an absolute constant.

The first inequality iIs an esti-
mate of the Taylor reminder of
F of the first order at points x,y.
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(Sufficiency). Let f : E — R.
Suppose that 4 A >0 and
a mapping ¢ : E — R"” such that
for every x,y c E

F(y) = (F(x) +(§(x),y — )] < Allx—y]|*

and

18(x) =8Il < Allx =yl

Then 3 F € C?(R?) such that
Flg=f, VF|g =g, and

IFllc2rzy < CA

12



T he conditions

f(x) = f(y) = (§(x), x =) < Aflx—yl?

and

18(x) =8Il < Allx =yl

where x,y € E, are a chain (sys-
tem) of inequalities.

Our goal is to find the min-
imal A > 0 (up to an absolute
constant) such that this system
has a solution with respect to
3:E — RZ.
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A geometrical background of
the Whitney theorem.

Fix x € E. For each y € F the
set

A(z,y) ;= {z € R? :

f(@)—fy)—(z,z — )| < Allz—y|l*}

iIs a strip between two parallel
hyperplanes.

14



Put

G(xz) is a convex closed sub-
set of R2. We may assume that
G(x) is compact = G(z) € K(R?).

K(R?) — all convex closed sub-
sets of R?.
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We say that G : E — K(R?) is
a set-valued mapping. ow)

{ E b ey

G(Y)

T he condition:

F(2)—F(y)—(F(x),z — y)| < A|lz—y||?

Vye F & g(z) € G(x), =z € E.

We say that §: E — R? is a
selection of G. - &(x)




The second condition <
7 € Lip(M;R?)
Here M := (E,p) where
p(x,y) == [lx —y|

Lip(M;R?) denotes the space of
all Lipschitz mappings from M

into R? equipped with the semi-
norm

) 130 — 3l
_ . .— Su
8lip(are) = sup

We call ¢ a Lipschitz selection
of the set-valued mapping G.
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4. Lipschitz selections

of set-valued mappings.

e (M,p) — a finite metric space;

o IC(R?) — all convex closed subsets
of R?;

e F: M — K(R?) — a set-valued
mapping.

The Lipschitz Selection Problem.
Let f be a Lipschitz selection of
F, i.e., a mapping f: M — R?:

(i) f(x) € F(x), xe& M.

(ii) f € Lip(M;R?)

How small can its Lipschitz semi-
norm HfHLip(/\/l;RZ) be?
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Theorem 4.1 Let (M,p) be a
finite metric space and let
F: M — K(R?) be a set-valued
mapping.

Suppose that for every subset
M’ ¢ M consisting of at most 4
elements the restriction F|, , has
a Lipschitz selection

f./\/l/ : ./\/l/ — R2
such that

Hf/\/l’HLip(M/;R2) <1

Then F on all of the set M has
a Lipschitz selection f: M — R?
with

HfHLip(M;R2) <5
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This theorem is also true for
pseudometric spaces, i.e., o(x,y)
may take the value 0 for x # y.

Example 4.2 Let p = 0. Let
F: M — K(R? be a set-valued
mapping and let f: M — R? be

its Lipschitz selection. Then

[f(x) = fWI <plx,y) =0V x,y e M
so that f(x) =c e R?, x € M.

Since f(x) € F(x), xe M, =

ce F(x), Yxe M

191



Thus F has a Lipschitz selec-
tion with respect to p =0 <=

N{F(x):x € M} # 0

By Helly’s Theorem
N{F(x):x € M} #£ 0

M{E(x) i xe M} £0
for every M' c M, card M < 3,

<=  F|,¢ has a Lipschitz
selection for every subset

M cM, card M <3
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Let FF: M — K(R)
be a set-valued mapping, i.e.,
F(z) := [a(z),b(z)], = € M.

Assume that for every F(z), F(z')
there exist
g(z) € F(x),g9(2") € F(2') such that

9(z) — g(2')| < p(z,z)

") B(x’) a(x) £(x)

t——3 e
%{:::’) ;V %fit)
pre,xl)

Given z € M we define

flz) = yigJ{/t{b(y) + p(z,y)}

Then f(z) < b(z) (put y = x).
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For every y € M there are points

g(z) € [a(z),b(x)], 9(y) € [a(y),b(y)]
such that

9(x) — g(y)| < p(x, y)

ay) 3(31 Eihc'l .Sf-::J
+¢H—-—E——H—
D) I e 102
S (X2 )

a(z) < g(x) <g(y)+p(z,y) <b(y)+p(z,y)

a(z) < Inf {b(y) + p(a,1)} = /().

Hence, a(z) < f(z) < b(z) &

flz) € F(z)

Clearly, ||fllLipv;r) < 1-



Let
a = maXx |a;
“ H’?ﬂ =10 lﬂei
Consider
2
F{x) = F‘Hl[a;ﬂ(;ﬂ)jbk(m)]ﬁ xz € M
Then F has a selection [ with

[fllLipowy =1 = VM C M,
card M’ = 2. the restriction F|

has such a selection.
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Prove that the theorem is true
for X = R? (equipped with the
Euclidean norm) with N = 4 and
v = 24/2.

