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1 Root datum

We introduce a combinatorial language which will be used to classify split
semisimple linear algebraic groups.

Root datum. Following [SGA3, Vol.3, Exp. XXI, §1.1] we define a root datum
to be a nonempty finite subset Σ of a free finitely generated abelian group Λ
together with an embedding

Σ ↪→ Λ∨, α 7→ α∨

into the dual Λ∨ = Hom(Λ,Z) such that

1. Σ ∩ 2Σ = ∅,

2. α∨(α) = 2 for all α ∈ Σ, and

3. β − α∨(β)α ∈ Σ and β∨ − β∨(α)α∨ ∈ Σ∨ for all α, β ∈ Σ,

where Σ∨ denotes the image of Σ in Λ∨. The elements of Σ (resp. Σ∨) are
called roots (resp. coroots).

Root and weight lattices. The subgroup of Λ generated by Σ is called
the root lattice and is denoted by Λr. A root datum is called semisimple if
Λ ⊗Z Q = Λr ⊗Z Q. From now on by a root datum we will always mean a
semisimple one.

The subgroup of ΛQ = Λ⊗ZQ generated by all ω ∈ ΛQ such that α∨(ω) ∈ Z
for all α ∈ Σ is called the weight lattice and is denoted by Λw. Observe that we
have

Λr ⊆ Λ ⊆ Λw and Λr ⊗Z Q = ΛQ = Λw ⊗Z Q.

The Q-rank of ΛQ is called the rank of the root datum.

1
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Simple roots and fundamental weights. The root lattice Λr admits a Z-
basis Π = {α1, . . . , αn} such that each α ∈ Σ is a linear combination of αi’s
with either all positive or all negative coefficients. So the set Σ splits into two
disjoint subsets Σ = Σ+qΣ−, where Σ+ (resp. Σ−) is called the set of positive
(resp. negative) roots. The roots αi are called simple roots. Observe that n
here is the rank of the root datum.

Given the set Π we define the set of fundamental weights {ω1, . . . , ωn} ⊂ Λw
as α∨i (ωj) = δij , where δij is the Kronecker symbol. Fundamental weights form
a basis of the weight lattice Λw.

We denote cij = α∨j (αi), i, j = 1 . . . n. The matrix C = (cij) is called the

Cartan matrix of the root datum. By definition we have αi =
∑n
j=1 cijωj , i.e.

the Cartan matrix expresses simple roots in terms of fundamental weights.

The Dynkin diagram. A root datum is called irreducible if it can not be
represented as a direct sum of root data, i.e. Λ can not be written as Λ =
Λ1 ⊕ Λ2, where Σ1 ⊂ Λ1, Σ2 ⊂ Λ2 are the root data. To any irreducible root
datum we associate a graph called the Dynkin diagram. Its vertices are in 1-1
correspondence with the set of simple roots {α1, . . . , αn} and the number of
edges connecting two different vertices αi, αj is given by cij · cji. Moreover, if
there are more than one edge connecting αi and αj we orient these edges towards
αj if cij < cji. It can be shown that an irreducible root datum is determined
uniquely by its Dynkin diagram and the intermediate subgroup Λr ⊆ Λ ⊆ Λw.

If Λ = Λw (resp. Λ = Λr), then the root datum is called simply con-
nected (resp. adjoint) and will be denoted by Dscn (resp. Dadn ), where D =
A,B,C,D,E,F,G is one of the Dynkin diagrams and n is its rank.

Our enumeration of vertices of Dynkin diagrams follows Bourbaki and looks
as follows

Classical types:

An : •1 •2 •3 •n−1 •n Cn : •1 •2 •n−2 •n−1
< •n

Bn : •1 •2 •n−2 •n−1
> •n Dn : •1 •2 •n−3 •n−2 •n−1

•n

Exceptional types:

G2 : •1 < •2 E7 : •1 •3 •4 •5 •6 •7

•2

F4 : •1 •2 > •3 •4 E8 : •1 •3 •4 •5 •6 •7 •8

•2

E6 : •1 •3 •4 •5 •6

•2

The Weyl group. A Z-linear map sα : Λw → Λw, α ∈ Σ, defined by

sα(λ) = λ− α∨(λ)α, λ ∈ Λw,



Kirill Zainoulline, Lectures at the Fields Institute, May 2013 3

is called the reflection corresponding to the root α. Observe that by definition
we have sα ◦ sα = id. The group W generated by all reflections sα is called the
Weyl group of the root datum. One can show that

W = 〈s1, . . . , sn | (sisj)mij = 1〉

where si = sαi is the reflection corresponding to the simple root αi, mii = 2 and
mij = 2cijcji if i 6= j. The group W is a finite group that acts by permutations
on Σ. It provides an example of the so called Coxeter group.

2 Linear algebraic groups over arbitrary fields

We recall the notion of an affine group scheme/linear algebraic group over an
arbitary field k, e.g. over a number field or a function field of an algebraic
variety.

Affine group schemes. An affine group scheme over an arbitrary field k is an
affine algebraic variety G over k endowed with a group structure, i.e. endowed
with an identity element and two algebraic morphisms over k

mult : G×G −→ G and inv : G −→ G

defining the multiplication and the inverse respectively and satisfying the usual
group axioms. Alternatively, using the language of functors of points an affine
group scheme G can be identified with a functor

G : Algk −→ Groups

from the category of commutative associative k-algebras to the category of
groups represented by a commutative finitely generated Hopf algebra H over k.
This identification is given by G = SpecH and G(−) = Homk(−, G).

