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ABSTRACT

Using the concept of the p-capacity, associated

with uniform Sobolev spaces L1
p(Ω), we intro-

duce a notion of a p-capacitory boundary for

an arbitrary domain Ω ⊂ R
n, n−1 < p ≤ n. The

p-capacitory boundaries depend on p and repre-

sent "ideal boundaries" of the domain Ω for p-

capacitory metrics. The Sobolev classes L1
p(Ω)

can be extended to the p-capacitory boundaries

under some additional assumptions on Ω.
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The p-capacitory topology is equivalent to the

Euclidean one into Ω, but the p-capacitory

boundary depends on p and can be very far

from the Euclidean one for non-regular do-

mains. An analog of p-capacitory boundaries

can be introduced for p > n using a more deli-

cate procedure.

For p = n the notion of p-capacitory boundary

was introduced by G. and Vodop’yanov in 80-

th and was used for quasiconformal homeomor-

phisms extension on the n-capacitory bound-

ary.
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HISTORY and MOTIV ATION

The concept of the ideal boundaries is common

for geometry and analysis. The Poincare disc is

a model of the hyperbolic plane that provides a

geometrical realization of the ideal boundary of

the hyperbolic plane with help of a conformal

homeomorphism.

The two-dimensional theory of conformal home-

omorphisms is very rich because the Riemann

Mapping Theorem that states existence of con-

formal homeomorphism between the unit disc

B2 ⊂ R
2 and any simply connected plane do-

main that has at least two boundary points.
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However the boundary behavior of plane con-

formal homeomorphism can not be described

in terms of Euclidean boundaries. The con-

cept of ideal boundary elements (prime ends)

was introduced by C. Caratheodory (1913) to

describe boundary behavior of plane confor-

mal homeomorphisms in geometric terms. The

main Caratheodory theorem states that any

conformal homeomorphism of unit disc induces

one to one correspondence of prime ends.
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M.A.Lavrentiev (1938) introduced a metric (a

relative distance) for prime ends. G.D.Suvorov

(1956) constructed a counterexample that demon-

strates an absence of the triangle inequality for

the Lavrentiev relative distance and proposed a

more accurate concept of relative distance that

is a metric. For this metric the Cartheodory

prime ends represents a compactification of

plane domains. There exists a number of dif-

ferent intrinsic conformally invariant metrics.

A detailed survey can be found in a recent pa-

per of V.M.Miklyukov .
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There are two main attempts to construct a

quasiconformally invariant “ideal” boundaries

for dimension more than two. The first one is

based on Royden algebras that are quasiconfor-

mal invariants by M. Nakai (1960} for dimen-

sion two and by L. G. Lewis (1971) for arbitrary

dimension. As any Banach algebras the Roy-

den algebras produces compactification of do-

mains in space and any quasiconformal home-

omorphisms induces a homeomorphism of the

compactifications.
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The second concept of so-called capacitory bound-

ary was proposed by G. and S.Vodop’janov

(1978) and is based on a notion of the con-

formal capacity. Remember that the confor-

mal capacity is a quasiinvariant for quasicon-

formal homeomorphisms. Any quasiconformal

homeomorphism can be extended to a home-

omorphism of domains with capacitory bound-

aries. The concept of the capacitory boundary

is based on capacitory metrics that will be dis-

cussed later.
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The Royden compactification does not coin-

cide with the Caratheodory compactification

of two dimensional domains. The capacitory

boundary coincides with the Caratheodory com-

pactification.
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What is connection between the prime ends

theory and the theory of Sobolev spaces? Re-

member that the homogeneous Sobolev space

L1
n(Ω) are invariant under quasiconformal home-

omorphisms. i.e. any quasiconformal homeo-

morphism ϕ between two domains Ω,Ω′ ∈ Rn

induces an invertible bounded composition op-

erator ϕ∗ between spaces L1
n(Ω

′) and L1
n(Ω)

(G., Vodop’janov, 1976).

