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Background

L - countable first-order language, T an L-theory. We want to
study countable models of T.

Example

(Q,+,—,-,0,1) = (Q(r),+,—,-,0,1), but

<@a +y = 07 1> A7é <Q(7T)a = 07 1>

No formula, even with parameters from Q, can distinguish these
structures.
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Definition

Let X(x1,...,x,) be a set of L-formulas. If M is an L-structure
such that there are ay,...,a, € M such that M = ¢(ay,...,an)
for all ¢(x1,...,xn) € L, we say M realizes L. Otherwise M

omits Y.

If T is an L-theory and there is M |= T such that M realizes ¥,
then we say ¥ is a type of T.
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Types increase expressive power.
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Let T be the theory of abelian groups, and

Y(x)={x#0,x+x#0,x+x+x#0,...}.
Then M |= T omits X if and only if M is a torsion group.

Example
Let T = PA, and

Y(x) ={x#0,x # S0,x # S50, ...} .

Then M |= T omits X if and only if M is standard.
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Theorem (Henkin-Orey 1957)

For each n, let £, be a type of T which is non-principal. Then
there is a (countable) M = T which omits every ¥,,.
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Then M is elementarily equivalent to an Archimedean field.



Corollary
Prime models realize only principal types.

Corollary

Suppose M is an ordered field, and that for every ¢ if
M = Ix¢(x) then there is a finite a € M such that M = ¢(a).
Then M is elementarily equivalent to an Archimedean field.

Corollary

If M |= PA (or M |= ZF ) is countable then there exists a
countable end-extension N' of M such that M < N .



Theorem (Keisler 1973)

Let L be a countable fragment of L., .,, and let T be an L-theory.
For each n, let ¥, be a type of T which is non-principal. Then
there is a (countable) M = T which omits every ¥,,.
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[0, 1]-valued Model Theory

Signatures: Function symbols, predicate symbols each have
moduli of uniform continuity.

Structures: Metric spaces of diameter < 1. Interpretations of
symbols respect the moduli of continuity from the signature.
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[0, 1]-valued L, .,

Fix a signature S. The formulas of Ly, ,,(S) are:

Atomic Formulas: d(x,y), R(x1,...,xs), constants for each
reQ@ni(o,1).
Formulas:

» ¢ = (=min{l—¢+1,1})

» 6 (=1-9)

> oAy (=min{g,¥})
> oV (= max{e,¥})
> sup, ¢

> Supnew an



We can recover other connectives as limits. Starting with:

1 N i
zxzn'i*;o\/(n“xﬂ))

i=1

By Stone-Weierstrass, combinations of our connectives uniformly
approximate any continuous F : [0, 1]" — [0, 1].
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Truth values: ¢™ €[0,1]. M = ¢ means oM = 1.

Example

In the signature of Banach algebras, let ¢(x) be
the formula 1—||x - x|. Then M |= ¢(a) if and only if a2 = 0 in M.

Note: M = ¢ — ¢ if and only if oM < M.
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Examples of classes of Banach spaces axiomatizable in £, :

>

Classes axiomatizable in finitary continuous logic (LP(u)
spaces, C(K) spaces, some classes of Nakano spaces, ...),

uniformly convex spaces,
spaces which are not super-reflexive,
spaces which are not hereditarily indecomposible,

spaces which are unstable (in the sense of Krivine-Maurey).
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A fragment of L, ,(S) is a set of formulas L such that:

» L contains every atomic formula

v

L is closed under —,—, A, V, sup,

v

L is closed under substituting terms for free variables

L is closed under subformulas

v

From now on, L is a fixed countable fragment of L, .,(S), S has
no function symbols. For C a set of new constant symbols, L¢ is
the least fragment of £, (S U C) containing L.
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Definition
Let T be an L-theory. A type X (X) is principal over T if there is a
formula ¢(X) consistent with T such that for some r € QN (0, 1),

TU{o(x) = r} = 2(x).

Theorem

Let T be an L-theory, and let {¥X,(X,) : n € w} be a collection of
non-principal types of T. Then there is a (countable) M = T
omitting each ¥ ,,.
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Topology

Stri(S) is the class of all S-structures.

