Locally Affine Lie Algebras

at Fields Institute on March 25, 2013

Yoji Yoshii Akita National College of Technology Japan Joint Work with Jun Morita

Example of LALA

 $L = \operatorname{sl}_{\mathbb{N}}(F[t^{\pm}]) \oplus Fc \oplus D$

c = central, D = derivations

 $d := t \frac{d}{dt}$ (degree derivation)

If D = Fd, then L is called a

minimal standard LALA

F = a field of characteristic 0

L = a Lie algebra over F

H = a subalgebra of L

 $B: L \times L \longrightarrow F$ (a bilinear form)

(L, H, B) is called a Locally Extended Affine Lie Algebra, LEALA for short if it satisfies the following (LE1) – (LE4).

(LE1) Root Space Decomposition

 $L = \bigoplus_{\xi \in H^*} L_{\xi}$

 $H^* = Hom_F(H, F)$

 $L_{\xi} := \{x \in L \mid [h, x] = \xi(h)x \text{ for all } h \in H\}$

 $\star H = L_0$

H becomes abelian. (a Cartan subalgebra!)

(LE2) Existence of Form

B(x, y) = B(y, x): symmetric

B([x, y], z) = B(x, [y, z]): invariant

B: nondegenerate

By (LE1), $B(L_{\xi}, L_{\eta}) = 0 \quad \text{if} \quad \xi + \eta \neq 0$ $B|_{L_{\xi} \times L_{-\xi}} \text{ is also nondegenerate.}$

Properties of LEALA

The set of roots

$$R = \{\xi \in H^* \mid L_{\xi} \neq 0\}$$

Define $t_{\xi} \in H$.

 $\forall \xi \in R, \exists ! t_{\xi} \in H \text{ s.t. } B(t_{\xi}, h) = \xi(h)$ Then

 $[x, y] = B(x, y)t_{\xi}$ if $x \in L_{\xi}, y \in L_{-\xi}$

$$R^{\times} = \{ \xi \in R \mid B(t_{\xi}, t_{\xi}) \neq 0 \}$$
 anisotropic roots

 $R^0 = R \setminus R^{\times}$: isotropic roots

(LE3) Integrability

 $adx \in End(L)$ is locally nilpotent for all $x \in L_{\alpha}$ and $\alpha \in R^{\times}$.

(LE4) Irreducibility

 R^{\times} : irreducible

$$R^{\times} = R_1 \cup R_2$$

 $B(t_{\xi_1}, t_{\xi_2}) = 0$ for $\xi_1 \in R_1$ and $\xi_2 \in R_2$
 $\implies R_1 = \emptyset$ or $R_2 = \emptyset$

$$\dim L_{\xi} \begin{cases} = 1 & \text{if } \xi \in R^{\times} \\ \geq 1 & \text{if } \xi \in R^{0} \end{cases}$$

$$\xi \in R^{\times}$$

$$L_{\xi} \oplus Ft_{\xi} \oplus L_{-\xi} \simeq \text{sl}_{2}(F)$$

$$\xi \in R^{0}$$

$$x \in L_{\xi}, y \in L_{-\xi} \quad \text{s.t. } B(x, y) \neq 0$$

$$Fx \oplus Ft_{\xi} \oplus Fy \simeq \mathcal{H}$$

$$(3-\dim. \text{ Heisenberg})$$

Under a suitable scalar multiple of B, one can assume $B(t_{\alpha}, t_{\alpha}) \in \mathbb{Q}_{>0}$ for all $\alpha \in \mathbb{R}^{\times}$.

Kac-Conjecture for LEALA (Morita-Y, J. Algebra, 2006) $(\cdot, \cdot)|_{V \times V}$ is positive semidefinite.

For EALA, AABGP, Mem. AMS, 1997

Thus

 R^{\times} is a locally finite irreducible root system, and R^{\times} is a natural generalization of an extended affine root system, introduced by K. Saito in 1985. In fact, R^{\times} is an extended affine root system if L is an EALA, and an irreducible affine root system by Macdonald in 1974 if the nullity is 1.

Core of
$$(L, H, B)$$

 $L_c = \langle L_\alpha \mid \alpha \in R^\times \rangle < L$

 $L_c \triangleleft L$: ideal $L_c = [L_c, L_c]$ (L_c is perfect.) Let $C_L(L_c) := \{x \in L \mid [x, y] = 0, \ \forall y \in L_c\}$ be the centralizer.

Tame Condition

$$C_L(L_c) < L_c$$

$$L = L_c \oplus D$$

 $D \hookrightarrow \mathrm{Der}(L_c)/\mathrm{ad}(L_c)$
Thus D can be viewed as outer
derivations of L_c . (In fact, they should be
skew outer derivations relative to B .)

Nullity

$$\Gamma = \langle R^0 \rangle < H^*$$
: additive subgroup "null group" of (L, H, B) nullity $n \iff \Gamma \simeq \mathbb{Z}^n$

Note that the null group Γ is not necessarily a free group.

