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Noncommutative geometry

Hermitian structure:

Let A be a unital C*-algebra. Then a vector space V is a left
Hilbert A-module, i.e. (A, g)— A- g is a map from
V x A — A, with a pairing 4(.,.) such that for all f,g,h e V:

A(A-f g) =Alf,g) forall A€ A,
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Noncommutative geometry

Hermitian structure:

Let A be a unital C*-algebra. Then a vector space V is a left
Hilbert A-module, i.e. (A, g)— A- g is a map from
V x A — A, with a pairing 4(.,.) such that for all f,g,h e V:

m A (A-f,g) =A4(f,g) forall Ae A,

*.

u A<f’g> :A<g7 f> '
A(f,f) > 0.
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Noncommutative geometry

Hermitian structure: |

Let A be a unital C*-algebra. Then a vector space V is a left
Hilbert A-module, i.e. (A, g)— A- g is a map from
V x A — A, with a pairing 4(.,.) such that for all f,g,h e V:

m A (A-f,g) =A4(f,g) forall Ae A,

*.

m 4{f,g) = alg, )"
m 4(f,f)>0.

V is complete with respect to the norm
allfll = Ll I,
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Hermitian structure:

Let A be a unital C*-algebra. Then a vector space V is a left
Hilbert A-module, i.e. (A, g)— A- g is a map from
V x A — A, with a pairing 4(.,.) such that for all f,g,h e V:
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Noncommutative geometry

Differential structure on a C*-algebra A are given by
derivations 0 on A.
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Noncommutative geometry

m Differential structure on a C*-algebra A are given by
derivations 9 on A.

A covariant derivative on a C*-algebra A on a Hilbert
C*-module V is a linear mapping such that

V(A-g)=A-(Vg)+(0A) g

holds for all A€ Aand g € V.
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m Differential structure on a C*-algebra A are given by
derivations 9 on A.

m A covariant derivative on a C*-algebra A on a Hilbert
C*-module V is a linear mapping such that
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holds for all Ac Aand g € V. " catichies o (left)
Leibniz rule.
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m Differential structure on a C*-algebra A are given by
derivations 9 on A.

m A covariant derivative on a C*-algebra A on a Hilbert
C*-module V is a linear mapping such that

V(A-g)=A-(Vg)+(0A)-¢

holds for all A€ A and g € V. V satisfies a (left)
Leibniz rule.

The covariant connection is called compatible with the
Hermitian structure, if the following holds

Franz Luef Noncommutative geometry and time-frequency analysis



Noncommutative geometry

m Differential structure on a C*-algebra A are given by
derivations 9 on A.

m A covariant derivative on a C*-algebra A on a Hilbert
C*-module V is a linear mapping such that

V(A-g)=A-(Vg)+(0A)-¢

holds for all A€ A and g € V. V satisfies a (left)
Leibniz rule.

m The covariant connection is called compatible with the
Hermitian structure, if the following holds

a(A<fag>) = A<Vf’g> + A<f7Vg>
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Noncommutative geometry

Suppose compatible connections V1, V> are given on V
and 01, 0» are derivations on A. Then a gauge
connection on V is defined by these two compatible
connections and its curvature is defined by

Fi2 = V1Va = VaV1 — Vg, 0,
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Noncommutative geometry

m Suppose compatible connections V1, V3 are given on V
and 01, 0, are derivations on A. Then a gauge
connection on V is defined by these two compatible
connections and its curvature is defined by

Fio = V1Va — VaVi — Vg, 9,)-

If F1 is a multiple of (27/)/, then the connection is called
of constant curvature.
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Noncommutative geometry

m Suppose compatible connections V1, V3 are given on V
and 01, 0, are derivations on A. Then a gauge
connection on V is defined by these two compatible
connections and its curvature is defined by

Fio = V1Va — VaVi — Vg, 9,)-

m If Fi5 is a multiple of (27/)/, then the connection is called
of constant curvature.

curvature allows one to compute the first Chern number of
the module V:

27

=] =
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Noncommutative geometry

m Suppose compatible connections V1, V3 are given on V
and 01, 0, are derivations on A. Then a gauge
connection on V is defined by these two compatible
connections and its curvature is defined by

Fio = V1Va — VaVi — Vg, 9,)-

m If Fi5 is a multiple of (27/)/, then the connection is called
of constant curvature.

m curvature allows one to compute the first Chern number of
the module V:

ai(V) =~ 5tx(p(V1(p)Va(p)~Va(p)V1(p))) = Cir(l).

m] [ = £ DA
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Complex geometry

A. Schwarz initiated the study of complex structures in
noncommutative geometry. He was motivated by
generalizations of theta functions and string theory.