Examples. Here are basic examples of affine group schemes

• The additive group Ga = Spec k[t];

• The multiplicative group Gm = Spec k[t, t−1].

• The group of n-th roots of unity µn = Spec k[t]/(tn − 1). This is a closed
subgroup of Gm.

• The general linear group GLn = Spec k[tij ,det−1], where 1 ≤ i, j ≤ n and
det is the determinant of the n× n matrix (tij).

One can show that G is an affine group scheme over k if and only if it is a
closed subgroup of a general linear group GLn over k. To stress this fact we will
call G by a linear algebraic group over k.
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Smoothness. If the base field k has characteristic 0 any linear algebraic group
G is smooth as a variety over k. In the language of functors of points it means
that for any commutative k-algebra R and any nilpotent ideal I of R the induced
map G(R)→ G(R/I) is surjective or, equivalently, the Hopf algebra representing
G is reduced. For instance, the group G = µn is smooth if and only if n is
invertible in k.

Connected groups. A linear algebraic group G over k is called connected,
if it is irreducible as an algebraic variety over k. For example, the orthogonal
group of isometry classes of the quadratic form x2

1 + . . .+x2
n is not connected. It

consists of two connected components, where the connected component of the
identity is isomorphic to the special orthogonal group.

In the present lectures we will deal with smooth connected linear algebraic
groups only.

Simple, semisimple groups. A connected non-trivial linear algebraic group
G is called simple (resp. semisimple) if it does not have any non-trivial closed
(resp. solvable) connected normal subgroups over the algebraic closure ka of k.
For instance, the product of two copies of Gm is not semisimple, since it contains
a copy of Gm as the diagonal. The group SLn, n > 1 provides an example of a
simple linear algebraic group. A product of simple groups provides an example
of a semisimple group.

Tori. A linear algebraic group T over k is called a torus, if over the algebraic
closure ka it becomes isomorphic to a product of several copies of Gm, i.e.

Tka ' Gm,ka × . . .×Gm,ka .

If this isomorphisms is defined already over k, then T is called a split torus.

Example. Let k′/k be a finite separable field extension. Consider the functor

G : R −→ (R⊗k k′)×

which maps a commutative k-algebra R to the group of units of its base change.
One can show that G is representable by a Hopf algebra and, therefore, de-
fines a linear algebraic group over k denoted by Rk′/k(Gm) and called the
Weil restriction. The usual norm map induces a morphism of group schemes
Rk′/k(Gm) → Gm over k. Its kernel provides an example of a non-split torus
over k.

Root datum of a linear algebraic group. Let G be a semisimple linear
algebraic group over an algebraically closed field k. We associate a root datum
to G as follows:
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Choose a maximal torus T inside G. We denote the character group of T by
Λ = Hom(T, k×). The abelian group Λ is a free abelian group of rank equals
to the rank of G. Consider the adjoint representation Ad: T→ GL(L) of T on
the associated Lie algebra L. A character α ∈ Λ is called a weight of the adjoint
representation if the respective weight subspace Lα defined by

Lα := { v ∈ L |Ad(t)v = α(t)v ∀t ∈ T }

is non-trivial. Note that all non-trivial weight subspaces are one dimensional
and there is a direct sum decomposition L =

⊕
weights α Lα. We take Σ to be

the set of weights of the adjoint representation.
The set of coroots Σ∨ can then be identified with a subset of the cocharacter

group Λ∨ = Hom(k×,T) in such a way that α∨(β) = 〈β, α∨〉, where

〈·, ·〉 : Λ× Λ∨ −→ Z = Hom(k×, k×) ,

is the perfect pairing defined on points by

λ(ρ(x)) = x〈λ,ρ〉 for all λ ∈ Λ, ρ ∈ Λ∨ and x ∈ k×.

We define the Weyl group W of G to be the quotient

W (G) = NG(T)/T,

where NG(T) is the normalizer of T in G. It is a finite group which acts on Λ
by

w(λ)(t) := λ(w−1(t)), λ ∈ Λ.

It can be shown that Σ does not depend on the choice of T.

Classification of split simple groups. Given a root datum (Λ,Σ) one can
associate to it a group scheme G defined over SpecZ called a Chevalley group
such that the base change G ×SpecZ k, where k is algebraically closed, is a
semisimple linear algebraic group over k with the root datum (Λ,Σ).

Moreover, let k be an arbitrary field and let G be a semisimple linear alge-
braic group G containing a split maximal torus T; such a group will be called
split. Then G can be identified with the base change G ×SpecZ Spec k, where
G is the Chevalley group corresponding to the root datum of G×Spec k Spec ka
over the algebraic closure ka of k.

In other words, there is a 1-1 correspondence between root data and split
semisimple linear algebraic groups over k (and semisimple linear algebraic groups
over an algebraically closed field).

