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ABSTRACT

Using the concept of the p-capacity, associated
with uniform Sobolev spaces Lj;(2), we intro-
duce a notion of a p-capacitory boundary for
an arbitrary domain Q C R"”", n—1 <p<n. The
p-capacitory boundaries depend on p and repre-
sent "ideal boundaries" of the domain €2 for p-
capacitory metrics. The Sobolev classes L;(Q)
can be extended to the p-capacitory boundaries
under some additional assumptions on €2.



The p-capacitory topology is equivalent to the
Euclidean one into €2, but the p-capacitory
boundary depends on p and can be very far
from the Euclidean one for non-regular do-
mains. An analog of p-capacitory boundaries
can be introduced for p > n using a more deli-
cate procedure.

For p = n the notion of p-capacitory boundary
was introduced by G. and VVodop’'yanov in 80-
th and was used for quasiconformal homeomor-
phisms extension on the n-capacitory bound-

ary.



HISTORY and MOTIVATION

The concept of the ideal boundaries is common
for geometry and analysis. The Poincare disc is
a model of the hyperbolic plane that provides a
geometrical realization of the ideal boundary of
the hyperbolic plane with help of a conformal
homeomorphism.

T he two-dimensional theory of conformal home-
omorphisms is very rich because the Riemann

Mapping Theorem that states existence of con-

formal homeomorphism between the unit disc

B2 c R?2 and any simply connected plane do-

main that has at least two boundary points.



However the boundary behavior of plane con-
formal homeomorphism can not be described
in terms of Euclidean boundaries. The con-
cept of ideal boundary elements (prime ends)
was introduced by C. Caratheodory (1913) to
describe boundary behavior of plane confor-
mal homeomorphisms in geometric terms. The
main Caratheodory theorem states that any
conformal homeomorphism of unit disc induces
one to one correspondence of prime ends.



M.A.Lavrentiev (1938) introduced a metric (a
relative distance) for prime ends. G.D.Suvorov
(1956) constructed a counterexample that demon-
strates an absence of the triangle inequality for
the Lavrentiev relative distance and proposed a
more accurate concept of relative distance that
IS a metric. For this metric the Cartheodory
prime ends represents a compactification of
plane domains. There exists a number of dif-
ferent intrinsic conformally invariant metrics.
A detailed survey can be found in a recent pa-
per of V.M.Miklyukov .



There are two main attempts to construct a
quasiconformally invariant “ideal’” boundaries
for dimension more than two. The first one is
based on Royden algebras that are quasiconfor-
mal invariants by M. Nakai (1960} for dimen-
sion two and by L. G. Lewis (1971) for arbitrary
dimension. As any Banach algebras the Roy-
den algebras produces compactification of do-
mains in space and any quasiconformal home-
omorphisms induces a homeomorphism of the
compactifications.



The second concept of so-called capacitory bound-
ary was proposed by G. and S.Vodop'janov
(1978) and is based on a notion of the con-
formal capacity. Remember that the confor-
mal capacity is a quasiinvariant for quasicon-
formal homeomorphisms. Any quasiconformal
homeomorphism can be extended to a home-
omorphism of domains with capacitory bound-
aries. The concept of the capacitory boundary
IS based on capacitory metrics that will be dis-
cussed later.



The Royden compactification does not coin-
cide with the Caratheodory compactification
of two dimensional domains. The capacitory

boundary coincides with the Caratheodory com-
pactification.



What is connection between the prime ends

theory and the theory of Sobolev spaces? Re-

member that the homogeneous Sobolev space

L1 () are invariant under quasiconformal home-
omorphisms. i.e. any quasiconformal homeo-

morphism ¢ between two domains 2, € R?

induces an invertible bounded composition op-

erator ¢* between spaces L1() and L1(Q)

(G., Vodop'janov, 1976).

Therefore the trace problem for homogeneous
Sobolev spaces L1(2) has direct connection
with any capaitory compactification that is in-
variant under quasiconformal mappings



Let 2 C R®, n > 2, be a bounded open set,
then the uniform Sobolev space L;(Q), 1 <
p < oo, is defined as

L}%(Q> ={u € Ll,loc(Q>|vu S LP(Q)}'

Here the gradient Vu is in the weak (distri-
butional) sense. The space L;(Q) iS a semi-
normed space equipped with the seminorm

lul Ly () = ||Vl Lp(S)]].

The subset of C°°-functions is dense in L(£2).

The key role for the description of "‘ideal bound-
aries"’ plays a concept of p-capacity.
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Recall that a well-ordered triple £ := (Fp, F1;2)
of nonempty sets, where 2 is an open set in
R"™, and Fy, F; are compact subsets of €, is
called a condenser on the Euclidean space R".