Suppose 01, J» are derivations on A. Then
1 — 1
0; = 5((71 — I'(')z) and 0; = 5((')1 + IUQ)

define a complex structure on A.
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Complex geometry

A. Schwarz initiated the study of complex structures in
noncommutative geometry. He was motivated by
generalizations of theta functions and string theory.

m Suppose 01, 0> are derivations on A. Then
1 — 1
0; = 5(81 — iaz) and 0; = 5(81 + i62)

define a complex structure on A.
Laplacian A = Af + (53 has a factorization A = 40,0;
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Complex geometry

A. Schwarz initiated the study of complex structures in
noncommutative geometry. He was motivated by
generalizations of theta functions and string theory.

m Suppose 01, 0> are derivations on A. Then
1 — 1
0; = 5(81 — iaz) and 0; = 5(81 + i62)

define a complex structure on A.

m Laplacian A = 6% + 5% has a factorization A = 49;0;
To the complex structure on A corresponds a complex
structure on the Hilbert C*-module V:

1 — 1
V= E(Vl — /'VQ) and V; = §(T1 + /vz)
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Complex geometry

A. Schwarz initiated the study of complex structures in
noncommutative geometry. He was motivated by
generalizations of theta functions and string theory.

m Suppose 01, 0> are derivations on A. Then
1 — 1
0; = 5(81 — iaz) and 0; = 5(81 + iag)

define a complex structure on A.
m Laplacian A = 6% + 5% has a factorization A = 49;0;
m To the complex structure on A corresponds a complex
structure on the Hilbert C*-module V:

1 - 1
V= §(V1 —iV2) and V; = E(V1 +iV>)

If Vg =0 for a g € V, then g is called a holomorphic
vector.

m] [ = £ DA
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Complex geometry

A. Schwarz initiated the study of complex structures in
noncommutative geometry. He was motivated by
generalizations of theta functions and string theory.

m Suppose 01, 0> are derivations on A. Then
1 — 1
0; = 5(81 — iaz) and 0; = 5(51 + i62)

define a complex structure on A.
m Laplacian A = 6% + 5% has a factorization A = 49;0;
m To the complex structure on A corresponds a complex
structure on the Hilbert C*-module V:

1 - 1
V= §(V1 —iV2) and V; = §(V1 +iV>)

m If Vg =0foragc V, then g is called a holomorphic
vector.

m] [ = £ DA
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Noncommutative torus

Then the twisted group algebra (1(aZ x B7Z,c) is
Y(aZ x BZ) with twisted convolution § as multiplication and
* as involution.

Twisted convolution of a and b is defined by

atb(k, 1) = a(m, n)b(k—m,I—n)c(m, n)), (k—m, |—n))

m,n
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Noncommutative torus

Then the twisted group algebra (1(aZ x B7Z,c) is
Y(aZ x BZ) with twisted convolution § as multiplication and
* as involution.

m Twisted convolution of a and b is defined by

agb(k, /) = a(m, n)b(k—m,I—n)c(m, n)), (k—m,I—n))

m,n

Twisted involution of a given by

a*(k, 1) = c((k, 1), (k, ) a(—1, ).

Franz Luef Noncommutative geometry and time-frequency analysis



Noncommutative torus

Then the twisted group algebra (1(aZ x B7Z,c) is
Y(aZ x BZ) with twisted convolution § as multiplication and
* as involution.

m Twisted convolution of a and b is defined by

agb(k, /) = a(m, n)b(k—m,I—n)c(m, n)), (k—m,I—n))

m,n

m Twisted involution of a given by
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Spectrally invariant subalgebras of noncommutative
tori

AYaZ x BZ,c) ={A=""a(k, )r(ak,BI) : |[a]lp < oo}
A

with alla =3, la(k, D)[(1+ [K]> +|/2])5/?
smooth noncommutative torus
A>®(aZ x BZ,c) = ﬂsgo Al(aZ x BZ, c)

Franz Luef Noncommutative geometry and time-frequency analysis



Spectrally invariant subalgebras of noncommutative
tori

AYaZ x BZ,c) ={A=""a(k, )r(ak,BI) : |[a]lp < oo}
A

with alla =3, la(k, D)[(1+ [K]> +|/2])5/?
smooth noncommutative torus
AX(aZ x BZ, c) =50 Al(aZ x BZ, c)

AL(aZ x BZ,c) and A®(aZ x BZ,c) are spectrally invariant
subalgebras of the noncommutative torus C*(aZ x fZ,c).