Extended Affine Lie Algebra

EALA (AABGP, Neher)

- (EA1) (L,H,B): LEALA
- (EA2) $\dim H < \infty$
- (EA3) Tame
- (EA4) $\Gamma \simeq \mathbb{Z}^n$: nullity n

Induced form on $V_F = \operatorname{span}_F R$

$$\lambda = \sum a_{\xi} \xi \Longrightarrow t_{\lambda} := \sum a_{\xi} t_{\xi}$$

$$(\cdot, \cdot): V_F \times V_F \longrightarrow F$$

 $(\lambda, \mu) := B(t_\lambda, t_\mu)$

In particular, $V := \operatorname{span}_{\mathbb{O}} R$

$$\overline{}:V\longrightarrow \overline{V}=V/\operatorname{rad}(\cdot,\cdot)$$

- 1 tame EALA of nullity 0
- = {f. dim'l split simple Lie algebras}
- ② tame EALA of nullity 1
- = {affine Lie algebras} by [ABGP]
- ③ tame LEALA of nullity 0
- = {locally finite split simple Lie algebras} \cup {a little more}, e.g. $sl_N(F)$, etc., and $sl_N(F) \oplus D$, etc.

Tame LEALA of nullity 1 is called an Locally Affine Lie Algebra, LALA for short.

$$\Rightarrow$$

 R^{\times} is a locally affine root system.

$$L = L_c \oplus D \Rightarrow L_c = ?, D = ?$$

 $L_c = \Omega \oplus Fc$, where Ω is a locally loop algebra, for example,

$$\Omega = \mathrm{sl}_{\mathbb{N}}(F) \otimes_F F[t^{\pm 1}].$$

$$D = \operatorname{span}_F(d + \mathfrak{d}_0) \oplus \bigoplus_{m \in \mathbb{Z}^{\times}} \operatorname{span}_F \mathfrak{d}_m \otimes t^m,$$

where

 $\mathfrak{d}_m = \{\text{certain diagonal matrices}\}.$

$$(\text{recall } d := t \frac{d}{dt})$$

f. dim'l split simple Lie alg. $g(X_n)$

$$X_n = A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2$$

Each type X_n corresponds to a finite irreducible root system.

Locally finite split simple Lie alg.

I: an infinite index set $\mathfrak{g}(X_I)$ $= \operatorname{sl}_I(F), \mathfrak{o}_{2I+1}(F), \mathfrak{sp}_{2I}(F), \mathfrak{o}_{2I}(F)$

$$X_I = A_I, B_I, C_I, D_I$$

Each type X_n corresponds to a locally finite irreducible root system.

Affine Lie algebra $\mathfrak{g}(X_n^{(r)})$

untwisted type:

$$A_n^{(1)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)}$$
 twisted type:

$$A_{2n-1}^{(2)} = C_n^{(2)}, A_{2n}^{(2)} = BC_n^{(2)}, D_{n+1}^{(2)} = B_n^{(2)},$$

 $E_6^{(2)} = F_4^{(2)}, D_4^{(3)} = G_2^{(3)}$

Loop Algebra

$$\Omega(X_n^{(r)}) = \left(\mathfrak{g}(X_n) \otimes F[t^{\pm 1}]\right)^{\sigma}$$

$$\sigma = \sigma_1 \otimes \sigma_2$$
, $|\sigma_1| = |\sigma_2| = r$
 σ_1 : Dynkin diag. auto. of $\mathfrak{g}(X_n)$
 $\langle \sigma_2 \rangle = \text{Gal}(F[t^{\pm 1}]/F[t^{\pm r}])$
 $\omega \in F$ if $r = 3$ or using $\tilde{F} := F(\omega)$

Note: r = 1, 2, 3. $r = 1 \Longrightarrow$ untwisted loop algebra $r = 2, 3 \Longrightarrow$ twisted loop algebra

Realization of Affine Lie Algebra

$$g(X_n^{(r)}) = \Omega(X_n^{(r)}) \oplus Fc \oplus Fd$$

$$L_c = \Omega(X_n^{(r)}) \oplus Fc$$
, c : central, d : degree derivation

Untwisted Locally Loop Algebra

$$\Omega(\mathbf{A}_{I}^{(1)}) = \operatorname{sl}_{I}(F) \otimes F[t^{\pm 1}]$$

$$\Omega(\mathbf{B}_{I}^{(1)}) = \mathfrak{o}_{2I+1}(F) \otimes F[t^{\pm 1}]$$

$$\Omega(\mathbf{C}_{I}^{(1)}) = \mathfrak{sp}_{2I}(F) \otimes F[t^{\pm 1}]$$

$$\Omega(\mathbf{D}_{I}^{(1)}) = \mathfrak{o}_{2I}(F) \otimes F[t^{\pm 1}]$$

Twisted Locally Loop Algebra

type
$$D_{2I+2}^{(2)} = B_I^{(2)}$$
:
$$\Omega(B_I^{(2)}) = (\mathfrak{o}_{2I+2} \otimes F[t^{\pm 1}])^{\sigma}$$
type $A_{2I}^{(2)} = C_I^{(2)}$:
$$\Omega(C_I^{(2)}) = (sl_{2I} \otimes F[t^{\pm 1}])^{\sigma}$$
type $A_{2I+1}^{(2)} = BC_I^{(2)}$:
$$\Omega(BC_I^{(2)}) = (sl_{2I+1} \otimes F[t^{\pm 1}])^{\sigma}$$