Therefore the trace problem for homogeneous

Sobolev spaces L1
n(Ω) has direct connection

with any capaitory compactification that is in-

variant under quasiconformal mappings

9



Let Ω ⊂ R
n, n ≥ 2, be a bounded open set,

then the uniform Sobolev space L1
p(Ω), 1 ≤

p ≤ ∞, is defined as

L1
p(Ω) = {u ∈ L1,loc(Ω)|∇u ∈ Lp(Ω)}.

Here the gradient ∇u is in the weak (distri-

butional) sense. The space L1
p(Ω) is a semi-

normed space equipped with the seminorm

‖u|L1
p(Ω)‖ = ‖∇u|Lp(Ω)‖.

The subset of C∞-functions is dense in L1
p(Ω).

The key role for the description of "‘ideal bound-

aries"’ plays a concept of p-capacity.
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Recall that a well-ordered triple E := (F0, F1;Ω)

of nonempty sets, where Ω is an open set in

R
n, and F0, F1 are compact subsets of Ω, is

called a condenser on the Euclidean space R
n.

The value

Capp(E) = Capp(F0, F1;Ω) = inf
∫

Ω

|∇v|p dx, ,

where the infimum is taken over all nonneg-

ative functions v ∈ C(F0 ∪ F1 ∪ Ω) ∩ L1
p(Ω),

such that v ≥ 0 in a neighborhood of the set

F0, and v ≥ 1 in a neighborhood of the set

F1, is called the p-capacity of the condenser

E = (F0, F1;Ω).
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Formally Sobolev functions defined only up to

a set of measure zero, but they can be re-

defined pointwise up to a set of p-capacity

zero. Indeed, u ∈ L1
p(Ω) has a unique quasi-

continuous representation, for which the func-

tion is continuous outside of an open subset of

Ω with arbitrary small p-capacity. We use the

concept of quasi-continuity for completion of a

domain Ω with help of the p-capacity. Roughly

speaking, an "ideal" p-capacitory boundary points

are boundary continuums of p-capacity zero.
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Our main theorem shows that for a large class

of domains boundary values of functions u ∈

L1
p(Ω), n − 1 < p ≤ n on the p-capacitory

boundary exist and the boundary values rep-

resents a function that is quasicontinuous on

this "‘ideal boundary"’. For plane domains the

2-capacitory boundary coincides with the clas-

sical Caratheodory boundary.

For smooth domains traces of Sobolev. spaces

are Besov spaces. In the case of Lipschitz do-

mains the traces can be described also in terms

of Besov spaces. For arbitrary non Lipschitz

domain the problem is open. For cusp type sin-

gularities a description of traces can be found

in (G.,Vasiltchik, 2010) in terms of weighted

Sobolev spaces.
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Fix a continuum F in the domain Ω ⊂ R
n and a

compact domain V such that F ⊂ V ⊂ V ⊂ Ω.

Definition 2.3. Choose arbitrarily points x, y ∈

Ω and joint x, y by a rectifiable curve l(x, y).

Define the p-capacitory quantity between x and

y in Ω with respect to pair (F, V ) as the value

ρp;(F,V )(x, y) = inf
l(x,y)

{Cap
1
p
p(F, l(x, y) \ V ;Ω)+

Cap
1
p
p(∂Ω, l(x, y) ∩ V ;Ω)}

where the infimum is taken over all the curves

l(x, y).
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We shall prove that the quantity ρp;(F,V )(x, y)

is an intrinsic metric in Ω ⊂ R
n for n − 1 <

p ≤ n. Note, that for p ≤ n − 1 and p > n

the p-capacitory quantity ρp;(F,V )(x, y) is not a

metric.

Denote by {Ω̃, ρp;(F,V )} the standard comple-

tion of the metric space {Ω, ρp;(F,V )} and by

Hp the set {Ω̃, ρp;(F,V )} \
{
Ω, ρp;(F,V )

}
.

