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Noncommutative geometry

Hermitian structure:

Let A be a unital C ∗-algebra. Then a vector space V is a left
Hilbert A-module, i.e. (A, g) 7→ A · g is a map from
V ×A → A, with a pairing A〈., .〉 such that for all f , g , h ∈ V :

A〈A · f , g〉 = AA〈f , g〉 for all A ∈ A;

A〈f , g〉 = A〈g , f 〉∗;
A〈f , f 〉 ≥ 0.

V is complete with respect to the norm

A‖f ‖ := ‖A〈f , f 〉‖1/2
A .
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Noncommutative geometry

Differential structure on a C ∗-algebra A are given by
derivations ∂ on A.

A covariant derivative on a C ∗-algebra A on a Hilbert
C ∗-module V is a linear mapping such that

∇(A · g) = A · (∇g) + (∂A) · g

holds for all A ∈ A and g ∈ V . ∇ satisfies a (left)
Leibniz rule.

The covariant connection is called compatible with the
Hermitian structure, if the following holds

∂(A〈f , g〉) = A〈∇f , g〉+ A〈f ,∇g〉
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Noncommutative geometry

Suppose compatible connections ∇1,∇2 are given on V
and ∂1, ∂2 are derivations on A. Then a gauge
connection on V is defined by these two compatible
connections and its curvature is defined by

F12 = ∇1∇2 −∇2∇1 −∇[∂1,∂2].

If F12 is a multiple of (2πi)I , then the connection is called
of constant curvature.

curvature allows one to compute the first Chern number of
the module V :

c1(V ) = − 1

2πi
tr(p(∇1(p)∇2(p)−∇2(p)∇1(p))) = C tr(I ).
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Complex geometry

A. Schwarz initiated the study of complex structures in
noncommutative geometry. He was motivated by
generalizations of theta functions and string theory.

Suppose ∂1, ∂2 are derivations on A. Then

∂i =
1

2
(∂1 − i∂2) and ∂i =

1

2
(∂1 + i∂2)

define a complex structure on A.

Laplacian ∆ = δ2
1 + δ2

2 has a factorization ∆ = 4∂i∂i
To the complex structure on A corresponds a complex
structure on the Hilbert C ∗-module V :

∇i =
1

2
(∇1 − i∇2) and ∇i =

1

2
(∇1 + i∇2)

If ∇g = 0 for a g ∈ V , then g is called a holomorphic
vector.
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Noncommutative torus

Then the twisted group algebra `1(αZ× βZ, c) is
`1(αZ× βZ) with twisted convolution \ as multiplication and
∗ as involution.

Twisted convolution of a and b is defined by

a\b(k, l) =
∑
m,n

a(m, n)b(k−m, l−n)c(m, n)), (k−m, l−n))

Twisted involution of a given by

a∗(k, l) = c((k , l), (k , l))a(−l ,−l).

C ∗(αZ×βZ, c) is the enveloping C ∗-algebra of `1(αZ×βZ, c).
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Spectrally invariant subalgebras of noncommutative
tori

A1
s (αZ× βZ, c) = {A =

∑
λ

a(k, l)π(αk , βl) : ‖a‖`1
s
<∞}

with a‖`1
s

=
∑

k,l |a(k , l)|(1 + |k |2 + |l2|)s/2

smooth noncommutative torus
A∞(αZ× βZ, c) =

⋂
s≥0A1

s (αZ× βZ, c)

Theorem:

A1
s (αZ× βZ, c) and A∞(αZ× βZ, c) are spectrally invariant

subalgebras of the noncommutative torus C ∗(αZ× βZ, c).

The result about the smooth noncommutative torus is due to
Connes and the one for the twisted group algebra was proved
by Gröchenig-Leinert and later by Rosenberg.
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Time-frequency analysis

%bf Denis Gabor: Theory of communication, J. IEE.
93(3), 429-457, 1946.

For the invention of holography Gabor was awarded the
Nobel Prize in Physics in 1971.

D. Gabor:

Hitherto communication theory was based on two alternative
methods of signal analysis. One is the description of signals as
a function of time; the other is Fourier analysis.
But our everday experiences, especially our auditory sensations,
insist on a description in terms of both time and frequency.

Franz Luef Noncommutative geometry and time-frequency analysis



Time-frequency analysis

%bf Denis Gabor: Theory of communication, J. IEE.
93(3), 429-457, 1946.

For the invention of holography Gabor was awarded the
Nobel Prize in Physics in 1971.

D. Gabor:

Hitherto communication theory was based on two alternative
methods of signal analysis. One is the description of signals as
a function of time; the other is Fourier analysis.
But our everday experiences, especially our auditory sensations,
insist on a description in terms of both time and frequency.

Franz Luef Noncommutative geometry and time-frequency analysis



Time-frequency analysis

%bf Denis Gabor: Theory of communication, J. IEE.
93(3), 429-457, 1946.

