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This talk is related to joint work (in progress) with Byung-Jay
Kahng (Buffalo - USA) on the Larson-Sweedler theorem for
weak multiplier Hopf algebras (quantum groupoids).



Introduction

Introduction

@ The operator algebra approach to quantum groups finds its
origin in the attempts to generalize Pontryagin’s duality for
abelian locally compact groups to the case of all locally
compact groups. This generalization started with the work
of Tannaka (1938) and Krein (1949).

@ On the other hand, the theory of quantum groups, as
developed by e.g. Drinfel'd, follows a different line of
research, in a purely algebraic context, starting with the
development of the notion of a Hopf algebra.

A new boost in both research fields came about simultaneously,
in the late 80’s. In the first case, it was the work of Woronowicz
on the quantum SUq(2). In the second case, it was the work of
Drinfel'd and Jimbo obtaining the quantizations of universal
enveloping algebras. Strange enough, still there was little
interaction between the two.
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Hopf algebras

Definition

A Hopf algebra is a pair (A, A) of an algebra with identity and a
coproduct A. The coproduct is a unital homomorphism

A : A — A ® A satisfying coassociativity (A ® 1)A = (1 ® A)A.
It is assumed that there is a counit . This is an algebra
homomorphism ¢ : A — C satisfying

(e®)A(a)=a (t®e)A(a) =a

for all a. Also the existence of an antipode is assumed. It is an
anti-homomorphism S : A — A satisfying

m(S ®)A(a) =e(a)l m(: ® S)A(a) =e(a)l

f_or alla e A.

The counit and the antipode are unique if they exist.
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The basic examples

The two basic examples associated with any finite group G:

Consider the algebra K(G) of all complex functions on G.
Define A(f)(p,q) = f(pq) for f € K(G) and p,q € G. Thisis a
coproduct. Define ¢(f) = f(e) where e is the identity in G. This
is the counit. Finally, let S(f)(p) = f(p~*) for p € G, then S is
the antipode.

If G is no longer finite, one can define a multiplier Hopf algebra.

Consider the group algebra CG of G and use p — X, for the
imbedding of G in CG. A coproduct is defined by

A(Xp) = Xp @ Ap. The counit satisfies ¢(\p) = 1 and the
antipode S(\p) = A, for all p.
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Integrals on Hopf algebras

Definition

A left integral on a Hopf algebra (A, A) is a non-zero linear
functional ¢ : A — C satisfying left invariance

(t® p)A(a) = p(a)l for all a. A right integral is a non-zero
linear functional ¢ on A satisfying (v @ ¢)A(a) = ¢(a)1 for all a.

Integrals are unigue (up to a scalar) if they exist. On a
finite-dimensional Hopf algebra, integrals always exist.

If A= K(G) for a finite group G, the left and right integrals are
the same and given by ¢(f) = >, f(p). Also for CG the
integrals coincide and are given by ¢()\p) = 1ifp = e and
©(Ap) = 0 otherwise.
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Locally compact quantum groups

Definition (Kustermans & Vaes)

A locally compact quantum group is a pair (M, A) of a von
Neumann algebra M and a coproduct A on M such that there
exists a left and a right Haar weight.

@ The coproduct is a unital normal *-homomorphism
A:M — M ® M satisfying coassociativity
(A®)A = (® A)A.

@ A left Haar weight is a faithful normal semi-finite weight
on M satisfying left invariance:

p((w @ )AX)) = w(L)e(x)
for all positive w € M, and all positive elements x € M
satisfying ¢(x) < oc.
@ Similarly for a right Haar weight .
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Locally compact quantum groups

The basic examples

Let G be any locally compact group.

Let M = L*°(G). Define A on M by A(f)(p,q) = f(pq)
whenever p,q € G. Then (M, A) is a locally compact quantum
group. The left and right Haar weights are the integrals with
respect to the left and the right Haar measure respectively.

For f € L>(G) we have

((L® P)AD)(p) = / f(pq)dq = / f(q)dg.

In the C*-framework, one takes A = Cy(G) and defines
A:A— M(A®A) as above. The Haar weights are now faithful
lower semi-continuous, semi-finite weights.
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Locally compact quantum groups

The basic examples - continued

Theorem

Let M = VN(G), the von Neumann algebra generated by the
left translations \p on L?(G). There is a coproduct A satisfying
A(Xp) = Xp @ Ap for all p. The pair (M, A) is also a locally
compact quantum group. The left Haar weight satisfies

o ([1o)ep) ~1(e)

when f € C.(G). Now the left and right Haar weights coincide.