We now provide a complete list of split simple (corresponding to irreducible
root data) groups of classical types:

An: Here Λw/Λr ' Z/(n+ 1)Z and G = SLn+1 /µl, where l divides n+ 1.
For l = n + 1 we obtain the projective linear group Gad = PGLn+1 (adjoint),
and for l = 1 the special linear group Gsc = SLn+1 (simply connected).
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Bn: In this case Λw/Λr ' Z/2Z has only two subgroups. The trivial sub-
group corresponds to the special orthogonal group O+

2n+1 (adjoint) while the
whole group corresponds to the spinor group Spin2n+1 (simply connected).

Cn: As in the previous case Λw/Λr ' Z/2Z and, therefore, there are two
isogenies: the projective symplectic group PGSp2n (adjoint) and the symplectic
group Sp2n (simply connected).

Dn: In this case Λw/Λr depends on n.

(a) If n is odd, then Λw/Λr ' Z/4Z and the respective isogenies are given
by the projective orthogonal group PGO+

2n (adjoint), the special orthogo-
nal group O+

2n (corresponds to the subgroup Z/2Z) and the spinor group
Spin2n (simply connected).

(b) If n is even, then Λw/Λr ' Z/2Z × Z/2Z and the respective isogenies
are given by PGO+

2n (adjoint), two halfspin (or semispinor) groups Spin±2n
(corresponding to the subgroups Z/2Z × 1 and 1 × Z/2Z respectively),
the special orthogonal group O+

2n (the diagonal subgroup) and the spinor
group Spin2n (simply connected). Note, however, that Spin+

2n and Spin−2n
are isomorphic by means of the outer automorphism of Σ.

In the present lectures we will mainly study non-split semisimple groups.
Here are the typical examples

1. Let A be a central division algebra over k. Its automorphism group Aut(A)
is a non-split simple linear algebraic group over k (denoted PGLA). In
particular, let HR be the algebra of real quaternions. Then Aut(HR) is a
non-split group over k = R (a form of PGL2(R)).

2. Let k = Q(t1, . . . , tn) be a purely transcendental field extension of Q.
Consider a quadratic form q(x1, . . . , xn) = t1x

2
1 + t2x

2
2 + . . . tnx

2
n of rank

n over k. The isometry group O+(q) of all linear automorphisms f of kn

of determinant 1 preserving q, i.e. q ◦ f = q, is a non-split simple linear
algebraic group.

3 Projective homogeneous varieties (PHVs) in
the split case

Homogeneous varieties. We start with the following general definition:
Let G be an arbitrary group scheme over a field k. A variety X over k is

called a homogeneous G-variety if there is a morphism ρ : G×X → X of varieties
over k such that

ρ(g · f, x) = g(f(x)) for all f, g ∈ G(ka), x ∈ X(ka),
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and the action of G(ka) on X(ka) is transitive, i.e. for every x, y ∈ X(ka) there
exists g ∈ G(ka) such that g · x = y, where g · x denotes ρ(g, x).

Now let G be a split linear algebraic group over k. We choose a split maximal
torus T in G and the root system Σ. We choose a Borel (maximal connected
solvable) subgroup B of G containing T , hence, a set of simple root Π together
with a set of positive roots Σ+.

Consider a smooth projective G-homogeneous variety X. A k-point x of X
corresponds to the stabilizer subgroup Gx at x and for any two k-points x, y ∈ X
the respective stabilizer subgroups are conjugate, i.e. we have Gy = gGxg

−1,
where g ∈ G(k) is such that g · x = y. In other words, the conjugacy class of
Gx describes X(k).

Combinatorial description. The set of conjugacy classes of stabilizer sub-
groups of a split G is in 1-1 correspondence with the set of subsets of Π.

Namely, given a subset Θ ⊂ Π we define the representative PΘ of a conjugacy
class as follows: We define PΘ to be the subgroup of G generated by T and all
unipotent subgroups corresponding to all positive roots and to all roots in the
linear span of Θ with no Θ-terms.

Here the unipotent subgroup corresponding to a root α is the image of
uα : Ga ↪→ G such that tuα(x)t−1 = uα(α(t)x) for all t ∈ T, x ∈ k×.

The representative PΘ is called the standard parabolic subgroup of G. For
any Θ ⊂ Π we have B ⊆ PΘ ⊆ G. In particular, P∅ = B and PΠ = G.

By Pi1,...,ir we denote the standard parabolic subgroup of the complemen-
tary subset Θ r {αi1 , . . . , αir}. The subgroup Pi is called a maximal parabolic
subgroup corresponding to the vertex i.

Classification. Observe that if we choose another Borel subgroup T ⊂ B′

containing T, then the respective representatives PΘ and P ′Θ will be conjugate to
each other. If we choose another T inside B this leads to a possible permutation
of Π. Hence, the correspondence above doesn’t depend on the choices of T and
B up to a permutation.

Moreover, since any two isogeneous split groups have the same Π, it doesn’t
depend on the isogeny class of G. In particular, when dealing with projective
homogeneous G-varieties we may always assume that G is adjoint.

Summarizing the above discussion, all smooth projective homogeneous G-
varieties (where G is split simple) are classified (up to an isomorphism) by
subsets Θ of the set of vertices of the Dynkin diagram of G. An isomorphism
class of a projective homogeneous G-variety corresponding to a subset Θ will be
denoted by D/PΘ, where D is the type of the root datum of G.