Locally Affine Lie Algebra

$$\Omega(X_I^{(r)}) \oplus Fc \oplus D \quad (r = 1, 2)$$

$$X_{I}^{(1)} = A_{I}^{(1)}, B_{I}^{(1)}, C_{I}^{(1)}, D_{I}^{(1)}$$
 $X_{I}^{(2)} = B_{I}^{(2)}, C_{I}^{(2)}, BC_{I}^{(2)}$
The core, $L_{c} = \Omega(X_{I}^{(r)}) \oplus Fc$, is a universal central extension!

A LALA is called minimal if $\dim D = 1$. For example,

$$\Omega(X_I^{(r)}) \oplus Fc \oplus Fd$$
,

which is called standard.

Is there exist a non-standard minimal LALA?

Yes if I is an infinite set! For example, let $L(p) := \operatorname{sl}_{\mathbb{N}}(F[t^{\pm 1}]) \oplus Fc \oplus F(d+p)$ be a minimal LALA, where $p = \operatorname{diag}(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)$. Then L(p) is not isomorphic to a minimal standard LALA L(0) as Lie algebras.

An isomorphism between two LEALAs, (L, H, B) and (L', H', B'): Write $L \cong L'$ as LEALAs if there exists a Lie algebra isomorphism $\varphi: L \longrightarrow L'$ so that $\varphi(H) = H'$ and $B(x, y) = B'(\varphi(x), \varphi(y))$ for all $x, y \in L$.

Remark. The value for B(d,d) does not much matter for an affine Lie algebra, and it is usually defined to be 0 so that $Fc \oplus Fd$ is a hyperbolic plane relative to B. Following this convention, we always assume that $Fc \oplus F(d+p)$ is a hyperbolic plane for a minimal LALA L(p). Concretely, we simply assume that B(d+p,d+p) = 0. (Then it is automatically a hyperbolic plane by the choice of d.)

For
$$L(p) = \operatorname{sl}_{\mathbb{N}}(F[t^{\pm 1}]) \oplus Fc \oplus F(d+p)$$
,
 $p = \operatorname{diag}(m_1, m_2, m_3, \ldots), m_i \in \mathbb{Z}$
 $\Longrightarrow L(p) \cong L(0)$ (min. stan. LALA)

Proof) Use the diagonal matrix $g := \operatorname{diag}(t^{m_1}, t^{m_2}, t^{m_3}, \ldots)$, and take the conjugate by g.

How about the case p has the trace? Such an L(p) is called traceable.

Thm 2 For a traceable min. LALA
$$L(p)$$
, $L(p) \cong L(0) \iff \operatorname{tr}(p) \in \mathbb{Z}$

For example,

$$L(\frac{1}{2}e_{11}) \ncong L(0)$$
 (e_{11} is the matrix unit)

Moreover:

Thm 3

For traceable min. LALAs L(p) and L(p'),

$$L(p) \cong L(p') \iff \operatorname{tr}(p) \pm \operatorname{tr}(p') \in \mathbb{Z}$$

For example,

$$L(\frac{1}{5}e_{11}) \not\cong L(\frac{2}{5}e_{11}), \quad L(\frac{2}{5}e_{11}) \cong L(\frac{3}{5}e_{11})$$

When $F = \mathbb{R}$, isomorphic classes of traceable min. LALAs of type $A_{\mathbb{N}}^{(1)}$ \longleftrightarrow the closed interval $[0, \frac{1}{2}]$ in \mathbb{R} (In fact, \mathbb{N} can be any infinite set.) For example,

$$L(\sqrt{2}e_{11}) \cong L((\sqrt{2} - 1)e_{11})$$

 $L(\sqrt{2}e_{11}) \ncong L(2\sqrt{2}e_{11})$

However:

Problem

Are

$$L(\frac{1}{2}e_{11})$$
 and $L(0)$

isomorphic as Lie algebras?

MAX LALA:

 $(\operatorname{sl}_{\mathbb{N}}(F) + T') \otimes F[t^{\pm 1}] \oplus Fc \oplus Fd$ is a maximal LALA of typte $A^{(1)}_{\mathbb{N}}$, where $T = \{\text{all } \mathbb{N} \times \mathbb{N} \text{ diagonal matrices}\}$ $\iota \in T$: the identity matrix $T = T' \oplus F\iota$ (Take a complement T' of $F\iota$.)