For the invention of holography Gabor was awarded the
Nobel Prize in Physics in 1971.

D. Gabor:

Hitherto communication theory was based on two alternative
methods of signal analysis. One is the description of signals as
a function of time; the other is Fourier analysis.
But our everday experiences, especially our auditory sensations,
insist on a description in terms of both time and frequency.

Franz Luef Noncommutative geometry and time-frequency analysis



Time-frequency analysis
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Time-frequency analysis

Speech, music, images, and medical signals have changing
frequency characteristics

Fourier analysis is not well-suited in these situations.

Time-frequency representations provide an arsenal of tools
for these kind of signals.

Time-frequency representation also appear in phase space
approach to quantum mechanics.

Spectrogram: visual representation of frequencies in a
signal (e.g. sound, seismic)
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Time-frequency analysis
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Wireless communication
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Wireless communication – OFDM

R. W. Chang proposed a multi-charrier transmission
scheme in ”Synthesis of band-limited orthogonal signals
for multi-channel data transmission”, Bell Syst. Tech. J.,
1966.

Basic Idea:

A large number of parallel narrow-band subchannels is used
instead of a single wide-band channel to transport information,
i.e. sending discrete symbols on a continuous channel
(acoustive wave).

Advantages:

Efficient in dealing with multi-path effects, robustness against
narrow-band interference

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication – OFDM

R. W. Chang proposed a multi-charrier transmission
scheme in ”Synthesis of band-limited orthogonal signals
for multi-channel data transmission”, Bell Syst. Tech. J.,
1966.

Basic Idea:

A large number of parallel narrow-band subchannels is used
instead of a single wide-band channel to transport information,
i.e. sending discrete symbols on a continuous channel
(acoustive wave).

Advantages:

Efficient in dealing with multi-path effects, robustness against
narrow-band interference

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication – OFDM

R. W. Chang proposed a multi-charrier transmission
scheme in ”Synthesis of band-limited orthogonal signals
for multi-channel data transmission”, Bell Syst. Tech. J.,
1966.

Basic Idea:

A large number of parallel narrow-band subchannels is used
instead of a single wide-band channel to transport information,
i.e. sending discrete symbols on a continuous channel
(acoustive wave).

Advantages:

Efficient in dealing with multi-path effects, robustness against
narrow-band interference

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter: Assuming N suchannels, a bandwidth of W
Hz, symbol length of aT seconds, and subchannel
separation bF := W /N, the transmitter of a general
OFDM system uses the following waveforms
gl(t) = g(t)e2πilbF t for l = 0, ...,N − 1.

Suppose the data symbols are given by ck0, ..., ck,N−1.
Then the transmitted baseband signal for OFDM symbol
number k is

sk(t) =
N−1∑
l=0

cklgl(t − kaT ).

Idealization: Transmission of an infinite number of symbols

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter: Assuming N suchannels, a bandwidth of W
Hz, symbol length of aT seconds, and subchannel
separation bF := W /N, the transmitter of a general
OFDM system uses the following waveforms
gl(t) = g(t)e2πilbF t for l = 0, ...,N − 1.

Suppose the data symbols are given by ck0, ..., ck,N−1.
Then the transmitted baseband signal for OFDM symbol
number k is

sk(t) =
N−1∑
l=0

cklgl(t − kaT ).

Idealization: Transmission of an infinite number of symbols

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter: Assuming N suchannels, a bandwidth of W
Hz, symbol length of aT seconds, and subchannel
separation bF := W /N, the transmitter of a general
OFDM system uses the following waveforms
gl(t) = g(t)e2πilbF t for l = 0, ...,N − 1.

Suppose the data symbols are given by ck0, ..., ck,N−1.
Then the transmitted baseband signal for OFDM symbol
number k is

sk(t) =
N−1∑
l=0

cklgl(t − kaT ).

Idealization: Transmission of an infinite number of symbols

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter: Assuming N suchannels, a bandwidth of W
Hz, symbol length of aT seconds, and subchannel
separation bF := W /N, the transmitter of a general
OFDM system uses the following waveforms
gl(t) = g(t)e2πilbF t for l = 0, ...,N − 1.

Suppose the data symbols are given by ck0, ..., ck,N−1.
Then the transmitted baseband signal for OFDM symbol
number k is

sk(t) =
N−1∑
l=0

cklgl(t − kaT ).

Idealization: Transmission of an infinite number of symbols
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Wireless communication

Transmitter sends a superposition of individual symbols:

s(t) =
∑
k,l∈Z

cklgl(t − kaT ) =
∑
k,l∈Z

ckle
2πitlbF g(t − kaT )

The OFDM receiver is of a similar structure as the
transmitter waveforms gkl(t) = e2πitlbF tg(t − kaT ),
i.e. for some function h: hkl(t) = e2πitlbF th(t − kaT ).

OFDM – the functions {hk,l} are designed to be such that
gkl = hkl .