Examples. We now provide basic examples of projective homogeneous G-
varieties, where G is a split simple linear algebraic group over k (enumeration
of roots follows Bourbaki):
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An: We have An/P1 ' An/Pn ' Pn and, more generally,

An/Pi ' An/Pn−i ' Gr(i, n+ 1),

where Gr(i, n + 1) is the Grassmannian of i-dimensional linear subspaces in
An+1. The variety An/P1,n is called the incidence variety. A point on this
variety is given by the pair (l,H), where l is a line and H is a hyperplane
in An+1 such that l ⊂ H. In geometric terms, it is given by the equation∑n
i=0 xiyi = 0 in Pn × Pn, where xi (resp. yi) are the projective coordinates of

the first (resp. second) factor.
Finally, An/P∅ is isomorphic to the variety of complete flags: points are

given by n-tuples of linear subspaces (l1, l2, . . . , ln) in An+1 such that dim li = i
and l1 ⊂ l2 ⊂ . . . ⊂ ln.

Bn, Dn: The variety Bn/P1 (resp. Dn/P1) is isomorphic to a smooth
projective quadric Q of dimension 2n− 1 (resp. 2n− 2) given by the equation
x2

1 − x2
2 + x2

3 − . . . = 0, where x1, . . . , x2n+1 (resp. 2n+ 1 is replaced by 2n) are
the projective coordinates. The variety Bn/Pn (resp. Dn/Pn or Dn/Pn−1) is a
(resp. a connected component of) maximal orthogonal Grassmannian that is a
variety of maximal totally-isotropic linear subspaces in the quadratic space of
rank 2n + 1 (resp. 2n). The variety Bn/Pi, i < n (resp Dn/Pi, i < n − 1) is a
Grassmannian of isotropic linear subspaces of dimension i.

G2, F4, E6: The variety G2/P2 is isomorphic to a 5-dimensional smooth
projective quadric and the variety G2/P1 is a 5-dimensional Fano variety. The
variety E6/P6 is isomorphic to the so called Cayley plane OP2 that is the oc-
tonionic projective plane of dimension 16. The variety F4/P4 can be identified
with a hyperplane section of E6/P6.

4 PHVs in the general (non-split) case

Twisted forms. We recall the notion of a twisted form:
A smooth group scheme G over an arbitrary field k is called a twisted form

of a linear algebraic group G′ if there is an isomorphism of group schemes
G×k ka ' G′ ×k ka over the algebraic closure ka. The descent theory provides
a bijection of pointed sets

H 1(k,Autk(G′)) ' Twistk(G′)
ξ ∈ Z1(k,Autk(G′)) 7→ G = ξG

′

between the set of cohomology classes of the first étale cohomology group of the
automorphism group scheme Autk(G′) and the set of twisted forms of G′.

Since any semisimple linear algebraic group G becomes split over ka, it can
be viewed as a twisted form of the respective Chevalley group G, i.e. as an
element of H 1(k,Autk(G)).
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Inner and outer forms. Consider an action of the adjoint group Gad on G
by means of inner automorphisms Gad → Autk(G). It induces the map

inn : H 1(k,Gad) −→ H 1(k,AutF (G)).

A linear algebraic group G is called an inner form of G if it is a twisted form of
G such that the corresponding cohomology class lies in the image of this map.

The isogeny Gsc → Gad, where Gsc is the simply connected cover of the
adjoint form Gad of G, induces a map

sc : H 1(k,Gsc) −→ H 1(k,Gad).

Twisted forms that correspond to cohomology classes in the image of the com-
position inn ◦ sc are called strongly inner forms of G.

A twisted form of G is called an outer form, if the respective cohomology class
is not in the image of the map inn. Such cohomology classes correspond to non-
trivial automorphisms of the root datum of G [SGA, Exp. XXIV, Thm.1.3]. In
particular, if the Dynkin diagram of G has no nontrivial graph-automorphisms,
then the map inn is surjective. This implies that outer forms exist only for
groups of types An, Dn and E6.

We will write the order of the respective graph-automorphism of the Dynkin
diagram of G as an upper-left index. For example, the notation 1An means an
inner form of a group of type An, and 6D4 means an outer form of a group of
type D4 corresponding to an automorphism of order 6.

The Tits index. In general, a twisted form G of a Chevalley group G is not
necessary a split group. To measure how far is G from being split one uses the
Tits index of G.

Let G be an inner form of G. The Tits index of G is a set of Dynkin digrams
of G where certain vertices are circled. Each circled vertex corresponds to the
copy of a split one dimensional torus Gm sitting inside G. For instance, if all
vertices are circled then the group G is split. If non of them are circled, then
the group G is called anisotropic. If at least one of the vertices is circled, then
the group G is called isotropic. For each type of G the list of all possible Tits
indexes can be found in the table.

Example. A group G of type F4 can have three possible Tits indexes:

(i) •1 •2 > •3 •4

(ii) •1 •2 > •3
⊙
•4

(iii)
⊙
•1

⊙
•2 >

⊙
•3

⊙
•4

where the index (i) corresponds to the anisotropic case, (ii) to the non-split
isotropic case and (iii) to the split case.
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Description of PHVs in general. Consider a projective homogeneous G-
variety X over k. It becomes isomorphic over ka to a projective homogeneous
G-variety G/PΘ corresponding to a standard parabolic subgroup PΘ of G and,
therefore, to a subset Θ of the Dynkin diagram of G. In other words, X is a
twisted form of the respective PHV corresponding to the split group. Moreover,
it can be shown that X is, indeed, a projective G-homogeneous variety, where
G = ξG is a twisted form of G, that is X ' ξD/PΘ, where D is the Dynkin type
of G.