~

In the C*-framework, one takes A = C/(G), the reduced
C*-algebra of G. Also here the coproduct is a non-degenerate
*-homomorphism from A — M(A ® A) defined as above. The
left and right Haar weights are still the same and they are given
by the same formula as in the von Neumann case.
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Locally compact quantum groups

More history and other comments

Pontryagin duality is a symmetric theory: the dual object G
is again a locally compact group.

This is no longer the case with Tannaka-Krein duality and
its generalizations.

The first self-dual theory comes with the Kac algebras: Kac
and Vainerman (1973), Enock and Schwartz (1973).

The new developments (Woronowicz’ SUq(2) (1987) and
the Drinfel'd-Jimbo examples (1985)), show that the theory
is too restrictive (the antipode S is assumed to be a *-map).

New research by various people finally led to the theory of
locally compact quantum groups as we know it now: Baaj
and Skandalis (1993), Masuda, Nakagami and
Woronowicz (1995), Kustermans and Vaes(1999)... and
others.



Locally compact quantum groups

Locally compact quantum groups

More comments

Consider again the definition.

Definition

A locally compact quantum group is a pair (M, A) of a von
Neumann algebra M and a coproduct A on M such that there
exists a left and a right Haar weight.

@ Itis nice and simple (if compared e.g. with the definition of
a Kac algebra - and it is more general).

@ There is no counit, nor an antipode from the start - the
existence is proven (at least of the antipode).

@ This is in contrast with (1) the definition of a (locally
compact) group and with (2) the notion of a Hopf algebra.

@ Itis assumed that the Haar weights exist whereas in the
theory of locally compact groups, the existence is proven
from the axioms.
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The Larson-Sweedler theorem for Hopf algebras

Theorem (Larson & Sweedler)

Assume that A is an algebra with identity and a full coproduct
A. If there is a faithful left integral and a faithful right integral,
then (A, A) is a Hopf algebra.

@ A coproduct on a unital algebra is called full if elements of

the form
(t®@w)A(a) (w®)A(a)

where a € A and w is a linear functional on A each span A.

@ In the original formulation, it is assumed that there is a
counit. That is a stronger condition.

@ Compare fullness of the coproduct with the density
conditions we need in the C*-algebraic formulation.

@ All this is precisely as in the definition of a locally compact
guantum group in the operator algebraic framewaork.



Larson-Sweed|ler theorem
The proof: the underlying ideas

The following results motivate the proof.

Proposition

Let G be a finite group and f a complex function on G. Write
f(p) = f(paa~*) = X gi(pa)hi(a).
Then - gi(a)hi(pa) = f(a.(pq) ™) =f(p™").

The result is easily generalized to Hopf algebras.

Proposition

Let (A, A) be a Hopf algebra and a € A. Write
a®l=> Ab)1®c)

Then Y (1®b)A(c) =S(a)®1. Also  e(a)l = bjc;.
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Proof of the Larson-Sweedler theorem

Assume that we have an unital algebra A with a full coproduct
A. Assume that ¢ is a faithful left integral and that ¢ is a faithful
right integral on A. Consider p,g € A and write

(@@ 9)(A13(p)A2s(q)) = > _bi®ci.
Then
S Aab)lec) =) (@A) (AP)(1eqg)=acl

where a = (1t ® ¢)(A(p)(1 ® q)) by the left invariance of ¢.
Similarly we find

> (L@b)A(e) = (@@ e)((c@ A)((Lep)AQ)) =be1

where b = (1 ® ¢)((1 ® p)A(Qq)).
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Proof of the Larson-Sweedler theorem - continued

Now we would like to define S : A — A by S(a) = b. In order to
do that, we need to verify two things:
@ Alis spanned by elements of the form (: ® ¢)(A(p)(1®Qq)).
@ If > A(bj)(1®ci) =0, then Y by ®c; =0.
For the first result, we need that ¢ is faithful and that A is full.
For the second, we need the right integral . Indeed, multiply
with A(p) from the left and apply ¢ ® ¢ to get > ¢ (pbj)c; = 0.
As this is true for all p € A and because ) is assumed to be
faithful, it follows that > " b; ® ¢; = 0.

The counit is defined in a similar way by ¢(a) = ¢(pq) if
a= (@) ((AP)(Lea))

The proof is completed by showing that ¢ is the counit and that
S is the antipode. This is straightforward.
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The antipode in the operator algebra framework

Consider the previous arguments and introduce the involution.