If the two systems {gk,l} and {hk,l} are biorthogonal, then
one refers to it as biorthogonal frequency division
multiplexing (BFDM).

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter sends a superposition of individual symbols:

s(t) =
∑
k,l∈Z

cklgl(t − kaT ) =
∑
k,l∈Z

ckle
2πitlbF g(t − kaT )

The OFDM receiver is of a similar structure as the
transmitter waveforms gkl(t) = e2πitlbF tg(t − kaT ),
i.e. for some function h: hkl(t) = e2πitlbF th(t − kaT ).

OFDM – the functions {hk,l} are designed to be such that
gkl = hkl .

If the two systems {gk,l} and {hk,l} are biorthogonal, then
one refers to it as biorthogonal frequency division
multiplexing (BFDM).

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter sends a superposition of individual symbols:

s(t) =
∑
k,l∈Z

cklgl(t − kaT ) =
∑
k,l∈Z

ckle
2πitlbF g(t − kaT )

The OFDM receiver is of a similar structure as the
transmitter waveforms gkl(t) = e2πitlbF tg(t − kaT ),
i.e. for some function h: hkl(t) = e2πitlbF th(t − kaT ).

OFDM – the functions {hk,l} are designed to be such that
gkl = hkl .

If the two systems {gk,l} and {hk,l} are biorthogonal, then
one refers to it as biorthogonal frequency division
multiplexing (BFDM).

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter sends a superposition of individual symbols:

s(t) =
∑
k,l∈Z

cklgl(t − kaT ) =
∑
k,l∈Z

ckle
2πitlbF g(t − kaT )

The OFDM receiver is of a similar structure as the
transmitter waveforms gkl(t) = e2πitlbF tg(t − kaT ),
i.e. for some function h: hkl(t) = e2πitlbF th(t − kaT ).

OFDM – the functions {hk,l} are designed to be such that
gkl = hkl .

If the two systems {gk,l} and {hk,l} are biorthogonal, then
one refers to it as biorthogonal frequency division
multiplexing (BFDM).

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication

Transmitter sends a superposition of individual symbols:

s(t) =
∑
k,l∈Z

cklgl(t − kaT ) =
∑
k,l∈Z

ckle
2πitlbF g(t − kaT )

The OFDM receiver is of a similar structure as the
transmitter waveforms gkl(t) = e2πitlbF tg(t − kaT ),
i.e. for some function h: hkl(t) = e2πitlbF th(t − kaT ).

OFDM – the functions {hk,l} are designed to be such that
gkl = hkl .

If the two systems {gk,l} and {hk,l} are biorthogonal, then
one refers to it as biorthogonal frequency division
multiplexing (BFDM).

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication – channels

If an antenna transmitts a signal is reflected by objects in
its environment, which results in different paths from
transmitter to receiver.

Moving transmitter and/or receiver change the signal via
the Doppler effect.

Received signalis a superposition of delayed and
modulated copies of the transmitted signal g

grec(t) =

∫∫
a(x , ω)e2πiωtg(t − x)dxdω

pseudodifferential operator
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Wireless communication–Challenges

The quality of the channel depends crucially on the
time-frequency localization of the transmitter pulse g and
of the receiving pulse h.

Pulse shapes with good time-frequency localization yield
good channels.

An optimum OFDM system would consist of orthogonal
basis functions {gkl} with aTbF = 1, such that the {gkl}
are well localized in time and frequency.

Unfortunately, such a system cannot exist due to the
Balian-Low theorem.
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Wireless communication – Challenges

Challenges:

How does one generate systems {gkl} and {hkl}?
What are the requirements for such systems to be useful
in applications?

What are good measures for time-frequency localization?

What mathematical structures are underlying OFDM and
BFDM?
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Time-frequency analysis – Schrödinger
representation

translation Tx f (t) = f (t − x) for x ∈ R, modulation
Mωf (t) = e2πit·ωf (t) for ω ∈ R̂
time-frequency shift π(x , ω)f (t) = MωTx f (t) for
(x , ω) ∈ R× R̂

MωTx = e2πix ·ωTxMω

π(x + y , ω + η) = e2πix ·ηπ(x , ω)π(y , η)
π(x , ω)π(y , η) = e2πi(y ·ω−x ·η)π(y , η)π(x , ω)

The projective representation of R2 has as 2-cocycle or
multiplier c

(
(x , ω), (y , η)

)
= e2πiy ·ω.
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Time-frequency representations

Short-Time Fourier Transform (STFT)

Vg f (x , ω) =

∫
R
f (t)g(t − x)e−2πitωdt = 〈f , π(x , ω)g〉

For ϕ(t) = e−πt
2

we have Vϕϕ(x , ω) = e−πix ·ωe−
1
2 (x2+ω2).

