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Definition 1

A Banach space X is said to have the approximation property, if, for
every compact set K ⊂ X and every ε > 0, there exists an operator
T : X → X of finite rank so that ‖Tx− x‖ ≤ ε for every x ∈ K.
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Definition 1

A Banach space X is said to have the approximation property, if, for
every compact set K ⊂ X and every ε > 0, there exists an operator
T : X → X of finite rank so that ‖Tx− x‖ ≤ ε for every x ∈ K.

Although it is strongly believed that the class of spaces with the
approximation property includes practically all spaces which appear
naturally in analysis, it is not known yet even for the space
H∞ := H∞(D). The strongest result in this direction due to Bourgain
and Reinov states that H∞ has the approximation property “up to
logarithm“. The first example of a space which fails to have the
approximation property was constructed by Enflo. Since Enflo’s work
several other examples of such spaces were constructed.
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Definition 2

A Banach space has the λ-approximation property, 1 ≤ λ < ∞, if it has
the approximation property with the approximating finite rank
operators of norm ≤ λ.
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A Banach space has the λ-approximation property, 1 ≤ λ < ∞, if it has
the approximation property with the approximating finite rank
operators of norm ≤ λ.

Definition 3

A Banach space is said to have the bounded approximation property, if
it has the λ-approximation property for some λ. If λ = 1, then the
space is said to have the metric approximation property.
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Definition 2

A Banach space has the λ-approximation property, 1 ≤ λ < ∞, if it has
the approximation property with the approximating finite rank
operators of norm ≤ λ.

Definition 3

A Banach space is said to have the bounded approximation property, if
it has the λ-approximation property for some λ. If λ = 1, then the
space is said to have the metric approximation property.

Every Banach spaces with a basis has the bounded approximation
property. Figiel and Johnson proved that the approximation property
does not imply the bounded approximation property. Also, it was
established by Pe lczyński that a separable Banach space has the
bounded approximation property if and only if it is isomorphic to a
complemented subspace of a separable Banach space with a basis.
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Next, for Banach spaces X,Y by L(X,Y ) and F(X,Y ) we denote the
spaces of linear bounded operators and operators of finite rank X → Y
equipped with the operator norm. Let us consider the trace mapping V
from the projective tensor product Y ∗⊗̂πX → F(X,Y )∗ defined by

(V u)(T ) = trace(Tu), where u ∈ Y ∗⊗̂πX, T ∈ F(X,Y ),

that is, if u =
∑∞

n=1 y
∗
n ⊗ xn, then (V u)(T ) =

∑∞
n=1 y

∗
n(Txn).

It is easy to see that ‖V u‖ ≤ ‖u‖π. The λ-bounded approximation
property of X is equivalent to the fact that ‖u‖π ≤ λ‖V u‖ for all
Banach spaces Y . This well-known result is essentially due to
Grothendieck.
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Let M be a (finite-dimensional) Caratheodory hyperbolic complex
manifold (i.e., H∞(M) separates points of M). By G∞(M) we denote
the geometric predual to H∞(M). By definition, G∞(M) is the closed
linear span in H∞(M)∗ of the family {δm}m∈M of delta functionals of
points in M . We have
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Let M be a (finite-dimensional) Caratheodory hyperbolic complex
manifold (i.e., H∞(M) separates points of M). By G∞(M) we denote
the geometric predual to H∞(M). By definition, G∞(M) is the closed
linear span in H∞(M)∗ of the family {δm}m∈M of delta functionals of
points in M . We have

Theorem A

(1) G∞(M)∗ = H∞(M) and any complex Banach space predual to
H∞(M) is isometrically isomorphic to G∞(M).

(2) The closed unit ball BG∞(M) of G∞(M) is the closed convex hull

of the set {eiθ · δm}m∈M, θ∈R.

(3) The injective map ∆M : M → G∞(M), ∆M (m) := δm, is
holomorphic with range in the unit sphere of G∞(M).

(4) Let Y be a complex Banach space and H∞(M,Y ) be the space of
bounded holomorphic maps F : M → Y endowed with norm
‖F‖ := supm∈M ‖F (m)‖Y . Then the map
IM ;Y : L(G∞(M), Y ) → H∞(M,Y ), IM ;Y (T ) := T ◦ ∆M , is an
isometry of complex Banach spaces.
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Let us mention other realisations of spaces predual to H∞(M). For
instance, if M ⋐ C

n is a bounded domain, then the predual space to
H∞(M) is isometrically isomorphic to L1(M)/⊥H∞(M), where L1(M)
is defined with respect to the Lebesgue measure on Cn ∼= (R2n). If
M := B

n is the open unit ball in C
n, then such predual space is

isometrically isomorphic to L1(S2n−1)/⊥H∞(Bn), where L1(S2n−1) is
defined on the (2n− 1)-dimensional unit sphere S

2n−1 with respect to
the (2n− 1)-Hausdorff measure. (Here for a Banach space X with dual
X∗ and a subspace Z ⊂ X∗ the space

⊥Z := {x ∈ X : z∗(x) = 0 ∀ z∗ ∈ Z}.