The value

Capp(E) = Capp(Fp, F1;2) = inf/ |VolP dx, |
Y

where the infimum is taken over all nonneg-
ative functions v € C(Fp U Fy U ) N Li(£2),
such that v > 0 in a neighborhood of the set
Fp, and v > 1 in a neighborhood of the set
Fq, is called the p-capacity of the condenser
E = (Fo,Fl;Q).
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Formally Sobolev functions defined only up to
a set of measure zero, but they can be re-
defined pointwise up to a set of p-capacity
zero. Indeed, u € Lj(2) has a unique quasi-
continuous representation, for which the func-
tion is continuous outside of an open subset of
€2 with arbitrary small p-capacity. We use the
concept of quasi-continuity for completion of a
domain €2 with help of the p-capacity. Roughly
speaking, an "ideal" p-capacitory boundary points
are boundary continuums of p-capacity zero.

12



Our main theorem shows that for a large class
of domains boundary values of functions u &
L}(Q), n—1 < p < n on the p-capacitory
boundary exist and the boundary values rep-
resents a function that is quasicontinuous on
this "‘ideal boundary"'. For plane domains the
2-capacitory boundary coincides with the clas-
sical Caratheodory boundary.

For smooth domains traces of Sobolev. spaces
are Besov spaces. In the case of Lipschitz do-
mains the traces can be described also in terms
of Besov spaces. For arbitrary non Lipschitz
domain the problem is open. For cusp type sin-
gularities a description of traces can be found
in (G.,Vasiltchik, 2010) in terms of weighted
Sobolev spaces.
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Fix a continuum F'in the domain €2 C R™ and a
compact domain V such that FCV CV C Q.

Definition 2.3. Choose arbitrarily points z,y €
Q2 and joint z,y by a rectifiable curve I(x,y).
Define the p-capacitory quantity between x and
y in © with respect to pair (F,V) as the value

1

pp,(F,V)(xay) — Z(IQZ){CGPZF;(Fa l(x7y) \ V: Q)_I_

1
Capp (02, l(z,y) NV;Q)}

where the infimum is taken over all the curves
I(z,y).
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We shall prove that the quantity pp;(Fjv)(:U,y)
is an intrinsic metric in Q2 C R™” for n — 1 <
p < n. Note, that for p < n—1and p > n
the p-capacitory quantity pp;(Fy)(a:,y) is not a
metric.

Denote by {ﬁ,pp;(F7v)} the standard comple-
tion of the metric space {€2,p, (py)} and by

Hy the set {Q,p,.(r1y}\ {Q,pp;(F,V)}-

We call Hy a p-capacitory boundary of €2.
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It will be proved that the topology of Hp,

n—1<p<n, does not depends on choice of a
pair (F, V). Moreover two p-capacitory metrics
are equivalent for any different choice of pairs
(F1,V71) and (F»,V5). This is a justification of
the notation H, for the p-capacitory boundary.

The notion of a p-capacitory boundary was in-
troduced for p = n in 1982 (G.,Vodop'janov).

It was proved the quasi-invariance of the n-
capacitory metric under quasi-conformal home-
omorphisms. For p #= n the situation is more
complicated and interplay between
p-quasi-conformal homeomorphisms and p-capaciton
metrics will be discussed.
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A homeomorphism ¢ between Euclidean do-
mains Q and ' is called p-quasiconformal
(G.,Gurov,Romanov,1994) if ¢ is weakly dif-
ferentiable and

I Do(x)P < K|J(x,p)|, for almost all x € Q.

In the case p = n it is one of standard defini-
topns of quasiconformal homeomorphisms.

Theorem 2 (G.,Gurov,Romanov)

The homeomorphism ¢ : Q — Q' is
p-quasiconformal if and only if the mapping ¢
is weakly differentiable, is the mapping of fi-
nite distortion, and generates by the composi-
tion rule o*f = f o a bounded composition
operator on Sobolev spaces

* T LA(QY) = Li(Q), 1<p< oo
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Theorem 3 Let €2 be a domain in R™. Suppose

n—1<p<smnand pyp ) Pp(FV,) are TWo
p-capacitory quantities on 2. Then there exist

two constants K, > O such that

Kpp: (7 ) (@, 4) < ppry v (@, 9) < Qop: 7y 1v7) (@5 9)
for any z,y € €2.

Theorem 4. Let Q2 be a domain in R?, n > 2
andn—1<p<n (1<p<2 ifn=2). Then
the quantity pp;(F’V)(:I:,y) is an intrinsic metric
in €2.