Wigner transform
W (f , g)(x , ω) =

∫
f (x + t/2)g(x − t/2)e−2πitωdt

Ambiguity function
A(f , g)(t, ω) =

∫
f (x + t/2)g(x − t/2)e−2πixωdx

Rihazcek-Ville transform:
R(f , g)(x , ω) = f (x)g(ω)e−2πixω
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Time-frequency localization

Fix a “nice” window function g , e.g. Gauss function, and look
at the decay or summability properties of a time-frequency
representation, e.g. STFT.
Feichtinger proposed to impose integrability conditions on a
time-frequency representation and showed how this allows one
to define Banach spaces of functions and distributions:

Modulation spaces:

Suppose g is a Schwartz function. Then f ∈ S ′(R) is in the
modulation space Mp,q

s (R) if

‖f ‖Mp,q
s

=
(∫

R

(∫
R
|Vg f (x , ω)|p(1 + |x |+ |ω|)spdx

)q/p
dω
)1/q

is finite.

Franz Luef Noncommutative geometry and time-frequency analysis



Time-frequency localization

Fix a “nice” window function g , e.g. Gauss function, and look
at the decay or summability properties of a time-frequency
representation, e.g. STFT.
Feichtinger proposed to impose integrability conditions on a
time-frequency representation and showed how this allows one
to define Banach spaces of functions and distributions:

Modulation spaces:

Suppose g is a Schwartz function. Then f ∈ S ′(R) is in the
modulation space Mp,q

s (R) if

‖f ‖Mp,q
s

=
(∫

R

(∫
R
|Vg f (x , ω)|p(1 + |x |+ |ω|)spdx

)q/p
dω
)1/q

is finite.

Franz Luef Noncommutative geometry and time-frequency analysis



Time-frequency localization

Fix a “nice” window function g , e.g. Gauss function, and look
at the decay or summability properties of a time-frequency
representation, e.g. STFT.
Feichtinger proposed to impose integrability conditions on a
time-frequency representation and showed how this allows one
to define Banach spaces of functions and distributions:

Modulation spaces:

Suppose g is a Schwartz function. Then f ∈ S ′(R) is in the
modulation space Mp,q

s (R) if

‖f ‖Mp,q
s

=
(∫

R

(∫
R
|Vg f (x , ω)|p(1 + |x |+ |ω|)spdx

)q/p
dω
)1/q

is finite.

Franz Luef Noncommutative geometry and time-frequency analysis



Feichtinger’s algebra

Feichtinger’s algebra, Shubin class:

M1
s (R) is the space of all f ∈ L2(R):

‖f ‖M1
s

=

∫∫
R2

|〈f , π(x , ω)g〉|(1 + |x |2 + |ω|2)s/2dxdω <∞

Feichtinger’s algebra: S0(R) is M1
0 (R).

Shubin class: M2
s (R) is the space of all f ∈ L2(R):

‖f ‖2
M2

s
=

∫∫
R2

|〈f , π(x , ω)g〉|2(1 + |x |2 + |ω|2)s/2dxdω <∞

Time-frequency description of Schwartz space
S (R) =

⋂
s≥0 M

1
s (R) =

⋂
s≥0 M

2
s (R).

M1
s (Rd) and M2

s (Rd) are invariant under time-frequency
shifts and symplectic Fourier transform:
F̂ (ẑ) =

∫∫
R2 F (z)e2πiΩ(ẑ,z)dz .

If f , g ∈ M1(R), then Vg f ∈ M1(R2).
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If f , g ∈ M1(R), then Vg f ∈ M1(R2).

Franz Luef Noncommutative geometry and time-frequency analysis



Feichtinger’s algebra

Feichtinger’s algebra, Shubin class:

M1
s (R) is the space of all f ∈ L2(R):

‖f ‖M1
s

=

∫∫
R2

|〈f , π(x , ω)g〉|(1 + |x |2 + |ω|2)s/2dxdω <∞

Feichtinger’s algebra: S0(R) is M1
0 (R).

Shubin class: M2
s (R) is the space of all f ∈ L2(R):

‖f ‖2
M2

s
=

∫∫
R2

|〈f , π(x , ω)g〉|2(1 + |x |2 + |ω|2)s/2dxdω <∞

Time-frequency description of Schwartz space
S (R) =

⋂
s≥0 M

1
s (R) =

⋂
s≥0 M

2
s (R).

