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Almost all results are obtained in joint work with Hanfeng Li.



Determinants

Gébor Szegé (1895-1985)
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The Mahler measure

Let f: S — R be a continuous function. The quantity

M(f) = exp (/ log |f(z)|d)\(z)>
S1
has properties of a formal determinant of f.

If f(z) =(z—a1)(z—az) - (z — ap) is a polynomial, then

Hmax{l lail} = H |ail.

|ei[>1

The number M(f) is called the Mahler measure of the function f.
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Determinants of operators on Hilbert space

We can view f as a multiplication operator

My : L2(SY,0) — L2(St ).

Consider the Fourier isomorphism L2(S!, \) 2 (27, where we view
€ € (*Z as the function 3, ., &kz¥ on S

On (27, the operator Ms has matrix coefficients

a0

a_

al
ao

a1

a2
ai

a0

= z)z Kd)\(2).
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Determinants of operators on Hilbert space

We consider the matrix

ao dai ... dp—1 dn
a—i 4o ai . an—1
D§n+1) — a2y 20
a_n+t1 a
d_np a—n+1 .- a_1q ao

If f >0, then Drg") is positive semi-definite.
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Theorem (Szegé, 1915)
Let f: S1 — R be a positive and continuous function. Then,

lim det(Dﬁ"))l/" = exp (/ log f(z)d)\(z)> .
n—oo 51

The restrictions on f have been removed over the years.

Barry Simon showed that the corresponding result holds for all
f: S1 — R measurable, essentially bounded and non-negative.

AIM: We want to generalize Simon's result to a non-commutative
setting. This possibility was suggested by Deninger 2005.
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Amenable groups

Definition
A group T is called amenable if for every finite set S C I' and every
€ > 0, there exists a finite set F C I, such that

|SF| < (1+¢)|F].
The set F is called a (S, €)-Fglner set.

Example
The groups Z9 are easily seen to be amenable. Nilpotent and
solvable groups are amenable.

For a function ¢ defined on all finite subsets of I', we write

lim o(F)

F—o0

to denote the limit of ¢ as F becomes more and more invariant.



The group von Neumann algebra



The group von Neumann algebra

Let [ be a group.



The group von Neumann algebra

Let I be a group. Then £2T denotes the Hilbert space with
orthonormal basis {0, | g € '},



The group von Neumann algebra

Let I be a group. Then £2T denotes the Hilbert space with
orthonormal basis {J; | g € T}, and let X: [ — U(¢?T') denote the
left-regular representation

)\(g)dh — Ogh-



The group von Neumann algebra

Let I be a group. Then £2T denotes the Hilbert space with
orthonormal basis {J; | g € T}, and let X: [ — U(¢?T') denote the
left-regular representation

)\(g)dh — Ogh-

We define the group von Neumann algebra of I

LT = span{ @) [g €T



The group von Neumann algebra

Let I be a group. Then £2T denotes the Hilbert space with
orthonormal basis {J; | g € T}, and let X: [ — U(¢?T') denote the
left-regular representation

)\(g)dh — Ogh-

We define the group von Neumann algebra of I

S0
LT == span{\(g) [g €T}
and note that 7: LT — C given by

7(a) := (ade, 0e)



The group von Neumann algebra

Let I be a group. Then £2T denotes the Hilbert space with
orthonormal basis {J; | g € T}, and let X: [ — U(¢?T') denote the
left-regular representation

)\(g)dh — Ogh-

We define the group von Neumann algebra of I

LT = span{ @) [g €T
and note that 7: LT — C given by
7(a) := (ade, 0e)

defines a unital, positive, faithful trace on LT.
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The spectral measure of a self-adjoint element in L[

For each self-adjoint element a € LI', we define the spectral
measure of a to be the unique probability measure on R, such that

(p(2)) = /R p(t)dalt)

for all polynomials p € C[t].

It is a basic fact that a > 0 if and only if the support of u, is in
R>p and ker (a) = 0 if and only if p5({0}) = 0.

We can think about p, as the distribution of eigenvalues of the
operator a € B(£°T).
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The Fuglede-Kadison determinant

Let I be a group and a € L. We define the Fuglede-Kadison
determinant of a with the formula

detr () = exp ( /0 h Iog(t)d,u|a|(t)> € [0, 5].