The result about the smooth noncommutative torus is due to
Connes and the one for the twisted group algebra was proved
by Grochenig-Leinert and later by Rosenberg,
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Spectrally invariant subalgebras of noncommutative
tori

AYaZ x BZ,c) ={A=""a(k, )r(ak,BI) : |[a]lp < oo}
A

with alla = >, la(k, 1)|(1 + |k[? +|/?])*/2
smooth noncommutative torus
A>(aZ x BZ, c) = Ny A (aZ x BZ, c)

AL(aZ x BZ, c) and A>®(aZ x BZ,c) are spectrally invariant
subalgebras of the noncommutative torus C*(aZ x SZ, c).

The result about the smooth noncommutative torus is due to
Connes and the one for the twisted group algebra was proved
by Grochenig-Leinert and later by Rosenberg,
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Time-frequency analysis

%bf Denis Gabor: Theory of communication, J. IEE.
03(3), 429-457, 1946.
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Time-frequency analysis

m %bf Denis Gabor: Theory of communication, J. IEE.
93(3), 429-457, 1946.

For the invention of holography Gabor was awarded the
Nobel Prize in Physics in 1971.

Hitherto communication theory was based on two alternative
methods of signal analysis. One is the description of signals as
a function of time; the other is Fourier analysis.

But our everday experiences, especially our auditory sensations,
insist on a description in terms of both time and frequency.
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m For the invention of holography Gabor was awarded the
Nobel Prize in Physics in 1971.
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Time-frequency analysis
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Time-frequency analysis

m Speech, music, images, and medical signals have changing
frequency characteristics

Fourier analysis is not well-suited in these situations.
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m Speech, music, images, and medical signals have changing
frequency characteristics

m Fourier analysis is not well-suited in these situations.

Time-frequency representations provide an arsenal of tools
for these kind of signals.

Franz Luef Noncommutative geometry and time-frequency analysis



Time-frequency analysis

m Speech, music, images, and medical signals have changing
frequency characteristics

m Fourier analysis is not well-suited in these situations.

m Time-frequency representations provide an arsenal of tools
for these kind of signals.

Time-frequency representation also appear in phase space

approach to quantum mechanics.
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m Fourier analysis is not well-suited in these situations.
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m Time-frequency representation also appear in phase space
approach to quantum mechanics.

Spectrogram: visual representation of frequencies in a
signal (e.g. sound, seismic)
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m Speech, music, images, and medical signals have changing
frequency characteristics

m Fourier analysis is not well-suited in these situations.

m Time-frequency representations provide an arsenal of tools
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approach to quantum mechanics.
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Time-frequency analysis

the time-signal Centered Plot

-200-100 0 100 200 100 50 0 50 100
the spectrogram
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Wireless communication

Franz Luef Noncommutative geometry and time-frequency analysis



Wireless communication — OFDM

R. W. Chang proposed a multi-charrier transmission
scheme in " Synthesis of band-limited orthogonal signals
for multi-channel data transmission”, Bell Syst. Tech. J.,
1966.

A large number of parallel narrow-band subchannels is used
instead of a single wide-band channel to transport information,
i.e. sending discrete symbols on a continuous channel
(acoustive wave).
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R. W. Chang proposed a multi-charrier transmission
scheme in ” Synthesis of band-limited orthogonal signals
for multi-channel data transmission”, Bell Syst. Tech. J.,
1966.

Basic Idea:

A large number of parallel narrow-band subchannels is used
instead of a single wide-band channel to transport information,
i.e. sending discrete symbols on a continuous channel
(acoustive wave).
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Wireless communication — OFDM

R. W. Chang proposed a multi-charrier transmission
scheme in ” Synthesis of band-limited orthogonal signals
for multi-channel data transmission”, Bell Syst. Tech. J.,
1966.

Basic Idea:

A large number of parallel narrow-band subchannels is used
instead of a single wide-band channel to transport information,
i.e. sending discrete symbols on a continuous channel
(acoustive wave).