M1
s (Rd) and M2

s (Rd) are invariant under time-frequency
shifts and symplectic Fourier transform:
F̂ (ẑ) =
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F̂ (ẑ) =

∫∫
R2 F (z)e2πiΩ(ẑ,z)dz .
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Resolution of Identity

Matrix coefficients of the Schrödinger representation satisfy an
orthogonality relation:

Moyal’s Identity

For f , g , h, k are in L2(R) we have

〈Vg f ,Vhk〉L2(R2) = 〈f , k〉L2〈h, k〉L2 , (1)

Resolution of identity Suppose ‖g‖2 = 1

‖f ‖2
2 =

∫∫
R2

|Vg f (x , ω)|2dxdω

holds for all f ∈ L2(R) and

for any function h ∈ L2(R) such
that 〈g , h〉2L(R) 6= 0

f = 〈h, g〉−1
2

∫∫
R2

〈f , π(z)g〉π(z)hdz
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Gabor frames

Let G(g , αZ× βZ) = {π(αk, βl)g : k, l ∈ Z} be a Gabor
system.

analysis operator: Cg f = (〈f , π(αk , βl)g〉)k,l∈Z

synthesis operator: Dag =
∑

k,l∈Z aklπ(αk, βl)g

frame operator:
Sg ,Λf =

∑
k,l∈Z〈f , π(αk, βl)g〉π(αk , βla)g

G(g , αZ× βZ) is a frame for L2(Rd) if there exist
constants A,B > 0 such that

A‖f ‖2
2 ≤

∑
k,l

|〈f , π(αk, βl)g〉|2 ≤ B‖f ‖2
2

Invertibility of Sg ,Λ is the main problem in Gabor analysis.
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Discrete reconstruction

f = S−1Sf =
∑
k,l

〈f , π(αk , βl)S−1g〉π(αk , βl)g

= SS−1f =
∑
k,l

〈f , π(αk , βl)g〉π(αk, βl)S−1g

= S−1/2SS−1/2f =
∑
k,l

〈f , π(αk , βl)S−1/2g〉π(αk , βl)S−1/2g .

canonical dual atom g̃ := S−1g

canonical tight atom h0 := S−1/2g

Gabor frame-type operator
Sg ,hf =

∑
k,l〈f , π(αk , βl)g〉π(αk , βl)h.
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Duality theory of Gabor analysis

The engineers Wexler and Raz discovered the following
biorthogonality principle:

Theorem:

Suppose G (g , αZ× βZ) is a Gabor frame for g ∈ M1
s (R).

TFAE

h is a dual Gabor atom, i.e. Sg ,hf = f .

〈g , π( kβ ,
l
α)h〉 = vol(Λ)−1δ0,kl for all k , l ∈ Z.

Ron-Shen duality theorem: G(g , αZ× βZ) is a frame if and
only if G(g , b−1Z× a−1Z) is a Riesz basic sequence.
Adjoint lattice

Λ◦ = {z ∈ R2d : π(z)π(λ) = π(λ)π(z) for all λ ∈ Λ}.
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Janssen representation

Poisson summation formula:

Suppose F ∈ M1
s (Rd).∑

k,l

F (αk , βl) = (αβ)−1
∑
m,n

F̂ (mβ ,
n
α).

For F (z) = Vg f (z) · Vhk(z) we have

Fundamental Identity of Gabor analysis:

∑
k,l

〈f , π(αk, βl)g〉〈π(αk, βl)h, k〉 =

(αβ)−1
∑
m,n

〈h, π(mβ ,
n
β )g〉〈π(mβ ,

n
α)f , k〉.

Franz Luef Noncommutative geometry and time-frequency analysis



Janssen representation

Poisson summation formula:

Suppose F ∈ M1
s (Rd).∑

k,l

F (αk , βl) = (αβ)−1
∑
m,n

F̂ (mβ ,
n
α).

For F (z) = Vg f (z) · Vhk(z) we have

Fundamental Identity of Gabor analysis:

∑
k,l

〈f , π(αk, βl)g〉〈π(αk, βl)h, k〉 =

(αβ)−1
∑
m,n

〈h, π(mβ ,
n
β )g〉〈π(mβ ,

n
α)f , k〉.

Franz Luef Noncommutative geometry and time-frequency analysis



Janssen representation

Poisson summation formula:

Suppose F ∈ M1
s (Rd).∑

k,l

F (αk , βl) = (αβ)−1
∑
m,n

F̂ (mβ ,
n
α).

For F (z) = Vg f (z) · Vhk(z) we have

Fundamental Identity of Gabor analysis:

∑
k,l

〈f , π(αk, βl)g〉〈π(αk, βl)h, k〉 =

(αβ)−1
∑
m,n

〈h, π(mβ ,
n
β )g〉〈π(mβ ,

n
α)f , k〉.

Franz Luef Noncommutative geometry and time-frequency analysis



Janssen representation

Poisson summation formula:

Suppose F ∈ M1
s (Rd).∑

k,l

F (αk , βl) = (αβ)−1
∑
m,n

F̂ (mβ ,
n
α).

For F (z) = Vg f (z) · Vhk(z) we have

Fundamental Identity of Gabor analysis:

∑
k,l

〈f , π(αk, βl)g〉〈π(αk, βl)h, k〉 =

(αβ)−1
∑
m,n

〈h, π(mβ ,
n
β )g〉〈π(mβ ,

n
α)f , k〉.