In the first case this result follows from the fact that H∞(M) is a
weak∗ closed subspace of L∞(M) while in the second one from the fact
that H∞(Bn)|S2n−1 is a weak∗ closed subspace of L∞(S2n−1); here the
trace space consists of the boundary values of functions in H∞(Bn).
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Let Ω ⋐ C
n be a starlike domain which admits an exhaustion

Ω1 ⋐ Ω2 ⋐ . . . , where each Ωi is open and its closure Ω̄i is
polynomially convex, i.e., for every z 6∈ Ω̄i there exists a holomorphic
polynomial p on C

n such that |p(z)| > maxΩ̄i
|p|. In particular, the

class of such sets Ω contains all bounded convex domains in C
n.
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Let Ω ⋐ C
n be a starlike domain which admits an exhaustion

Ω1 ⋐ Ω2 ⋐ . . . , where each Ωi is open and its closure Ω̄i is
polynomially convex, i.e., for every z 6∈ Ω̄i there exists a holomorphic
polynomial p on C

n such that |p(z)| > maxΩ̄i
|p|. In particular, the

class of such sets Ω contains all bounded convex domains in C
n.

Theorem 1

G∞(Ω) and A(Ω) := H∞(Ω) ∩ C(Ω̄) have the metric approximation
property.
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Let M be a Stein manifold, i.e., a complex manifold which admits a
proper holomorphic embedding in some C

n and let Ω ⋐ M be a
strongly pseudoconvex domain with C2 boundary ∂Ω, that is,
Ω := {z ∈ M : ρ(z) < 0}, where ρ is a real-valued C2 function on a
neighbourhood of Ω̄, strongly plurisubharmonic in a neighbourhood of
∂Ω, and dρ(z) 6= 0 for all z ∈ ∂Ω.
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Let M be a Stein manifold, i.e., a complex manifold which admits a
proper holomorphic embedding in some C

n and let Ω ⋐ M be a
strongly pseudoconvex domain with C2 boundary ∂Ω, that is,
Ω := {z ∈ M : ρ(z) < 0}, where ρ is a real-valued C2 function on a
neighbourhood of Ω̄, strongly plurisubharmonic in a neighbourhood of
∂Ω, and dρ(z) 6= 0 for all z ∈ ∂Ω.

Let r : Ω′ → Ω be an unbranched covering of Ω. It is known that
H∞(Ω′) separates points of Ω′.

Theorem 2

(a) There exists λ := λ(Ω) ∈ [1,∞) such that G∞(Ω′) has the
λ-approximation property.

(b) A(Ω) := H∞(Ω) ∩ C(Ω̄) has the bounded approximation property.
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The following result allows us to enlarge the class of G∞- and A-spaces
having approximation properties.
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The following result allows us to enlarge the class of G∞- and A-spaces
having approximation properties.

Proposition 1

(a) If M and N are Caratheodory hyperbolic complex manifolds and
G∞(M) has the λ-approximation property, then G∞(M ×N) is
isomorphic (isometrically if λ = 1) to G∞(N)⊗̂πG

∞(M) and the
Banach-Mazur distance between these spaces is bounded by λ.
If, in addition, G∞(N) has the µ-approximation property, then
G∞(M ×N) has the λµ · min(λ, µ)-approximation property.

(b) If M and N are bounded domains in Stein manifolds and A(M)
has the λ-approximation property, then A(M ×N) is isometrically
isomorphic to the injective tensor product A(M)⊗̂εA(N).
If, in addition, A(N) has the µ-approximation property, then
A(M ×N) has the λµ-approximation property.
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As an immediate corollary of Theorems 1, 2 and Proposition 1 we
obtain:
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As an immediate corollary of Theorems 1, 2 and Proposition 1 we
obtain:

Corollary

(a) Let Ω1, . . . ,Ωk be either starlike domains or unbranched coverings
of strongly pseudoconvex domains with C2 boundaries in Stein
manifolds. Then G∞(Ω1 × · · · × Ωk) has the bounded
approximation property.