Closed classes: Mod(T) ={M € 5tr(S): M =T}, T is an
L-theory.

Note M, N are indistinguishable if and only if M =; N, so the
space is not Ty.
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Proposition
The space Str((S) is completely regular.

Proof.
For any ¢,1, M |= ¢ — 1 if and only if M < M.

Say M & Mod(T), so some ¢ is such that M < 1.

Note ¢~ *([a,b]) = {N :a< ¢V < b} = Mod(a < ¢ A ¢ < b) is
closed, so ¢ is continuous. O
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Proposition
Y.(x) is principal if and only if Mod,_(T U X(X)) has nonempty
interior in Mod_(T).

Proof.

If (X) is principal, there is ¢, r such that T U {¢(X) > r} = X(X).
Then for any r’ € (r,1) we have

MLod(T) N I\/{od(qﬁ(i) > r')

X

is a non-empty open subset of Mod_(T U X(X)).
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Proof (con't).
Conversely, there is ¢(x) such that

Mod(T) N Mod((x) > 0)

is a non-empty open subset of Mod_(T U X(x)).

So there is r € QN (0,1) such that T U {¢(Xx) > r} is satisfiable.

Let ¢(X) be the formula ¢(Xx) > r. Then 1), 1 — s witness
principality for any s € QN (0, r).
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We add countably many new constants C = {c, : n € w} to S.
We work in W C Str(L¢) where satisfaction of sup, ¢ is witnessed
in the constant symbols.

Lemma

For anyi=1y,...,In—1, the natural map

Ri: W N Mod(T) — Mod,(T) is open, continuous, and
surjective.

Proposition

Let ¥(xo,...,%n—1) be a nonprincipal type of T. Then for each
i € w", R~ (Mod(T UX(g)) is closed nowhere dense in
W N Mod(T).
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Suppose there is
(M,3) e WN Mod(T)\ U,eo, Uicon BHT UZ4(q)).

Since (M, a) € W, a3 < M, and our choice ensures no subset of a
realizes any ¥, so a = T and omits each X,,.

It therefore suffices to show that W N Mod(T) is Baire, i.e., the
countable union of closed nowhere dense sets is codense.
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Definition

Let X be a completely regular space. A complete sequence of
open covers of X is a sequence (U, : n € w) of open covers such
that if F is a centred family of closed sets such that for each n € w
there is F, € F and U, € U, such that F, C U,, then (F # 0.

Definition
A completely regular space X is Cech-complete if it has a
complete sequence of open covers.
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Fact
If X is T3% then X is Cech-complete if and only if X is a G5 in BX.

Fact
If X is completely metrizable or locally compact Hausdorff, then X
is Cech-complete.



Proposition
Let X be completely regular and Cech-complete. Then:
» X is Baire.

» Every closed subspace of X is Cech-complete.



Theorem
W is Cech-complete.
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Proof: Recursively build a sequence of open covers such that:
» The sets in U, prescribe ranges for the first n sentences.
» i.e., if U €U, then for each m < n there is I, C [0, 1] such
that for all M € U, U,,/\,/‘ € Iy

> The sets in Un41 prescribe ranges for the first n sentences
that refine the ranges from sets in U,,.

» When a set prescribes a range for sup, ¢, it also picks an n
and specifies that ¢, be in the same range.

» When a set prescribes a range for sup, ¢ it also picks an n
and specifies that ¢(c,) be in the same range.
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Let F be a centred family of closed sets. For each n, pick F, € F,
U, € U such that F,, C U,. For F € F, let TF be a theory such
that F = Mod(TE).

Lemma
ﬂ"r = ﬂnew F”'

Proof.
If M & (| F then there is some F € F and some o € Tf such that
Mo, ie, oM< 1.

If M € (e, Fn then there is n € w large enough for U, to specify
that o < 1. So Fp =0 < 1.

So FN F, =0, contradiction. O
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For each n, pick M, € Fon---N F,. Pick an ultrafilter D on w.
Let M == H'D Mn.

Lemma

For each Lc-sentence o, oM

= limp_p oM.

Proof.
By induction on the complexity of o. Clear from the definition for
o atomic, and continuous connectives by definition of limits.

Say 0 = sup,e,, On.