We call Hp a p-capacitory boundary of Ω.
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It will be proved that the topology of Hp,

n−1 < p ≤ n, does not depends on choice of a

pair (F, V ). Moreover two p-capacitory metrics

are equivalent for any different choice of pairs

(F1, V1) and (F2, V2). This is a justification of

the notation Hp for the p-capacitory boundary.

The notion of a p-capacitory boundary was in-

troduced for p = n in 1982 (G.,Vodop’janov).

It was proved the quasi-invariance of the n-

capacitory metric under quasi-conformal home-

omorphisms. For p 6= n the situation is more

complicated and interplay between

p-quasi-conformal homeomorphisms and p-capacitory

metrics will be discussed.
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A homeomorphism ϕ between Euclidean do-

mains Ω and Ω′ is called p-quasiconformal

(G.,Gurov,Romanov,1994) if ϕ is weakly dif-

ferentiable and

|Dϕ(x)|p ≤ K|J(x, ϕ)|, for almost all x ∈ Ω.

In the case p = n it is one of standard defini-

topns of quasiconformal homeomorphisms.

Theorem 2 (G.,Gurov,Romanov)

The homeomorphism ϕ : Ω → Ω′ is

p-quasiconformal if and only if the mapping ϕ

is weakly differentiable, is the mapping of fi-

nite distortion, and generates by the composi-

tion rule ϕ∗f = f ◦ ϕ a bounded composition

operator on Sobolev spaces

ϕ∗ : L1
p(Ω

′) → L1
p(Ω), 1 ≤ p < ∞.
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Theorem 3 Let Ω be a domain in R
n. Suppose

n − 1 < p ≤ n and ρp;(F1,V1)
, ρp;(F2,V2)

are two

p-capacitory quantities on Ω. Then there exist

two constants K,Q > 0 such that

Kρp;(F2,V2)
(x, y) ≤ ρp;(F1,V1)

(x, y) ≤ Qρp;(F1,V1)
(x, y)

for any x, y ∈ Ω.

Theorem 4. Let Ω be a domain in R
n, n ≥ 2

and n− 1 < p ≤ n (1 ≤ p ≤ 2, if n = 2). Then

the quantity ρp;(F,V )(x, y) is an intrinsic metric

in Ω.

Corollary . Suppose n−1 < p ≤ n and ρp;(F1,V1)
,

ρp;(F2,V2)
are two p-capacitory metrics on Ω.

The metric spaces
{
Hρ, ρp;(F1,V1)

}

and
{
Hρ, ρp;(F2,V2)

}
are quasi-isometric, i.e there

exist two constants K,Q > 0 such that

Kρp;(F2,V2)
(x, y) ≤ ρp;(F1,V1)

(x, y) ≤ Qρp;(F1,V1)
(x, y)

for any x, y ∈ Hp.
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Theorem 5. The topology induced by a p-

capacitory metric ρp;(F,V ) into the domain Ω ⊂

R
n, n−1 < p ≤ n (1 ≤ p ≤ 2 if n = 2), coincides

with the Euclidean topology.

Definition For arbitrary point h ∈ Hρ we con-

sider the balls B(h, ε), ε > 0, defined in the

p-capacitory metric ρp;(F,V ).

Call the set

sh =
⋂

ε>0

B(h, ε) ∩Ω ⊂ R
n

the support of a boundary element h ∈ Hρ.

If Ω is locally connected at a point x ∈ ∂Ω.

Then for every sequence {xm ∈ Ω} and h ∈ Hp

such that |xn − x| → 0 we have

ρp;(F,V )(xn, h) → 0 while n → ∞ for any x ∈ sh.
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Theorem 6. Let a domain Ω is locally con-

nected at any point x ∈ ∂Ω. Then the iden-

tical mapping i : Ω → Ω can be extend to a

homeomorphism ĩp : Ω̃p → Ω if and only if all

supports sh of a boundary elements h ∈ Hρ are

one-points.
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By the classical Lusin theorem every measur-

able function is uniformly continuous outside

of an open set of arbitrary small measure.