Franz Luef Noncommutative geometry and time-frequency analysis



Janssen representation

Theorem:

For f , g , h ∈ M1
s (R) or in S(R) we have that∑
k,l

〈f , π(αk , βl)g〉〈π(αk , βl)h

= (αβ)−1
∑
m,n

〈h, π(mβ ,
n
α)g〉π(mβ ,

n
α)f

Sf = (αβ)−1
∑
m,n

〈g , π(mβ ,
n
α)g〉〈π(mβ ,

n
α)f
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Well-localized Gabor frames

Suppose G(g , αZ× βZ) is a frame for L2(R).

Then one wants that the canonical dual atom S−1
g g has

the same time-frequency localization as the Gabor atom g .

Janssen: Schwartz class provides good Gabor atoms.

Gröchenig-Leinert: M1
s (R) provides good Gabor atoms.

Janssen representation translates the problem into a
question about spectral invariance of subalgebras of the
noncommutative torus.

S = (αβ)−1
∑
m,n

〈g , π(mβ ,
n
α)g〉π(mβ ,

n
α)
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Gröchenig-Leinert: M1
s (R) provides good Gabor atoms.

Janssen representation translates the problem into a
question about spectral invariance of subalgebras of the
noncommutative torus.

S = (αβ)−1
∑
m,n

〈g , π(mβ ,
n
α)g〉π(mβ ,

n
α)

Franz Luef Noncommutative geometry and time-frequency analysis



Well-localized Gabor frames

Suppose G(g , αZ× βZ) is a frame for L2(R).

Then one wants that the canonical dual atom S−1
g g has

the same time-frequency localization as the Gabor atom g .

Janssen: Schwartz class provides good Gabor atoms.

Gröchenig-Leinert: M1
s (R) provides good Gabor atoms.

Janssen representation translates the problem into a
question about spectral invariance of subalgebras of the
noncommutative torus.

S = (αβ)−1
∑
m,n
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Hilbert C ∗(αZ× βZ, c)-modules

Left action of A1
s (αZ× βZ, c) on M1

s (Rd) by

Dag = πΛ(a) · g =
[∑

k,l

a(αk , βl)π(λ)
]
g for a ∈ `1

s (αZ× βZ)

Λ〈f , g〉 =
∑
k,l

〈f , π(αk , βl)g〉π(αk, βl)

For f , g ∈ M1
s (R) define

Λ〈f , g〉 = πΛ(Vg f ) =
∑

k,l〈f , π(αk, βl)g〉π(αk , βl)

Λ〈f , g〉 = Λ〈g , f 〉∗

Λ〈πΛ(a)f , g〉 = πΛ(a) Λ〈f , g〉
Λ〈f , f 〉 is positive in C ∗(αZ× βZ, c), acutally in
A1

s (αZ× βZ, c)

The Gabor frame operator is a Hilbert module operator:
Sg ,hf = Λ〈g , h〉 · f .
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Hilbert C ∗(α−1Z, β−1Z, c)-modules

For b ∈ `1
s (α−1Z, β−1Z) and g ∈ M1

s (R) we define

g · πΛ◦(b) =
∑
m,n

π(mβ ,
n
α)∗gb(mβ ,

n
α)

〈f , g〉Λ◦ =
∑
m,n

π(mβ ,
n
α)∗〈g , π(mβ ,

n
α)f 〉 f , g ∈ M1

s (Rd)

Theorem:

M1
s (Rd) is an equivalence bimodule between A1

s (αZ× βZ, c)
and A1

s (α−1Z, β−1Z, c),

Λ〈f , g〉 · h = f · 〈g , h〉Λ◦ .
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Projective modules over noncommutative tori

Theorem:

M1
s (R) is a finitely generated projective right
A1

s (α−1Z, β−1Z, c).

f =
n∑

i=1

Λ〈f , gi 〉 · gi =
n∑

i=1

f 〈gi , gi 〉Λ◦ .

In terms of noncommutative geometry this statement translates
into the following:

Theorem:

A Gabor frame G(g , αZ× βZ) ia a line bundle over the twisted
group algebra A1(α−1Z, β−1Z, c).
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Frames for Hilbert C ∗-modules

Let A be a unital C ∗-algebra. A sequence
{gj : j = 1, ..., n} in a (left) Hilbert A-module AV is called
a standard module frame if there are positive reals C ,D
such that

C A〈f , f 〉 ≤
n∑

j=1

A〈f , gj〉A〈gj , f 〉 ≤ D A〈f , f 〉

for each f ∈ AV .

Let A be a unital C ∗-algebra. A sequence
{gj : j = 1, ..., n} in a (left) Hilbert A-module AV is a
standard module frame if the reconstruction formula

f =
n∑

j=1

A〈f , gj〉 · gj for all f ∈ AV .
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Existence of multi-window Gabor frames

Theorem:

Then there exist g1, ..., gn in M1
s (R) such that for all f in L2(R)

‖f ‖2
2 =

n∑
i=1

∑
k,l

|〈f , π(αk, βl)gi 〉|2.