We know that v M’ ¢ M with
card M’ < 4, the restriction F|,
has a Lipschitz selection f a With
HfM’”LI'D(M’;Rz) < 1. We have to
prove that FF on M has a Lips-
chitz selection f : M — R? satis-

\

fying anmw R2) S 2V2 g0 s b
fw) \{':”

~ Ehﬂ

y !
T_{“:- -r"‘""‘gr‘ azf’zj‘ﬁ v,
2 I.{I'jhi]'} i | 1'._ -

R I ’;h 1\ f

211J>{i """’ A ! Fh“

4
> Fay | A




Step 1. Let z1,20 € M, z1 # x5
and let F(ll) " F(:}'j‘g)

Put

C(z1,25) =

F(x1) N{F(z2) + B(0, p(z1,25))}

C(x1,22) Is a line segment on
F(x1) with center

c(z1,z2) = F(x1) N F(zp)
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Put
r(z1,xp) = 5diam C(z1,z3)

If F(z1) || F(z2)=C(21,22) := F(zx1).
We put T(mljﬁg) = +oc and {3(331, x5)
to be an arbitrary point on F'(z1).

! 1 (Xa) .
Iut*ll‘hl?t.l c(xs,X2) _!_?iﬁ“ FA)
- —l N
EW%L = — F(x2)
— {H' (x2)
We have

C(z1,z2) = F(z1)NB(c(z1,22),7(21, 22))
C(z2,21) = F(z2)NB(c(z1,22),7(x1,22))
du(C(z1,22), C(22,21)) < p(z1,22)
Clxz2,xy)

.P('l hy :'l1 £

((x

——

l.‘-k;]

B



Here dy stands for the
Hausdorff distance:

dy(A1,Az) ;= inf{e > 0:
A1+B(0,¢e) D Ap, A>+B(0,e) D A1}
or, equivalently,

dy(Aq, Ap) =

max{ sup dist(z, As), sup dist(z, As)}
IEAl A 1
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We introduce a family of
ordered pairs of points from M:

P

M ={% = (x1,x0) : x1,x0 € M, x1 # xp}
Given ¥ = (xq,xp) € M we put

C(x) := C(xq,x2), c(X) :=c(x1,x2),

B(%) := B(c(x1,x2),7(x1,x2))
We know that
dpg (F(x1) NB(%), F(x2) NB(X)) < p(x1,x2)
Prove that
dist(B(%), B(%')) < p(x1,x7)
for every

%= (x1,xp), ¥ = (x],x3) € M
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NA- A'lS pex,, x,)



In fact, let

A = fM/(xl), A= f/\/l’(xll)

Then A € B(x) and A’ € B(%).
Furthermore,

|A—A"|| < p(xq,x7)

Hence A ¢ K(%) and A’ € K(&/),
and

|A = Alleo < p(x1,x7)

Step 2. Given

%= (x1,x), % =(x}],x5) € M

let
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Let

K:=K(%), feM
be a set-valued mapping from
M into the family of all squares
in R2.

We have proved that the re-
striction K]|; ;1 to every subset
{x,¥'} of M has a Lipschitz se-
lection (with respect to g) with
the Lipschitz constant (in /%) at
most 1.

Then K on all of M has a Lip-

schitz selection ¢ : M — R? with

Hg”Lip(/\?,ﬁgo) < 1.

30



Compare g(z,z2) and g(x,z5):

19(Z)—9(@)||c < p(Z,7) =: p(z,2) =0

= 9(Z) = g(&) if

r—

= (z,22), ¥ = (x,z5)
9(Z) = g(x1,22) depends only on
r1 = g defines a mapping on M

which we denote by the same
symbol g.




f(z) == Pr(g(z), F(z))

where Pr(-, L) stands for the or-
thogonal projection on a straight
line L C R-.

Clearly, f(z) € F(xz), i.e., fis a
selection of F. Prove

If(@)—fWI < 2v2p(z,y), =,ye M.
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For every =,y € M we have
9(x) = g(z,y), 9(y) = g9(y,z) =

lg(x) — g < v2||g(x) — g(¥)|loo
= \/§||9($1y)-—9(y;$)llog < V2p(z,y)

X=(xy) N e {2




Since g is a selection of K, for
every 7 = (z,y) € M we have

g(z) = g(z) € K(Z), yeM.
But K(z) C vV20B(%) so that
g(z) € V20B(%) = B(c(z,y), V2r(z,y)).

By dilation with respect to c¢(x, y)

dy(F(x)NV20B(F), F(y)NV20B(%))
< V2p(z,y)
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Lemma. Lq,L>— subspaces of
R?, dimL; = dimL, = 1. Let
B = B(0,r), and let o € B. Then

| Pr(a, L1)—Pr(a, Lp))|| <dy(L1NB,L>NB)