Observe that the projective homogeneous G-variety X = ξD/PΘ has a k-
rational point if and only if all non-circled vertices of the Tits index of G belong
to the subset Θ. A projective homogeneous variety is rational if and only if it
has a rational point.

Examples. We now provide a list of examples of projective homogeneous G-
varieties over k, where G is a twisted form of an adjoint split group Gad.

An: Let G = PGLn+1 be the projective linear group. The pointed set
H 1(F,PGLn+1) is isomorphic to the set of isomorphism classes of central simple
algebras A of degree n + 1 over k. Moreover, cohomology classes in the image
of

H 1(k,SLn+1 /µr) −→ H 1(k,PGLn+1), r | n+ 1,

correspond to central simple algebras A of index r. In particular, PGLn+1 has
no non-trivial strongly inner forms.

For an algebra A the respective inner twisted form G is given by the auto-
morphism group PGLA = Autk A of A. The respective projective homogeneous
G-variety X can be identified with the variety of flags of (right) ideals in A. For
instance, if X = A(An/Pi), then X ' SBi(A) is the generalized Severi-Brauer
variety of ideals of reduced dimension i in A.

The set of outer forms of PGLn+1 is in one-to-one correspondence with the
set of isomorphism classes of central simple algebras with unitary involutions.
In this case any projective homogeneous varieties becomes isomorphic over ka
to the variety An/Pi1,...,im , where ij = n+ 1− im−j+1 for all j = 1 . . .m.

Bn,Dn: Let G be the projective orthogonal group. Depending on the type
G is either O+

2n+1 or PGO+
2n. We assume char(k) 6= 2.

In the first case (Bn) the pointed set H 1(k,O+
2n+1) is isomorphic to the set

of isometry classes of quadratic forms q of rank 2n + 1. The respective inner
form G is given by the special orthogonal group O+(q) of q and the respective
projective homogeneous G-variety X = q(Bn/P1) is the projective quadric given
by the equation q = 0. Observe that for O+

2n+1 all twisted forms are inner.

In the second case (Dn) the pointed set H 1(k,PGO+
2n) is parametrised by the

set of isomorphism classes of certain central simple algebras A with orthogonal
involutions σ. For an inner form G = (A,σ) PGO+

2n the projective homogeneous
G-variety X = (A,σ)Dn/P1 is a projective quadric if the algebra A is split and
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is an involution variety if A is non-split. More precisely, if A is split, then the
variety X is given by the equation q = 0, where q is the quadratic form of rank
2n associated to the involution σ. All outer forms of PGO+

2n correspond to
algebras with involutions which have non-trivial discriminant.

Pfister case: An important example of a twisted inner form of the pro-
jective orthogonal group PGO+

2n (resp. O+
2n+1) is given by the so called Pfister

quadratic form φ (resp. its maximal neighbor). By an n-fold Pfister form φ we
call the tensor product of n binary quadratic forms φ =

⊗n
i=1〈1,−ai〉, ai ∈ k×,

where the notation 〈1,−ai〉 stands for the form x2 − aiy2.

5 Equivariant algebraic oriented cohomology the-
ories

We now recall several facts concerning algebraic oriented cohomology theories
following [Levine-Morel].

An algebraic oriented cohomology theory is a contravariant functor h from
the category of smooth projective varieties over a field k to the category of
commutative unital rings which satisfies certain properties (e.g. localization,
homotopy invariance).

Pull-backs and push-forwards. Given a morphism f : X → Y the func-
torial map h(f) will be denoted by f∗ and called the pull-back. One of the
characterizing properties of h says that for any proper map f : X → Y there
is an induced map f∗ : h(X) → h(Y ) of h(Y )-modules called the push-forward
(here h(X) is an h(Y )-module via f∗).

Characteristic classes. Another characterizing property of an algebraic ori-
ented cohomology theory is the existence of characteristic classes. The latter
is a collection of maps ci : K0(X) → h(X), i ≥ 1 that satisfy the following
properties:

Let c(x) = 1+c1(x)t+c2(x)t2 +. . . ∈ h(X)[[t]] denote the total characteristic
class. Then

• c(E) = 1 for a trivial bundle E over X,

• ci(E) = 0 for a bundle E with i > rk(E),

• c(E ⊕ E′) = c(E) · c(E′) for any two bundles E and E′ over X.

Given two line bundles L1 and L2 over X, we have

c1(L1 ⊗ L2) = c1(L1) +F c1(L2), (1)

where F is a one-dimensional commutative formal group law over the coefficient
ring R = h(Spec(k)) associated to h.
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Formal group laws. A (commutative one-dimensional) formal group law over
a commutative unital ringR is a power series in two variables (see [Hazewinkel78])

F (u, v) = u+ v +
∑
i,j≥1

aiju
ivj , aij = aji, aij ∈ R

which satisfies the following axioms:

• (associativity) F (u, F (v, w)) = F (F (u, v), w),

• (commutativity) F (u, v) = F (v, u)

• F (u, 0) = 0.