Advantages:

Efficient in dealing with multi-path effects, robustness against
narrow-band interference
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Wireless communication

m Transmitter: Assuming N suchannels, a bandwidth of W
Hz, symbol length of ar seconds, and subchannel
separation bg := W/N, the transmitter of a general
OFDM system uses the following waveforms
gi(t) = g(t)e*™rt for | = 0,..., N — 1.

Suppose the data symbols are given by ckq, ..., Ck. N—1-
Then the transmitted baseband signal for OFDM symbol
number k is
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Wireless communication

m Transmitter: Assuming N suchannels, a bandwidth of W
Hz, symbol length of ar seconds, and subchannel
separation bg := W/N, the transmitter of a general
OFDM system uses the following waveforms
gi(t) = g(t)e*™rt for | = 0,..., N — 1.

m Suppose the data symbols are given by cyo, ..., Ck n—1.
Then the transmitted baseband signal for OFDM symbol
number k is

N—-1

=) cual(t — kar).

I=0
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Wireless communication

m Transmitter: Assuming N suchannels, a bandwidth of W
Hz, symbol length of ar seconds, and subchannel
separation bg := W/N, the transmitter of a general
OFDM system uses the following waveforms
gi(t) = g(t)e*™rt for | = 0,..., N — 1.

m Suppose the data symbols are given by cyo, ..., Ck n—1.
Then the transmitted baseband signal for OFDM symbol
number k is

=
iR

Sk(t) = ck/g/(t — kaT).
i

Il
o

Idealization: Transmission of an infinite number of symbols

=} = = = £ DA
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Hz, symbol length of ar seconds, and subchannel
separation bg := W/N, the transmitter of a general
OFDM system uses the following waveforms
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Wireless communication

Transmitter sends a superposition of individual symbols:

s(t) = Z ckg(t — kat) = Z C;(/e%"“b*g(t — kaT)

k,IEZ k,IEZ
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Wireless communication

m Transmitter sends a superposition of individual symbols:

s(t) = Z ckgl(t — kat) = Z cre®™PF g (t — kat)
k,IEZ K, IEZ

The OFDM receiver is of a similar structure as the
transmitter waveforms gy(t) = eQﬁ’t/bftg(t — kaTt),
i.e. for some function h: hy(t) = e>™tPrth(t — kar).
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Wireless communication

m Transmitter sends a superposition of individual symbols:

S(t) = Z Ck/g/(t — kaT Z Ckle27r/tlb,: kaT)

k,I€Z k,€Z

m The OFDM receiver is of a similar structure as the
transmitter waveforms gy(t) = e>™*rtg(t — ka),

i.e. for some function h: hy(t) = ™ bFth(t — kat).

OFDM - the functions {hy } are designed to be such that

gkl = hy.
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Wireless communication

m Transmitter sends a superposition of individual symbols:

S(t) = Z Ck/g/(t — kaT Z Ckle27r/tlb,: kaT)

k,I€Z k, €L

m The OFDM receiver is of a similar structure as the
transmitter waveforms gy(t) = e>™*rtg(t — ka),
i.e. for some function h: hy(t) = ™ bFth(t — kat).

m OFDM - the functions {hy ;} are designed to be such that
8k = hu.-
If the two systems {gk /} and {hy } are biorthogonal, then

one refers to it as biorthogonal frequency division
multiplexing (BFDM).
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m Transmitter sends a superposition of individual symbols:

S(t) = Z Ck/g/(t — kaT Z Ckle27r/tlb,: kaT)

k,I€Z k, €L

m The OFDM receiver is of a similar structure as the
transmitter waveforms gy(t) = e>™*rtg(t — ka),
i.e. for some function h: hy(t) = ™ bFth(t — kat).

m OFDM - the functions {hy ;} are designed to be such that
8k = hu.-

m If the two systems {gi /} and {hx s} are biorthogonal, then

one refers to it as biorthogonal frequency division
multiplexing (BFDM).
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Wireless communication — channels

If an antenna transmitts a signal is reflected by objects in
its environment, which results in different paths from
transmitter to receiver.
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Wireless communication — channels

m If an antenna transmitts a signal is reflected by objects in
its environment, which results in different paths from
transmitter to receiver.

Moving transmitter and/or receiver change the signal via
the Doppler effect.
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Wireless communication — channels

m If an antenna transmitts a signal is reflected by objects in
its environment, which results in different paths from
transmitter to receiver.

m Moving transmitter and/or receiver change the signal via
the Doppler effect.