G(g1, ..., gn, αZ× βZ) is a multi-window Gabor frame for
L2(R)).

By a result of Feichtinger and Gröchenig this implies that
G(g1, ..., gn, αZ× βZ) is a multi-window Gabor frame for the
class of modulation spaces Mp,q

m (R).
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Existence of good Gabor frames

G(g , αZ× βZ) is a Gabor frame if and only if M1
s (R) is a

singly-generated projective right A1
s (Λ◦, c)-module.

Theorem:

Given a lattice Λ. Then there exists a g ∈ M1
s (Rd) if and only

if vol(Λ) < 1.

The existence of a g ∈ L2(Rd) was established by Bekka in
2004, where the condition is vol(Λ) ≤ 1.
Balian-Low theorem excludes (critical) lattices with vol(Λ) = 1.
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Moyal plane

In the discussion of time-frequency channels we considered
operators of the form

A =

∫∫
R2

a(z)π(z)dz

for a ∈ L1(R2), i.e. integrated representation of the
Schrödinger representation.
An equivalent way to express the Weyl quantization of an
operator, spreading representation, pseudodifferential
operators: Moyal plane.

Feichtinger:

If a ∈ M1
s (R2), then A is a trace-class operator.

We denote all operators A with a ∈ S(R2) with A∞(R2, c) and
call it the smooth Moyal plane.
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Moyal plane

Stone-von Neumann:

A∞(R2, c) is Morita equivalent to the complex numbers C.

Define a Hermitian structure on A∞(R2, c) via

R2〈f , g〉 =

∫∫
R2

〈f , π(z)g〉π(z)dz

and as left action:

R2〈A · f , g〉 =

∫∫
R2

(a\Vg f )(z)π(z)dz

On C we take as innerproduct

〈f , g〉C = 〈g , f 〉2
and as right action:

g · λ := gλ λ ∈ C

Associativity condition is equivalent to Moyal’s identity.
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Connections on noncommutative tori and Moyal
plane

Derivations ∂1 and ∂2 on A∞(R2, c):

∂1A = 2πi

∫∫
R2

xa(x , ω)π(x , ω)dxdω

∂2A = 2πi

∫∫
R2

ωa(x , ω)π(x , ω)dxdω

We define covariant derivatives ∇1 and ∇2 on S(R):

(∇1g)(t) = 2πitg(t) and (∇2g)(t) = g ′(t).

∇2(A · g) = (∂2A) · g + A · (∇2g)

∂2(A · g) = 2πiω

∫∫
a(z)π(z)gdz +

∫∫
a(z)π(z)g ′dz .
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Connections on Moyal plane

compatibility condition

∂i (
2
R〈f , g〉) = R2〈∇i f , g〉+ R2〈f ,∇ig〉

For example,

2πiωVg f (x , ω) = Vg f
′(x , ω) + Vg ′f (x , ω)

covariant derivatives on S(R):

(∇1g)(t) = 2πiαtg(t) and (∇2g)(t) = βg ′(t)
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Connections on noncommutative tori

derivations on the noncommutative torus C ∗(αZ× βZ, c):

∂1(A) = 2πiα
∑
k,l

kaklπ(αk, βl)

∂2(A) = 2πiβ
∑
k,l

laklπ(αk, βl)

Connections on C ∗(αZ× βZ, c)

∇1g(t) = 2πiαtg(t) and ∇2g(t) = βg ′(t)

derivations on the noncommutative torus
C ∗(β−1Z× α−1Z, c):

∂1(A) = 2πiβ−1
∑
m,n

mamnπ(mβ ,
n
α)

∂2(A) = 2πiα−1
∑
m,n

namnπ(mβ ,
n
α)
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Connections on noncommutative tori

Connections

∇◦1g(t) = 2πiβ−1tg(t) and ∇◦2g(t) = α−1g ′(t)

curvature F12 on C ∗(αZ× βZ, c):

F12 = −2πiαβI

curvature F ◦12 on C ∗(β−1Z× α−1Z, c):

F ◦12 = −2πi

αβ
I

Note that αβ is the area of the fundamental domain of
Λ = αZ× βZ and (αβ)−1 the area of the fundamental domain
of Λ◦.
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Connections on noncommutative tori and Gabor
frames

Let’s consider the case A = Λ〈f , g〉 in more detail:

∇i (Λ〈f , g〉 · h) = δi (Λ〈f , g〉) · h + Λ〈f , g〉 · ∇ih

provides a relation between a Gabor system G(g ,Λ) and
G(∇ig ,Λ).

∇i (Λ〈f , g〉 ·h) = Λ〈∇i f , g〉 ·h+ Λ〈f ,∇ig〉 ·h+ Λ〈f , g〉∇i ·h
shows that the analysis and synthesis steps need to have
the same regularity.
Suppose 〈g , h〉Λ◦ = I , i.e. G(g ,Λ) is a frame.