A morphism of formal group laws f : F → F ′ over R is a power-series f ∈
R[[u]] such that f(F (u, v)) = F ′(f(u), f(v)). For any formal group law F there
is a unique power series ıF (u) ∈ R[[u]] called the formal inverse of F which
satisfies the identity F (u, ıF (u)) = 0.

We will use the following notation

u+F v = F (u, v), −Fu = ıF (u) and a ·F u = u+F u+F · · ·+F u︸ ︷︷ ︸
a times

, a ≥ 1.

Examples. (a) The additive formal group law is given by Fa(u, v) = u+ v.
(b) The multiplicative formal group law is given by Fm(u, v) = u+ v − uv.
(c) The Lorentz formal group law is given by

Fl(u, v) = u+v
1+uv = u+ v +

∑
i≥1

(−1)i
(
uivi+1 + ui+1vi

)
.

(d) Let E be an elliptic curve defined by

E : v = u3 + a1uv + a2u
2v + a3v

2 + a4uv
2 + a6v

3, ai ∈ Z.

The group law on E induces an elliptic formal group law

Fe(u, v) = u+ v − a1uv − a2(u2v + v2u) +

2a3(u3v + uv3) + (a1a2 − 3a3)u2v2 +O(5).

Algebraic cobordism. There is a universal formal group law Fu. Its coef-
ficient ring, called the Lazard ring L, is generated by coefficients aij modulo
the relations which come from the axioms of the formal group law. Any com-
mutative one-dimensional formal group law over a ring R corresponds to a ring
homomorphism from L to R (which specializes the coefficients).

There is the respective algebraic oriented cohomology theory Ω defined over
a field of characteristic zero, called algebraic cobordism, that is universal in the
following sense: Given any algebraic oriented cohomology theory h there is a
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unique morphism Ω → h of algebraic oriented theories The formal group law
associated to Ω is exactly the universal formal group law Fu.

To a formal group law F over R one can associate an algebraic oriented
cohomology theory hF via

hF (−) = Ω(−)⊗L R

So there is a ’1-1’ correspondence (the cohomology theory correspoding to
F will be universal among all the theories with the formal group law F ):

formal group laws
1−1←→ Algebraic oriented cohomology theories .

Under this correspondence the addiitve formal group law Fa corresponds to
Chow theory and the multiplicative Fm to Grothendieck’s K0.

Observe that for each formal group law there always exists a corresponding
algebraic oriented theory but not necessary a topological one (possible example
is Lorentz).

Equivariant pretheories. We follow now [Gille-Zainoulline]. Let G be an
algebraic group over k. Consider a contravariant functor hG from the cate-
gory of smooth G-varieties over k to the category of commutative rings. Given
G-varieties X and Y and a G-equivariant map f : X → Y the induced map
hG(Y )→ hG(X) is called a pull-back and is denoted by f∗G .

The functor hG is called a G-equivariant pretheory over k if it satisfies the
following two axioms:

• (homotopy invariance) For a G-equivariant map p : Ank → pt = Speck
(where G acts trivially on pt) the induced pull-back p∗G : hG(pt)→ hG(Ank )
is an isomorphism.

• (localization) For a smooth G-variety X and a G-equivariant open embed-
ding i : U → X the induced pull-back i∗G : hG(X)→ hG(U) is surjective.

We then extend this definition to an equivariant pretheory over the category
of fields over k by introducing the restriction map

resXl/k : hG(X)→ hG(Xl) = hGl
(Xl)

which commutes with pull-backs and is compatible with taking towers of field
extension.

We define h̄G(X) := liml/k hG(Xl) where the colimit is taken over all field
extensions. We denote the canonical morphism hG(X)→ h̄G(X) by ¯resk.
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Equivariant oriented B-theories. Let h be an algebraic oriented cohomol-
ogy theory. Let G be a split linear algebraic group. Let T ⊂ B ⊂ G be a
maximal torus containing a Borel subgroup. Let hB be a B-equivariant prethe-
ory such that

• hB(E) = h(E/B) for every G-torsor E;

• h̄B(B) = h(pt) and h̄B(G) = h(G/B)

Then we call hB a B-equivariant oriented theory over k.

Examples. Equivariant K-theory [Thomason], equivariant Chow groups [To-
taro] and equivariant cobordism [Deshpande, Krishna, Heller, Malagon-Lopez]
provide examples of such theories. An equivariant cycle homology (using Rost
cycle modules) [Gille-Zainoulline].

6 h-invariants of torsors

Let G be a split linear algebraic group over k. Let φ : G → Spec k be the
structure map. Let E be a (left) G-variety over k and let η : SpecK → E be its
generic point. Consider the G-equivariant map

ψ : GK = G×k K → G×k E → E

which takes the identity of G to the generic point of E.

Characteristic vs restriction. Let hB be a B-equivariant oriented theory,
where B is a Borel subgroup of G. Then one of the main results of [Gille-
Zainoulline] says that

Theorem. We have in h̄B(G) = h(G/B)

im( ¯resk ◦ φ∗B) ⊆ im( ¯resk ◦ ψ∗B).