Alternatively:
detr(a) = inf ||a||,-
etr(a) II7>0|| llp

Example

[ =7Z. Then LZ = L*>°(S") via the Fourier transform and for
f e L>(Sh)

detz(f) = exp </51 log ]f(z)|d)\(z)) .
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Volumes and covolumes

Let K C 400(r)d be a bounded, convex, and l-invariant subset and
denote for F C T by Kr the projection of F onto /*°(F)9. We set:

size(K) = IilEn vol(Kg)Y/IF.

Theorem (Brunn-Minkowski)
size(K + L) > size(K) + size(L).
Question
1. For f € RI, how are the volume of K and Kf = {xf | x € K}
related?

2. For f € RI, what is the covolume of {>*(I',Z) - f C £>(I")?

3. For f € ZI', how is the covolume of {*>°(I',Z) - f related to the
"size” of ZI' JZT'f?
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Minkowski's theorem

Theorem (T.)
Let f € ZI'. The covolume of {>°(I',Z) - f is equal to detr(f).

Theorem (Minkowski)

Let f € ZI" be arbitrary. Every weakly closed, symmetric, convex
subset of £>°(I') with

size(K) > 2 - det(f)

contains some non-zero element of {>°(I',Z) - f.
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Approximation with Fglner sets

Let F C T be a finite subset and a € B(¢2I'). We denote by ar the
compression of a to />F.
Theorem (Li-T.)
Let ' be an amenable group and a € LI positive. Then,
1

detr(a) = lim det(ag) .

F—oo

This was conjectured by Deninger and only known in special cases
and for strictly positive elements in LT .
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Ingredients of the proof

Lemma (Gantmacher-Krein)

Let X and Y be finite sets. Let g € B({?(X U Y)) be positive and
invertible. Then:

det(gXUy) . det(ngy) < det(gx) . det(gy).

Lemma (Moulin Ollagnier)

Let ¢ be a R-valued function defined on finite subsets of ', such
that

1. (@) =0 and p(Fs) = ¢(F) forall F ands €T,
2. QO(Fl U F2) + (,O(Fl N FQ) < gO(Fl) + QO(FQ) for all F1, F>.

Then
p(F) _ . ¢o(F)
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Shannon entropy

Let (X, uu) be a standard probability measure space and
P ={Py,...,P,} be a finite partition of X.The Shannon entropy
of P is defined to be

Zu ) log 1u(P;).

H(P) is the expected amount of information (counted in bits) an
observer obtains when it is revealed that a random point belongs
to some set in the partition.

Example

Consider the partition [0,1] = [0,1/4) U [1/4,1/2) U [1/2,1]. For
points in [1/2,1] one bit is revealed, whereas for points in [0,1/2),
two bits are revealed. Hence, H = 3/2; using log = log,.
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Kolmogorov entropy

Let (X, u) be a probability measure space and P = {Py,...,P,}
be a finite partition of X. Let I' act on (X, u) by measure
preserving transformations. For g € I', we denote by P# the
partition {g~*Py,...,g 1P,}. For F C T finite, we set

PF="\/ Pe.
geF
We define:

H(PF
h(T ~ X, P) = F'Lmoo (F‘ ).

We set:
h(I' ~ X) :=sup h(I ~ X, P).
P

Kolmogorov showed that one P is enough if P is generating.
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Let I' be an amenable group and M be a left countable ZI-module.
The Pontrjagin dual of M is denoted by M. It is a compact abelian
group, and [ acts on it preserving the Haar measure.

Question
What can one say about h(I' ~ M)?

This is already very interesting for M = ZI' /ZT'f for some f € ZI.
The correponding action is denoted by ' ~ X¢ and called principal
algebraic action. This question has a long history for I = Z9.

A programme to study the question above for principal algebraic
actions in the non-commutative case was started by Deninger in
2005.
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Theorem (Li-T.)

Let f € ZI' be a non-zero divisor. Then

h(I' ~ X¢) = log detr(f).

This was shown for
» [ = Z by Yuzvinskii,
» I = Z9 by Lind-Schmidt-Ward,
» for general I' (with additional constraints) by Deninger und
Deninger-Schmidt if f is invertible in T, and

» by Li in general if f is invertible in LI.



Ingredients of the proof



Ingredients of the proof

For any positive g € LT, F C T finite, and k > 0,



Ingredients of the proof

For any positive g € LI, F C T finite, and k > 0, we denote by
Dg F .« the product of the eigenvalues of gr in the interval (0, K]
counted with multiplicity.



Ingredients of the proof

For any positive g € LI, F C T finite, and k > 0, we denote by
Dg F .« the product of the eigenvalues of gr in the interval (0, K]
counted with multiplicity.