It is reasonable to conjecture that every func-

tion u ∈ L1
p(Ω) is uniformly continuous outside

of an open subset of Ω ⊂ Rn of arbitrary small

p-capacity.

Unfortunately this conjecture is not correct for

an arbitrary domain and is correct only under

some additional conditions on Ω.
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Definition Let us call a domain Ω a p-Lusin

domain if for every function u ∈ L1
p(Ω) and

any ε > 0 there exists an open set Uε of the p-

capacity less then ε and such that the function

u is uniformly continuous for the p-capacitory

metric if it is restricted to the complement of

Uε in Ω.

The unit ball B(0,1) ⊂ R
n is an example of a

p-Lusin domain.

A domain Ω ⊂ Rn is said to be a Sobolev L1
p

-extension domain if there exists a bounded

linear operator E : L1
p(Ω) → L1

p(R
n) such that

for any u ∈ L1
p(Ω) the condition E(u)|Ω = u

holds.
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Theorem 7. If a bounded domain Ω is a L1
p

-extension domain then the identity mapping

id : Hp → Ω̄ is a homeomorphism for any n−1 <

p ≤ n.

Corollary. Any bounded L1
p -extension domain

possesses p-Lusin property.

Definition . A domain Ω ⊂ Rn is said to be a

Sobolev L1
p -quasi-extension domain if for any

ε > 0 there exist such open set Uε of p-capacity

less then ε that Ω \ Ūε is a L1
p -extension do-

main.

Typical examples of such domains are domains

with boundary singularities of p-capacity zero.
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Theorem 8. Suppose that Ω is an arbitrary

p-Lusin domain in Rn, n − 1 < p ≤ n. For any

function u ∈ L1
p(Ω) there exists a function ũ :(

Ω̃p, ρp;(F,V )

)
→ R defined p-quasi everywhere

on Hp such that ũ|Ω = u.

Theorem 9. Suppose D and Ω are two Eu-

clidean domains and ϕ : D → Ω is

a p-quasiconformal homeomorphism, n − 1 <

p ≤ n. Then there exists a unique Lipschitz

mapping

ϕ̃−1 :
(
Ω̃, ρp;(ϕ(F ),ϕ(V ))

)
→

(
D̃, ρp;(F,V )

)

such that ϕ̃−1|Ω = ϕ−1.
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EXAMPLES

PEAKS

Definition . Suppose M is a compact n −

1-dimensional Lipschitz manifold with bound-

ary. Call a warped product the manifold X :=

(0, R] × Int(M) with the metric g := dρ2 +

f(ρ)σ, where f(ρ) is a positive continuous func-

tion and σ is the Riemannian metric of M.

Usually f(ρ) called a warped function of the

warped product X.

A domain Ω ∈ Rn is called a domain with

a peak singularity if it is a bi-Lipschitz do-

main with an isolated singular point xo (on its

boundary) that has a neighborhood bi-Lipschitz

homeomorphic to a warped product X := (0, R]×

Int(M). The warped function f(ρ) represents

type of the peak.
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RIDGES

Definition . For any n−m-dimensional warped

product X := (0, R]× Int(M) (with the metric

g := dρ2 + f(ρ)σ) call its product Y := X × N

to an m-dimensional compact manifold as a

m-dimensional ridge.

Proposition . For any 0 < r < R we have

Capp(Xr,MR) = |M |




R∫

r

f(ρ)
−1
p−1dρ




1−p

where |M | is volume of M .

Corollary . lim
r→0

Capp(Xr,MR) = 0 if and only

if
∫R
0 f(ρ)

−1
p−1dρ = ∞.
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