In particular, for a G-torsor E this implies that the image of the restriction map

res = ¯resk ◦ ψ∗B : h(E/B) = hB(E)→ hB(G) = h(G/B)

always contains the image of the characteristic map

c = ¯resk ◦ φ∗B : hB(pt)→ hB(G) = h(G/B)

and, moreover, there exists a torsor E for which the images coincide. Such a
torsor will be called generic.

In the case h = CH (the Chow group) this is a result by [Karpenko-Merkurjev].
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Cohomology of a group. Now consider the action of T on the affine space Ank
with weights ω1, . . . , ωn together with an action of T on G by left multiplication.
Then T embeds into Ank as the complement of the coordinate hyperplanes Zi,
i = 1 . . . n. Let V = Ank ×T G be the associated vector bundle over G/T . By
definition V = LG/T (ω1)⊕ . . .⊕ LG/T (ωn) and G = T ×T G embeds into V as
the complement of the union of zero-sections [Brion]

Vj =
⊕
j 6=i

LG/T (ωi) = Zj ×T G.

This allows to prove (using the homotopy invariance and localization) that

h(G) ' h(G/B)/
(
c1(LG/B(ω1)), . . . , c1(LG/B(ωn))

)
.

The characteristic map c : hB(pt) → h(G/B) can be also defined by tak-
ing the characteristic classes of line bundles associated to characters of a split
maximal torus T of G (we will discuss this map in details later).

In view of this fact we can identify the ideal generated by the first charac-
teristic classes by the ideal generated by augmented (non-constant) elements of
the image of c. In other words, there is an exact sequence (in the augmented
sense)

hB(pt)
c→ h(G/B)→ h(G)→ 0.

where the second map is the pull-back induced by G→ G/B.

h-invariant. The latter says that the cokernel (in the augmented sense)

h(G/B)/(im resK/k+)

of the restriction map resK/k is a quotient of h(G). Moreover, for generic torsors
it coincides with h(G) and for trivial torsors it is trivial. We call this cokernel
by the h-invariant of a G-torsor E.

Examples. Take h = CH with Fp-coefficients. CH(G;Fp) is a cocommutative
Hopf algebra over a finite field so it has to be of the form

r⊗
i=1

Fp[xi]/(xp
ki

i )

for some integers ki, where the element xi has degree di. All these parameters
depend only on the root datum of G and were computed by [V. Kac].

It follows that the CH-invariant of E (as a quotient of CH(G;Fp)) must have
similiar form (as comodule)

r⊗
i=1

Fp[xi]/(xp
ji

i )



Kirill Zainoulline, Lectures at the Fields Institute, May 2013 16

for some ji ≤ ki, i = 1 . . . r. The r-tuple of positive integers (j1, . . . , jr) is
precisely the J-invariant of E as was defined in the motivic context in [Petrov-
Semenov-Zainoulline].

Question 1: What about other cohomology theories h, say Lorentz, elliptic,
Lubin-Tate ? Does the h-invariant give an interesting (discrete) invariant of a
torsor ?

Question 2: How to compute h(G) using the exact sequence above ?
Question 3: Does the theorem extend to outer forms (say, to quasi-split

groups) or to other G-varieties ?

7 Motives of generically split PHV’s

We explain now how the CH-invariant (the J-invariant) gives rise to a motivic
decomposition of a generically split projective homogeneous variety. We follow
[Petrov-Semenov-Zainoulline].

Characteristic decomposition of CH(G/B). Let G be a split semisimple
linear algebraic group over k. We fix T ⊂ B ⊂ G a split maximal torus together
with a Borel subgroup of G. Let A = CH(G/B;Fp) denote the Chow ring of
G/B with Fp-coefficients and let C = im c denote the characteristic subring of
A.

Consider the pull-back A = CH(G/B;Fp) → CH(G;Fp). Pick up the gen-
erators {x1, . . . , xr} of CH(G,Fp). Let {e1, . . . , er} be their preimages in A.
Observe that the ring A is a free C-module with basis consisting of all products
of ei (proven by comparing the Poincare polynomials). Given an r-tuple of non-
negative integers M = (m1, . . . ,mr) we denote by eM the product em1

1 · . . . ·emr
r .

Let N = (pk1 − 1, . . . , pkr − 1) (so that eN is the maximal element with respect
to the induced lexicographic order on the basis elements).

Using the grading on CH and the dimension axiom (CHi(X) = 0 if i >
dimX) we can show that

Lemma. (Shifted Duality) The pairing

C × C → Fp, (x, y) 7→ deg(eNxy)

is non-degenerated, i.e. for any non-zero element x ∈ C there exists y ∈ C such
that deg(eNxy) 6= 0.

We fix a (homogeneous) basis {xi}i∈I of C and the dual basis {x∨i }i∈I (with
respect to the pairing). We denote

ρi = ei ⊗ 1 + 1⊗ ei ∈ CH(G/B ×G/B;Fp) ' HomFp
(A,Fp)⊗A = EndFp

(A).

Observe that ρi’s correspond to primitive elements in CH(G;Fp) ⊗ CH(G;Fp).
As before, we denote ρM = ρm1

1 · . . . · ρmr
r .
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Theorem. (Direct sum decomposition) The elements

{ρM · (xi ⊗ x∨i )}M≤N,i∈I

form a pairwise-orthogonal system of idempotents in the ring (EndFp
(A),′ ◦′).