(b) Let Ω1, . . . ,Ωk be either starlike domains or strongly
pseudoconvex domains with C2 boundaries in Stein manifolds.
Then A(Ω1 × · · · × Ωk) has the bounded approximation property.
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Being separable, G∞- and A-spaces of Theorems 1 and 2 are
isomorphic to complemented subspaces of separable Banach spaces
with bases with the Banach-Mazur distances between them and their
isomorphic copies bounded by 4 in the case of Theorem 1 and by a
constant depending on Ω in the case of Theorem 2.
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Being separable, G∞- and A-spaces of Theorems 1 and 2 are
isomorphic to complemented subspaces of separable Banach spaces
with bases with the Banach-Mazur distances between them and their
isomorphic copies bounded by 4 in the case of Theorem 1 and by a
constant depending on Ω in the case of Theorem 2.

Problem 1

It is an interesting question whether G∞- and A-spaces of Theorems 1
and 2 have bases. A basis in A(D) was constructed by Bochkarev
answering a question of Banach.
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Being separable, G∞- and A-spaces of Theorems 1 and 2 are
isomorphic to complemented subspaces of separable Banach spaces
with bases with the Banach-Mazur distances between them and their
isomorphic copies bounded by 4 in the case of Theorem 1 and by a
constant depending on Ω in the case of Theorem 2.

Problem 1

It is an interesting question whether G∞- and A-spaces of Theorems 1
and 2 have bases. A basis in A(D) was constructed by Bochkarev
answering a question of Banach.

Problem 2

In view of the formualted results it is natural to ask also about
existence of domains Ω ⋐ C

n for which G∞(Ω) and A(Ω) do not have
the approximation property.
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Decomposition of G
∞-spaces

Let M be a Caratheodory hyperbolic complex manifold and let
{Mk}1≤k≤m be an open cover of M . By ik : Mk →֒ M we denote the
embedding maps. These maps induce linear bounded maps
Ik : G∞(Mk) → G∞(M) of norm 1 such that ∆M ◦ ik = Ik ◦ ∆Mk

.
Consider the direct product ⊕m

k=1G
∞(Mk) equipped with norm

‖(v1, . . . , vm)‖ :=
m∑

k=1

‖vk‖G∞(Mk), (v1, . . . , vm) ∈ ⊕m
k=1G

∞(Mk).

Then there exists a linear bounded map P : ⊕m
k=1G

∞(Mk) → G∞(M)
of norm 1 with dense image defined by the formula

P (v1, . . . , vm) :=
m∑

k=1

Ik(vk), (v1, . . . , vm) ∈ ⊕m
k=1G

∞(Mk).
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We say that G∞(M) is decomposable with respect to

G∞(M1), . . . , G
∞(Mm) if there exists a linear bounded map

S : G∞(M) → ⊕m
k=1G

∞(Mk) such that P ◦ S = Id.
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We say that G∞(M) is decomposable with respect to

G∞(M1), . . . , G
∞(Mm) if there exists a linear bounded map

S : G∞(M) → ⊕m
k=1G

∞(Mk) such that P ◦ S = Id.

In this case P is surjective and G∞(M) is isomorphic to a
complemented subspace of ⊕m

k=1G
∞(Mk).

Next, consider bounded holomorphic maps sk : Mk → ⊕m
k=1G

∞(Mk),

sk(z) := (0, . . . , 0, ∆Mk
(z)

︸ ︷︷ ︸

kth coordinate

, 0, . . . , 0), z ∈ Mk.

Then the family {sij := si − sj ∈ H∞(Mi ∩Mj ,KerP )} forms a
bounded holomorphic 1-cocycle on the finite open cover {Mi} of M
with values in KerP .
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We say that such cocyle is H∞ trivial if there exist a finite open
refinement {M ′

j} of {Mk} with the refinement map ι from the set of
indices of the first cover to that of the second one (i.e., M ′

j ⊂ Mι(j) for
all j) and functions s′j ∈ H∞(M ′

j ,KerP ) such that for all possible p, q
with M ′

p ∩M ′
q 6= ∅,

s′p(z) − s′q(z) = sι(p)ι(q)(z) for all z ∈ M ′
p ∩M ′

q.
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Proposition 2

G∞(M) is decomposable with respect to G∞(M1), . . . , G
∞(Mm) if and

only if the cocycle {sij} is H∞ trivial.
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Theorem 3

Let r : Ω′ → Ω be an unbranched covering of a strongly pseudoconvex
domain Ω ⊂ C

p with C2 boundary. Then there exists an open cover
Ω′
1, . . . ,Ω

′
m of Ω′ such that each Ω′

i is biholomorphic to direct product
Ui × N, where Ui ⋐ C

p is a convex domain, and G∞(Ω′) is
decomposable with respect to G∞(Ω′

1), . . . , G
∞(Ω′

m).
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