Proposition
Let g € LI be positive such that detr g > 0. Let A > 1. Then
there exists 0 < k < min(1, ||g||) such that

1

limsup(Dg F.) T <A
F
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For any positive g € LI, F C T finite, and k > 0, we denote by
Dg F .« the product of the eigenvalues of gr in the interval (0, K]
counted with multiplicity.

Proposition

Let g € LI be positive such that detr g > 0. Let A > 1. Then
there exists 0 < k < min(1, ||g||) such that

1

limsup(Dg F.) T <A
F

Refined techniques from:

H. Li. Compact group automorphisms, addition formulas and
Fuglede-Kadison determinants. Ann. of Math. 176 (2012), no. 1,
303-347.
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Michael Atiyah (1920-)
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Classification of lens spaces

The use of ¢2-torsion for the finite group Z/mZ is classical.

Definition (Tietze (1908))

The lens spaces are the closed oriented 3-dimensional manifolds
L(m,n) = {(a,b) € C?||a|* + [b]> = 1} /(a, b) ~ (Ca, (nb),

with ¢ = exp(%”') a primitive m-th root of unity, and m, n coprime.

Theorem (Franz, Rueff and Whitehead (1940))

1. L(m, n) is homotopy equivalent to L(m, n') iff n = £n'r?
mod m for some r € Z/mZ.

2. L(m, n) is homeomorphic to L(m, n') iff n = 4+n'r?> mod m
forr=1o0rr=n mod m.
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Let I be an amenable group and M be a left ZI'-module. We say
that M is of type FL, if there exists an exact sequence

0z % . Az Mo,

We define A; := dd; + dj1d7, - ZI" — ZI™,

An primary numerical invariant of M is its Euler characteristic

If the Euler characteristic vanishes, a secondary invariant can be
defined. We define the ¢2-torsion of M to be:

k
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(?-torsion of amenable groups

Let I be an amenable group. The group I' has a finite classifying
space BTl if and only if the trivial ZI'-module Z is of type FL. The
¢2-torsion of the trivial ZI'-module Z is called the ¢>-torsion of the
group I'. Note that trivially h(I' ~ 2) = 0. Hence,

Corollary (Li-T.)

Let ' be an amenable group with a finite classifying space. Then,
its (2-torsion vanishes.

This was conjectured by Liick.
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The Milnor-Turaev formula

Let I be an amenable group and let C,. be a chain complex of
finitely generated ZI-modules of finite length. We also assume
that C, is ¢?-acyclic, which says morally that LT ®@zr C, is acyclic.
We can now define the ¢?-torsion of C, as before

1 k

2 __ i ,
pA(C,) = ~3 ;(—1) -i-logdetr(A;) € R.



The Milnor-Turaev formula

One can show that p(®)(C,) depends on C, only up to homotopy
equivalence of chain complexes.



The Milnor-Turaev formula

One can show that p(®)(C,) depends on C, only up to homotopy
equivalence of chain complexes. It is natural to try to express
pP)(C,) in terms of the homology of C..



The Milnor-Turaev formula

One can show that p(®)(C,) depends on C, only up to homotopy
equivalence of chain complexes. It is natural to try to express
pP)(C,) in terms of the homology of C..

Theorem (Li-T.)



The Milnor-Turaev formula

One can show that p(®)(C,) depends on C, only up to homotopy
equivalence of chain complexes. It is natural to try to express
pP)(C,) in terms of the homology of C..

Theorem (Li-T.)

Remark

For G = {e} or G = Z9, this a consequence of the classical
Milnor-Turaev formula; and related to formulas for the Alexander
polynomial.
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The torsion of general ZI-modules

It has been observed already by Yuzvinskii that the entropy of an
algebraic action has contributions corresponding to primes. We can
set poo(M) := p(Q ®z M) and

pp(M) := p(Tor (pp, M)) — p(pp @z M),

where pp, = Z[1/p]/Z.

Lemma (Chung-T.)
If p(M) < oo, then pp(M) > 0.



The torsion of general ZI-modules

Theorem (Chung-T.)

Let M be a ZI'-module with finite torsion. Then, we have

p(M) = poo(M +pr (1)

Moreover, for any exact sequence 0 — M' — M — M" — 0 of
ZI'-modules with finite torsion, we have

pp(M) = pp(M') + pp(M")

for any prime p, and

poo(M) = poo(M') + poc(M”).



Thank you for your attention.