The case of a generic torsor. Now assume that E is a generic G-torsor.
Consider the variety E/B. We know that im res = im c, where

res : CH(E/B;Fp)→ CH((G/B)ka ;Fp) = A,

is the restriction map, so the elements xi ⊗ x∨i ∈ im(res), i.e. are defined over
the base field k.

We know that E/B is generically split, meaning that G becomes a split
group over the function field of E/B. Using this fact we can show that each
ρi ∈ im(res). This immediately implies that all idempotents appearing in the
theorem belong to the image of the restriction map.

General case. For arbitrary E we replace N by (pj1 − 1, . . . , pjr − 1) and
proceed as in the generic case.

Motivic decompositions. A family of pairwise orthogonal idempotents in
EndFp

(A) defined over k (that belong to the image of res) gives rise (via the
Rost nilpotence theorem) to a family of parwise orthgonal idempotents over k,
hence, to a direct sum decomposition of the Chow motive of M(E/B;Fp).

In this way we obtain the main result of [Petrov-Semenov-Zainoulline]

Theorem. Given a G-torsor E the Chow-motive M(E/B;Fp) splits as a direct
sum of indecomposable motives

M(E/B) '
⊕
i≥0

Rp,E(i)⊕ni

where the Poincare polynomial (the coefficient at tl of the Poincare polynomial
equals to the number of Tate motives in codimension l) of M(Rp,E ×k ka) is
given by

P (M(Rp,E ×k ka), t) =

r∏
i=1

1− tdipji

1− tdi

and the integers ci are the coefficients of the quotient

P (A, t)/P (M(Rp,E ×k ka), t).

The motives Rp,E satisfy the following properties:

cdp(E/B) = dimRp,E = degP (M(Rp,E ×k ka), t) =

r∑
i=1

di(p
ji − 1).
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In particular, Rp,E = Fp is Tate iff j1 = . . . = jr = 0 iff E/B contains a closed
point of degree coprime to p.

If E is generic, then it gives the formula for the canonical p-dimension of G
that is

cdp(G) = cdp(E/B) =

r∑
i=1

di(p
ki − 1).

Following the same approach as for Chow groups (replacing the symbol CH
by h evrywhere in the defintion of Grothendieck-Chow motives) one can define
the pseudo-abelian category of h-motives. The result of Vishik-Yagita says that
there is 1-1 correspondence between isomorphism classes of Ω-motives and CH-
motives.

Question 1: Can one obtain (h-)motivic decompositions of the h-motive of
E/B in a similar way ?

Question 2: What is the h-analogue (say h = K0) of the canonical dimension
of G ?

8 The characteristic map

We are now going to define and to describe the characteristic map

c : hB(pt)→ hB(G)

in general. The key idea is that this map should depend only on the root datum
(Σ,Λ) and the formal group law F . We follow [Calmes-Petrov-Zainoulline].

Assume we are given a root datum (Λ,Σ) and a formal group law F .

Formal group algebra. We first define R[xΛ] := R[xλ, λ ∈ Λ] to be the
polynomial ring over a ring R with variables indexed by Λ. Let ε : R[xΛ] → R
be the augmentation morphism which maps any xλ to 0. Consider the ker(ε)-
adic topology on R[xΛ] given by ideals ker(ε)i, i ≥ 0, which form a fundamental
system of open neighborhoods of 0. We define R[[xΛ]] to be the ker(ε)-adic
completion of the polynomial ring R[xΛ]. We then set

R[[Λ]]F := R[[xΛ]]/(x0, xλ+µ − F (xλ, xµ)).

and call it the formal group algebra. One may think of R[[Λ]]F as of hB(pt).

Demazure operators. The Weyl group W of the root datum acts on the Λ
by means of reflections. This induces an action on R[[Λ]]F .

Assume that all xα, α ∈ Σ, are regular in R[[Λ]]F , then we can define an
R-linear operator on R[[Λ]]F

∆α(u) :=
u− sα(u)

xα
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and call it the formal Demazure operator. The operator ∆α can be viewed as a
’twisted’ differential operator as it is satisfies the ’twisted’ Leibniz rule

∆α(uv) = ∆α(u)v + sα(u)∆α(v).

The algebra of Demazure operators. Consider the R-subalgebra DF of
EndR(R[[Λ]]F ) generated by all formal Demazure operators and left multi-
plications by elements of R[[Λ]]F . Composing with the augmentation map
ε : R[[Λ]]F → R we obtain the subalgebra εDF of the algebra of R-linear func-
tions (with the usual product and sum of functions).

Take its dual εD∗F = HomR(εDF , R) and consider the evaluation map

eval : R[[Λ]]F → εD∗F , u 7→ evaluation at u.

Then we have

Theorem. If h is a weakly birational algebraic oriented cohomology theory,
then

h(G/B) ' εD∗F
and the characteristic map c coincides with the evaluation map eval.

Moreover, if the torsion index of the root datum is invertible, then the kernel
of c coincides with the augmented ideal of invariants (R[[Λ]]WF +).

Formal Schubert Calculus. One can show that the algebra εDF is a free
R[[Λ]]F -module with basis ε∆Iw([pt]), where w ∈ W and Iw is the reduced
decomposition of w. The dual basis in εD∗F corresponds to the classes of Bott-
Samelson resolutions of Schubert varieties for Iw, w ∈W .
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