Received signalis a superposition of delayed and
modulated copies of the transmitted signal g
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Wireless communication — channels

m If an antenna transmitts a signal is reflected by objects in
its environment, which results in different paths from
transmitter to receiver.

m Moving transmitter and/or receiver change the signal via
the Doppler effect.

m Received signalis a superposition of delayed and
modulated copies of the transmitted signal g

glu // 2 - tg(tfx)dxd;u
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Wireless communication — channels

m If an antenna transmitts a signal is reflected by objects in
its environment, which results in different paths from
transmitter to receiver.

m Moving transmitter and/or receiver change the signal via
the Doppler effect.

m Received signalis a superposition of delayed and
modulated copies of the transmitted signal g

Grec(t) = // a(x,w)e?™ g (t — x)dxdw

pseudodifferential operator
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Wireless communication—Challenges

m The quality of the channel depends crucially on the
time-frequency localization of the transmitter pulse g and
of the receiving pulse h.

Pulse shapes with good time-frequency localization vyield
good channels.
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An optimum OFDM system would consist of orthogonal
basis functions {gx} with atbg =1, such that the {gx}
are well localized in time and frequency.
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time-frequency localization of the transmitter pulse g and
of the receiving pulse h.

m Pulse shapes with good time-frequency localization yield
good channels.
m An optimum OFDM system would consist of orthogonal

basis functions {gk/} with arbg = 1, such that the {gy}
are well localized in time and frequency.

Unfortunately, such a system cannot exist due to the
Balian-Low theorem.
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Wireless communication — Challenges

Challenges:
m How does one generate systems {gy/} and {hy}?

What are the requirements for such systems to be useful
in applications?
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in applications?

What are good measures for time-frequency localization?
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Wireless communication — Challenges

Challenges: |
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m What are the requirements for such systems to be useful
in applications?
m What are good measures for time-frequency localization?

m What mathematical structures are underlying OFDM and
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Time-frequency analysis — Schrodinger
representation

m translation T,f(t) = f(t —x) for x € R, modulation
M, f(t) = ™t f(t) for w € R

m time-frequency shift 7(x,w)f(t) = M, Txf(t) for
(x,w) e RxR

M, Ty = ¥ T, M,
T(x + y,w + 1) = ™M (x, w)m(y, n)
w(x,w)m(y,n) = ez’”(y‘“’_x'”)ﬁ(y, n)m(x,w)
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Time-frequency analysis — Schrodinger
representation

m translation T,f(t) = f(t —x) for x € R, modulation
M, f(t) = ™t f(t) for w € R

m time-frequency shift 7(x,w)f(t) = M, Txf(t) for
(x,w) e RxR

M, Ty = ¥ T, M,
T(x + y,w +n) = ™ (x, w)m(y, )
w(x,w)m(y,n) = ez’”(y‘“’_x'”)ﬁ(y, n)m(x,w)

The projective representation of R? has as 2-cocycle or
multiplier C((X_;u)_ (v, ,/)) — e2miyw
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Time-frequency analysis — Schrodinger
representation

m translation T,f(t) = f(t —x) for x € R, modulation
M, f(t) = ™t f(t) for w € R

m time-frequency shift 7(x,w)f(t) = M, Txf(t) for
(x,w) e RxR

M, Ty = ¥ T, M,
T(x + y,w +n) = ™ (x, w)m(y, )
w(x,w)m(y,n) = ez’”(y‘“’_x'”)ﬂ(y, n)m(x,w)

The projective representation of R? has as 2-cocycle or
multiplier c((x,w), (y,n)) = e*™¥<.
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Time-frequency representations

m Short-Time Fourier Transform (STFT)
Vef(x,w) = / f(t)g(t — x)e 2" dt = (f, w(x,w)g)
JR

B : 1.2 2
For ¢(t) = e ™" we have V,p(x,w) = e ™ e 2 (W)
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Time-frequency representations

m Short-Time Fourier Transform (STFT)
Vf(x, ) = / F(1)E(t — x)e 2 dt = (f, m(x,)g)
R

. 1
For gO(t) — e—7'l't2 we have V(PQD(X,W) — e—FIX-we—z(Xz_Huz)-

Wigner transform
W(f,g)(x,w) = [ f(x+t/2)g(x —t/2)e 2" dt
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Time-frequency representations

m Short-Time Fourier Transform (STFT)
Vef(x,w) = / f(t)g(t — X)e—27ritwdt — (F, 7 w)e)
R
) 1
For gO(t) — e—7Tt2 we have V(PQD(X,W) — e—FIX-we—z(Xz_Huz)-
m Wigner transform .
W(fvg)(X,w) = f f(X + t/2)E(X — t/2)e—27rltwdt