∇i (f ) = δi (Λ〈f , g〉) · h + Λ〈f , g〉 · ∇ih

Associativity condition yields

〈∇◦i g , h〉Λ◦ = −〈g ,∇◦i h〉Λ◦
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Complex structures on noncommutative tori and
Moyal plane

∂(i) = ∂1 − i∂2 and ∂i = ∂1 + i∂2

∇(i) = ∇1 − i∇2 and ∇i = ∇1 + i∇2

∇(i)g(t) = 2πitg(t)− ig ′(t) and

∇(i)g(t) = 2πitg(t) + ig ′(t)

∇(i) is the creation operator and ∇(i) the annihilation
operator

holomorphic vector for Moyal plane: Gaussians
g(t) = e−πt

2

holomorphic vector for noncommutative tori:

g(t) = e−
a
bπt

2
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Balian-Low theorem

Balian-Low:

Let G(g , αZ× βZ) be a Riesz basis for its closed span H in
L2(R). Then ∇ig or ∇ih is not in H, where h denotes the
canonical dual Gabor atom h = S−1

g ,g .

Proof is based on an observation of G. Battle, which uses the
left Leibniz property for A = π(αk , βl) implies:

〈∇1g , π(αk , βl)h〉 = 〈π(−αk ,−βl)g ,∇ih〉

Suppose ∇ig and ∇ih are in H for i = 1, 2. Then using the
frame expansion we have that
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Balian-Low theorem

〈∇1g ,∇2h〉 = 〈
∑
k,l

〈∇1g , π(αk , βl)h〉π(αk , βl)g ,∇2h〉

=
∑
k,l

〈π(−αk ,−βl)g ,∇1h〉〈∇2g , π(−αk ,−βl)h〉

= 〈∇2g ,
∑
k,l

〈∇1h, π(αk , βl)g〉π(αk, βl)h〉

= 〈∇2g ,∇1h〉

However, ∇1∇2 −∇2∇1 = 2πiI , canonical commutation
relations, gives

1 = 〈g , h〉 = 〈∇2g ,∇1h〉 − 〈∇1g ,∇2h〉 = 0.
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Projections in noncommutative tori

Theorem:

Let G(g ,Λ) be a Gabor system on L2(Rd).Then pg = Λ〈g , g〉 is
a projection in C ∗(Λ, c) if and only if g · 〈g , g〉Λ◦ = g .

If
·〈g , g〉Λ◦ = I , then we have

G(g ,Λ) is a tight Gabor frame for L2(Rd).

G(g ,Λ◦) is an orthogonal system.

〈g , π(λ◦)g〉 = vol(Λ)δλ◦,0 for all λ◦ ∈ Λ◦.

In particular the canonical tight Gabor atom h0 := S−1/2g
yields a projection ph0 in C ∗(Λ, c).
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Projections in noncommutative tori – continued

Proposition:

Let g be in ΛVΛ◦ . Then Pg := Λ〈g , g〉 is a projection in
C ∗(αZ× βZ, c) if and only if g〈g , g〉Λ◦ = g . If g ∈ M1

s (R) or
S (R), then Pg gives a projection in A1

s (αZ× βZ, c) or
A∞(αZ× βZ, c), respectively.

First we assume that g〈g , g〉Λ◦ = g for some g in ΛVΛ◦ . Then
we have that

P2
g = Λ〈g , g〉Λ〈g , g〉 = Λ

〈
Λ〈g , g〉g , g

〉
= Λ〈g〈g , g〉Λ◦ , g〉 = Λ〈g , g〉 = Pg

and P∗g = Pg .

Now we suppose that Λ〈g , g〉 is a projection in C ∗(αZ×βZ, c).
Then an elementary computation yields the assertion:

Λ

〈
g〈g , g〉Λ◦ − g , g〈g , g〉Λ◦ − g

〉
= 0.
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Consequences

The unit sphere of the Hilbert C ∗(β−1Z× α−1Z, c)-module
V is defined by S(V ) = {g ∈ V:〈g , g〉Λ◦ = I}, that is the set
of all tight Gabor frames.

g1(t) = (2)1/4e−πt
2

a Gaussian, g2(t) = (π2 )1/2 1
cosh(πt) the

hyperbolic secant and g3(t) = e−π|t| the two-sided exponential.

Theorem:

Let Λ = αZ× βZ. Then pgi = Λ〈gi , gi 〉 is a projection in
C ∗(αZ× βZ, c) if and only if αβ < 1.

The case of the Gaussian g1 is known as Boca’s projection. In
Manin’s work pg1 = Λ〈g1, g1〉 appears as quantum theta
functions.
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From Time-frequency analysis to Noncommutative
Geometry

Summary:

projective representation of phase space R2d ,
representations of the Heisenberg group

time-frequency localization – modulation spaces

frames for Hilbert spaces

Gabor frames

noncommutative tori

strong Morita equivalence of operator algebras

connections on noncommutative tori
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