If a < o™ then there is m* € w, a < @M. By induction
hypothesis, {n € w: 6 > a} € D. Hence

{new:oM >a}eD.
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If {n€w:oMr>a} €D, by induction it suffices to find m* € w
such that {n cw: oM > a} €D.

Find k large enough to specify that o > a. Then there is m* such
that k also specifies 6, > a.

So cofinitely many M, = 6+ > a, so {n Ew: 9%" > a} e D.

Similar proof for o = sup, ¢. O



It follows that M € (., Fn = F # 0. So W is Cech-complete.

ncw

O
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Theorem
Let T be an L-theory, and let {¥,(X) : n € w} be a collection of
non-principal types of T. Then there is M |= T omitting each ¥,,.

What if we wanted M to be based on a complete metric space?

Example

If (¢i)icw are constant symbols and T is a theory which implies
that (c¢;) is a Cauchy sequence, then the type ¥(x) expressing that
x = lim;_, o ¢j can be omitted in a metric structure, but not in a
complete metric structure.
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Theorem

Let T be an L-theory, and let {¥,(X) : n € w} be a collection of
types of T which are not metrically

principal. Then there is M |= T such that M omits each ¥,,.

Butis M =, M?

Definition

A fragment L of L, ., is continuous if every formula
d(x1,...,%n) € L defines a continuous function ¢ : M" — [0, 1] for
every L-structure M.
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Theorem

Let T be an L-theory, where L is a countable continuous fragment,
and let {¥,(X) : n € w} be a collection of types of T which are
not metrically principal. Then there is a complete M = T
omitting each X ,.

» If L is first-order continuous logic, this is Henson's Omitting
Types Theorem.

» Restricted to discrete structures, this is Keisler's Omitting
Types Theorem.

» If L is first-order and we restrict to discrete structures, this is
the classical Omitting Types Theorem.
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Application - Separable Quotients

Question

Let X be a Banach space. Is there a subspace Y C X such that
X/Y is separable?

Equivalently,

Question

Let X be a non-separable Banach space. Is there a separable
Banach space Y and a surjective bounded linear operator
T:X—=>Y?
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Let X, Y be Banach spaces with density(X) > density(Y), and let
T : X — Y be a surjective bounded linear map. Let L be a
continuous countable fragment of L., .,. Then there are X', Y', T’
such that:
» X', Y’ are Banach spaces, T' : X’ — Y’ is a surjective
bounded linear map,

» X' has density Ny,
» Y’ is separable,
> (X, Y, T) = (X/7 Y’, T/).



Proof (Outline).

By Downward Lowenheim-Skolem, we may assume |X| = k™,
Y| = k.



Proof (Outline).
By Downward Lowenheim-Skolem, we may assume |X| = k™,
Y| = k.

Attach a (discrete) copy of the order (x*, <), a constant for &,
and a function f so that f|x enumerates Y and f|[s, k™)
enumerates X, to (X, Y, T) to form M.
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By Downward Lowenheim-Skolem, we may assume |X| = k™,
Y| = k.

Attach a (discrete) copy of the order (x*, <), a constant for &,
and a function f so that f|x enumerates Y and f|[s, k™)
enumerates X, to (X, Y, T) to form M.

Using Downward Léwenheim-Skolem, let
(Xo, Yo, To, Lo, ¢, <o, fo) = Mg = M be countable.
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Add countably many constant symbols (d})/c;, and another
constant d*.

Let T = diag(Mo) U{d; Qo d* : | € Lo}.
Define X(x) = {x € L} U {fo(x) € Yo} U{d(x,d)) =1:1 g c}.

Then X is non-principal over T.
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By Omitting Types there is a countable M; |= T which omits X.

Then Mg <X M1, and Mj has no new elements of L above c. So
Yy is dense in Y].

Repeat w; times, and take the union of the elementary chain to
get My, = (Xugs Yoy Twgs o)

Take (X', Y', T') to be the completion of (X,,, Y, Tw,)
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Y and Y’ have isometric ultrapowers,

if X is uniformly convex then so is X’,

if X is not hereditarily indecomposible then neither is X,
if X is not super-reflexive then neither is X/,

all the above, with Y instead of X,



Thank you!