Ambiguity function
A(f, g)(t,w) = [f(x+t/2)g(x — t/2)e 2>« dx
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Time-frequency representations

m Short-Time Fourier Transform (STFT)
Vf(x, ) = / F(1)E(t — x)e 2 dt = (f, m(x,)g)
R

. 1
For gO(t) — e—7Tt2 we have V(PQD(X,W) — e—FIX-we—z(Xz_Huz).

m Wigner transform
W(f,g)(x,w) = [ f(x +t/2)g(x — t/2)e 2"t dt
= Ambiguity function
A(f,g)(t,w) = [ f(x + t/2)g(x — t/2)e 2> dx
Rihazcek-Ville transform:
R(f,g)(x,w) = f(x)g(w)e 27w
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Time-frequency representations

m Short-Time Fourier Transform (STFT)
Vf(x, ) = / F(1)E(t — x)e 2 dt = (f, m(x,)g)
R

. 1
For gO(t) — e—7Tt2 we have V(PQD(X,W) — e—FIX-we—z(Xz_Huz).

m Wigner transform
W(f,g)(x,w) = [ f(x+t/2)g(x — t/2)e 2"t dt
m Ambiguity function
A(f,g)(t,w) = [f(x+ t/2)g(x — t/2)e "> dx
m Rihazcek-Ville transform:
R(f,8)(x,w) = f(x)g(w)e 2™
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Time-frequency localization

Fix a “nice” window function g, e.g. Gauss function, and look
at the decay or summability properties of a time-frequency
representation, e.g. STFT.

Feichtinger proposed to impose integrability conditions on a
time-frequency representation and showed how this allows one
to define Banach spaces of functions and distributions:
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Time-frequency localization

Fix a “nice” window function g, e.g. Gauss function, and look
at the decay or summability properties of a time-frequency
representation, e.g. STFT.

Feichtinger proposed to impose integrability conditions on a
time-frequency representation and showed how this allows one
to define Banach spaces of functions and distributions:

Modulation spaces:

Suppose g is a Schwartz function. Then f € §'(R) is in the
modulation space MY/ (R) if

/ 1/
|Fllwpe = / / ([ IVeFlxw)P(1+ Ix]+ w))Pdx) " dw)

is finite.
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Feichtinger’s algebra

Feichtinger's algebra, Shubin class: |

MZ(R) is the space of all f € L2(R):

£l = [ N mx )2+ 5 + )2 < o0

Feichtinger’s algebra: So(R) is M2(R).
Shubin class: M2(R) is the space of all f € L2(R):

‘fumz = // )g)[2(1 + |x|? + |w]?)*2dxdw < oo
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Feichtinger’s algebra

Feichtinger's algebra, Shubin class:

MZ(R) is the space of all f € L2(R):

£l = [ N mx )2+ 5 + )2 < o0

Feichtinger’s algebra: So(R) is M2(R).
Shubin class: M2(R) is the space of all f € L2(R):

11 = [ 1 sl P(L-+ P+ fol2) 2 < oo
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Feichtinger’s algebra

Feichtinger's algebra, Shubin class:

MZ(R) is the space of all f € L2(R):

£l = [ N mx )2+ 5 + )2 < o0

Feichtinger’s algebra: So(R) is M2(R).
Shubin class: M2(R) is the space of all f € L2(R):

11 = [ 1 sl P(L-+ P+ fol2) 2 < oo

m Time-frequency description of Schwartz space
y(R) = ﬂsZO MSI(R) = ﬂsZO MS2(R)
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Feichtinger’s algebra

Feichtinger's algebra, Shubin class:

MZ(R) is the space of all f € L2(R):

11l = /R2 [(F, w06, w)g)| (L + x| + |w]?)*/2dxdew < oo

Feichtinger’s algebra: So(R) is M2(R).
Shubin class: M2(R) is the space of all f € L2(R):

11 = [ 1 sl P(L-+ P+ fol2) 2 < oo

m Time-frequency description of Schwartz space
y(R) = ﬂs>0 Ml( ) = ﬂs>0 M2(R)

m ML(RY) and M2(RY) are invariant under tlme—frequency
shifts and symplectic Fourier transform:" - B 9ac
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Feichtinger’s algebra