Proposition
Let (A, A) be a Hopf *-algebra and let a € A.

Ifa®l=Y A(p)(l®qg’) then S(a)*®1 =3 A(q)(l®p}).

What we do now is:

@ Start with a locally compact quantum group (M, A) and a
right Haar weight .

@ Considerthemap V : p®q +— A(p)(1 ® q*) on the Hilbert
space level H,, @ H.

@ The right invariance will imply that V is unitary. Itis
considered as the right regular representation.

@ This will yield a closed, densely defined, conjugate linear
map on H,,
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The right regular representation

Let (M, A) be a locally compact quantum group with a right
Haar weight . Let H be the underlying Hilbert space of M. Let
H,, be the GNS space of v. Denote by A, the canonical
imbedding of the left ideal 91, in H,, where 91, is the left ideal of
M of elements satisfying ¢(x*x) < co. Let M act directly on 7.

Proposition
There is a unitary operator V on H,, ® H satisfying (formally)

V(Ay(X) @ &) =3 Ny(Xi) @Yi&

where x € 0y, where £ € H and where ) x; ® y; stands for
A(x) e M @ M.

To prove that V is well-defined and isometric, one uses right
invariance of 4. To show that it is unitary is more tricky.
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The map x — S(x)* on the Hilbert space level

Proposition

There exists a closed, densely defined, conjugate linear
operator K on H,, so that the domain of K consists of vectors
¢ € H,y such that there is a vector §; € H,, with the property
that for all ¢ > 0 and all vectors 71,72, ..., 7y in Hy, there exist
elements p1,pP2,...,Pm,0d1,02;--.,0m in Ny such that

1€ @m =V Aulpy) @ afm)ll < e 1)
ler @ m = V(O Ay(a) @ pm)ll < e )

for all k. If & exists, it is unique and K& = &;.

@ First one has to show that &; is unique, if it exists (i.e.
& =0if£=0).
@ Then one must show that the domain of K is dense.
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Two aspects of the proof - 1

Proposition
The operator K is well-defined.

Proof.
Assume that

S M) @arn — ViE®n) and Y Ayg)@pi¢ — 0.

Take the scalar product of the first expression with a vector
7©'(¢')*¢ ® n’ where ¢’ and 1’ are right bounded. Then

Y 2Au(py) @ afn, () Cn’) = 3¢ @' (1) 0, B ¢ © Ay(qy))

This proves that (V*({¢ @ 1), 7'(¢')*¢ ® ') = 0 and hence
V*(€¢®n)=0. O

-



The antipode

Two aspects of the proof - 2

To show that K is densely defined, we need to use the left Haar
weight ¢ and the associated left regular representation W,
defined on H,, @ H,,.

Proposition

Letc,d € NV, and w € B(H,). and define

£ =Np((t@uw(c - d*))W).
Then ¢ € D(K) and K& = Ay((c @ w(d - ¢*))W).

Proof.
We take w = (- &', 7'), an orthonormal basis (j) and

pp=Ce(gcn)W and g =(®( §dE)W.
Then p;, g; € Ny, and they will give the required elements. Ol




The antipode

Further steps to develop the theory

@ The closed operator K has a polar decomposition IL3.

@ It implements the antipode S in the sense that
S(x)* = KxK and gives rise to the polar decomposition of
the antipode with the unitary antipode x — I(x*)I and the
scaling group, implemented by L".

@ The antipode is characterized by (S ® ()W = W*,

@ Wehave (K@ T)W(K ® T) = W* where T is the closure
of the map A, (x) — Ay (x*) where x € 91, N NZ.

@ This gives rise to the properties of the scaling group, the
modular automorphism groups, ...

@ Relative modular theory is used to prove uniqueness of the
Haar weights.

@ This gives relative invariance of the Haar weights w.r.t. the
scaling group.

@ Etc. ...
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Conclusions

@ We talked about two 'interacting’ fields of research: (1) The
operator algebra approach to quantum groups and (2) the
'Hopf algebra’ approach to quantum groups.

@ We discussed the problems that make such an interaction
rather difficult and not so obvious.

@ In this talk we gave one clear example to illustrate the
intimate link between the two topics. It is the
Larson-Sweedler theorem, as known in Hopf algebra
theory, that is implicit in the definition of e.g. a quantum
group in the operator algebra setting.

@ | choose this topic for this talk, not only because of the
above, but also because | am presently working on a
generalization along these lines within the theory of (locally
guantum) groupoids. This is joint work with B.-J. Kanhg.
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