Corollary . Suppose n—1 <p <nand p,. (g ;)
Pp:(Fo,Vs) are two p-capacitory metrics on (2.

The metric spaces {Hpapp;(Fl,Vl)}

and {Hp,pp;(FQ,VQ)} are quasi-isometric, i.e there
exist two constants K, > 0 such that

Kpp;(FQ,VQ)(:C7y) S pp;(Fl,Vl)(x7y) S Qpp;(Fl,Vl)(x7y>
for any z,y € Hp.
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Theorem 5. The topology induced by a p-
Capacitory metric p,.(py) into the domain €2 C
R n—1<p<n1<p<2ifn=2), coincides
with the Euclidean topology.

Definition For arbitrary point A € H, we con-
sider the balls B(h,e), € > 0, defined in the

p-capacitory metric Pp:(FV)-

Call the set

Sp = m B(h,e)NQ2 C R"
e>0

the support of a boundary element h € H).

If €2 is locally connected at a point x € 0fX2.
Then for every sequence {zm € 2} and h € Hy
such that |z, — x| — 0 we have

pp;(F,V)(aj”'%h) — 0 while n — oo for any z € s,.
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Theorem 6. Let a domain €2 is locally con-
nected at any point z € 0€2. Then the iden-
tical mapping 7 : €2 — €2 can be extend to a
homeomorphism 1, : €, — Q if and only if all
supports s, of a boundary elements h € H, are
one-points.
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By the classical Lusin theorem every measur-
able function is uniformly continuous outside
of an open set of arbitrary small measure.

It is reasonable to conjecture that every func-
tion u € L1(£2) is uniformly continuous outside
of an open subset of €2 C R™ of arbitrary small
p-Capacity.

Unfortunately this conjecture is not correct for

an arbitrary domain and is correct only under
some additional conditions on €2.
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Definition Let us call a domain €2 a p-Lusin
domain if for every function u € L}(2) and
any € > 0 there exists an open set U: of the p-
capacity less then € and such that the function
u IS uniformly continuous for the p-capacitory
metric if it is restricted to the complement of
Us in 2.

The unit ball B(0,1) C R™ is an example of a
p-Lusin domain.

A domain € C R" is said to be a Sobolev L}
-extension domain if there exists a bounded
linear operator E : L1(£2) — Li(R™) such that
for any u € L1(Q2) the condition E(u)lg = u
holds.
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Theorem 7. If a bounded domain Q is a L}
-extension domain then the identity mapping
id : Hp — € is a homeomorphism for any n—1 <
p < n.

Corollary. Any bounded L} -extension domain
possesses p-Lusin property.

Definition . A domain €2 C R"™ is said to be a
Sobolev LZ% —quasi-extension domain if for any
e > 0 there exist such open set U: of p-capacity
less then ¢ that Q\ Uz is a LZ% -extension do-
main.

Typical examples of such domains are domains
with boundary singularities of p-capacity zero.
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Theorem 8. Suppose that €2 is an arbitrary
p-Lusin domain in R™*, n—1 < p < n. For any
function u € L} () there exists a function @ :
(fz/p,pp;(F,V» — R defined p-quasi everywhere
on Hjp such that u|q = .

Theorem 9. Suppose D and 2 are two Eu-
clidean domains and ¢ : D — €2 is

a p-quasiconformal homeomorphism, n —1 <
p < n. Then there exists a unique Lipschitz

mapping

e~

pL: (Qapp;«,o(m,so(v») — (DvmeaV))
such that g;jllﬂ = 1.

24



EXAMPLES
PEAKS

Definition . Suppose M is a compact n —
1-dimensional Lipschitz manifold with bound-
ary. Call a warped product the manifold X =
(0, R] x Int(M) with the metric g = dp? +
f(p)o, where f(p) is a positive continuous func-
tion and o is the Riemannian metric of M.

Usually f(p) called a warped function of the
warped product X.

A domain 2 € R™ is called a domain with
a peak singularity if it is a bi-Lipschitz do-
main with an isolated singular point z, (on its
boundary) that has a neighborhood bi-Lipschitz
homeomorphic to a warped product X := (0, R] x
Int(M). The warped function f(p) represents
type of the peak.
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RIDGES

Definition . For any n—m-dimensional warped
product X := (0, R] x Int(M) (with the metric
g :=dp?+ f(p)o) call its product Y := X x N
to an m-dimensional compact manifold as a
m-dimensional ridge.

Proposition . For any O < r < R we have
R 1-p
—1
Capp(Xr, M) = |M| | [ £(p)71dp
T

where |M| is volume of M.

Corollary . IimO Capp(Xr, M) = 0 if and only
r—

—1
it [ f(p)P~Tdp = co.
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