Feichtinger's algebra, Shubin class:

MZ(R) is the space of all f € L2(R):

11l = /R2 [(F, w06, w)g)| (L + x| + |w]?)*/2dxdew < oo

Feichtinger’s algebra: So(R) is M2(R).
Shubin class: M2(R) is the space of all f € L2(R):

11 = [ 1 sl P(L-+ P+ fol2) 2 < oo

m Time-frequency description of Schwartz space
y(R) = ﬂs>0 Ml( ) = ﬂs>0 M2(R)

m ML(RY) and M2(RY) are invariant under tlme—frequency
shifts and symplectic Fourier transform:" - B 9ac
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Resolution of Identity

Matrix coefficients of the Schrodinger representation satisfy an
orthogonality relation:

Moyal's ldentity

For f,g, h, k are in L2(R) we have

(Vef, Vk) 12r2) = (f, k) 12(h, k) 12,
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Resolution of Identity

Matrix coefficients of the Schrodinger representation satisfy an
orthogonality relation:

Moyal's ldentity

For f,g, h, k are in L2(R) we have

<ng, th>L2(R2) — <f, k>l_2<h, k>L27 (1)

Resolution of identity Suppose ||g|2 =1

113 = / / Vg F(x, ) Rdxdo
]RZ
holds for all f € L2(R) and
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Resolution of Identity

Matrix coefficients of the Schrodinger representation satisfy an
orthogonality relation:

Moyal's ldentity

For f,g, h, k are in L2(R) we have

<ng, th>L2(R2) — <f, k>l_2<h, k>L27 (1)

Resolution of identity Suppose ||g|2 =1

IF|2 = / / Vg F(x, ) Rdxdo
]RZ

holds for all f € L2(R) and for any function h € L?(R) such
that (g, 3(R) 0

= the)s" [[ (Fr(2)e)m(z)hz
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

analysis operator: C,f = ((f,n(ak, 51)g))k 1cz
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

m analysis operator: C,f = ((f,m(ak,B1)g))k icz

synthesis operator: D,g = >, /., awm(ak,Bl)g
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

m analysis operator: C,f = ((f,m(ak,B1)g))k icz
m synthesis operator: Dag = ) /o7 anm(ak, B)g

frame operator:
Senf =21 en(f, m(ak, Bl)g)m(ak, Bla)g
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

m analysis operator: C,f = ((f,m(ak,B1)g))k icz
m synthesis operator: Dag = ) /o7 anm(ak, B)g
m frame operator:

SgAf = Zk,leZ<f’ m(ak, fl)g)m(ak, Bla)g
G(g,aZ x B7Z) is a frame for L2(RY) if there exist
constants A, B > 0 such that
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

m analysis operator: C,f = ((f,m(ak,B1)g))k icz
m synthesis operator: Dag = ) /o7 anm(ak, B)g
m frame operator:
SgAf = Zk,leZ<f’ m(ak, fl)g)m(ak, Bla)g
m G(g,aZ x B7Z) is a frame for L?(R?) if there exist
constants A, B > 0 such that

AllflI3 <Y (f,m(ak, B1)g)* < BIIf|13
k,l
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

m analysis operator: C,f = ((f,m(ak,B1)g))k icz
m synthesis operator: Dag = ) /o7 anm(ak, B)g
m frame operator:
SgAf = Zk,leZ<f’ m(ak, fl)g)m(ak, Bla)g
m G(g,aZ x B7Z) is a frame for L?(R?) if there exist
constants A, B > 0 such that

AlFlI3 <D IKF w(ak, B)g)* < BIIf|l5
k.l
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

m analysis operator: C,f = ((f,m(ak,B1)g))k icz
m synthesis operator: Dag = ) /o7 anm(ak, B)g
m frame operator:
SgAf = Zk,leZ<f’ m(ak, fl)g)m(ak, Bla)g
m G(g,aZ x B7Z) is a frame for L?(R?) if there exist
constants A, B > 0 such that

AlFlI3 <D IKF w(ak, B)g)* < BIIf|l5
k.l

Invertibility of S, A is the main problem in Gabor analysis.
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Gabor frames

Let G(g,aZ x BZ) = {w(ak,Bl)g : k,I € Z} be a Gabor
system.

m analysis operator: C,f = ((f,m(ak,B1)g))k icz
m synthesis operator: Dag = ) /o7 anm(ak, B)g
m frame operator:
SgAf = Zk,leZ<f’ m(ak, fl)g)m(ak, Bla)g
m G(g,aZ x B7Z) is a frame for L?(R?) if there exist
constants A, B > 0 such that

AlFlI3 <D IKF w(ak, B)g)* < BIIf|l5
k.l

Invertibility of S; A is the main problem in Gabor analysis.J

m] [ = = £ DA
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Discrete reconstruction

STISF =) (f.m(ak,B1)S " g)m(ak, fl)g
k!

SSTH = (f, m(ak, Bl)g)m(ak, B)S g
k,l
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Discrete reconstruction

STISF =) (f.m(ak,B1)S " g)m(ak, fl)g
k!

= SSTMf = (f,m(ak,Bg)m(ak,B)S g
k.l
ST2SSTIRE =N (f, m(ak, B1)S T 2g)m(ak, B1)S g
k.l
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Discrete reconstruction

STISF =) (f.m(ak,B1)S " g)m(ak, fl)g
k!

= SSTMf = (f,m(ak,Bg)m(ak,B)S g
k.l
ST2SSTIRE =N (f, m(ak, B1)S T 2g)m(ak, B1)S g
k.l

canonical dual atom g := S~ !g
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Discrete reconstruction

STISF =) (f.m(ak,B1)S " g)m(ak, fl)g
k!

= SSTMf = (f,m(ak,Bg)m(ak,B)S g
k.l
ST2SSTIRE =N (f, m(ak, B1)S T 2g)m(ak, B1)S g
k.l

m canonical dual atom g := S~g

canonical tight atom hy := S~ 1/?g
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Discrete reconstruction

STISF =) (f.m(ak,B1)S " g)m(ak, fl)g

k.l
= SSTMf = (f,m(ak,Bg)m(ak,B)S g
k.l
ST2SSTIRE =N (f, m(ak, B1)S T 2g)m(ak, B1)S g

k.l

m canonical dual atom g := S~g
m canonical tight atom hg == S~ 1/%g

Gabor frame-type operator
Se.nf = (f,m(ak, Bl)g)m(ak, BI)h.
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Discrete reconstruction

STISF =) (f.m(ak,B1)S " g)m(ak, fl)g
k!

= SSTMf = (f,m(ak,Bg)m(ak,B)S g
k.l
ST2SSTIRE =N (f, m(ak, B1)S T 2g)m(ak, B1)S g
k.l

m canonical dual atom g := S~g
m canonical tight atom hg == S~ 1/%g

m Gabor frame-type operator
Sg.nf =k (fim(ak, Bl)g)m(ak, Bl)h.
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Duality theory of Gabor analysis

The engineers Wexler and Raz discovered the following
biorthogonality principle:

)

Suppose G(g,aZ x BZ) is a Gabor frame for g € ML(R).
TFAE
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Duality theory of Gabor analysis

The engineers Wexler and Raz discovered the following
biorthogonality principle:

Suppose G(g,aZ x 3Z) is a Gabor frame for g € MX(R).
TFAE

his a dual Gabor atom, i.e. S pf = f.
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Duality theory of Gabor analysis

The engineers Wexler and Raz discovered the following
biorthogonality principle:

Suppose G(g,aZ x 3Z) is a Gabor frame for g € MX(R).
TFAE
m his a dual Gabor atom, i.e. S; 4f = f.

(g, (%, LYh) = vol(N)~18q ks for all k, I € Z.
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Duality theory of Gabor analysis
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Duality theory of Gabor analysis

The engineers Wexler and Raz discovered the following
biorthogonality principle:

Suppose G(g,aZ x 3Z) is a Gabor frame for g € MX(R).
TFAE

m his a dual Gabor atom, i.e. S; 4f = f.
m (g, m(%, £)h) = vol(N) "8 4 for all k,/ € Z.

Ron-Shen duality theorem: G(g,aZ x BZ) is a frame if and
only if G(g, b~Z x a~'7Z) is a Riesz basic sequence.
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Duality theory of Gabor analysis

The engineers Wexler and Raz discovered the following
biorthogonality principle:

Suppose G(g,aZ x 3Z) is a Gabor frame for g € MX(R).
TFAE

m his a dual Gabor atom, i.e. S; 4f = f.
m (g, m(%, £)h) = vol(N) "8 4 for all k,/ € Z.

Ron-Shen duality theorem: G(g,aZ x BZ) is a frame if and
only if G(g, b~Z x a~'7Z) is a Riesz basic sequence.
Adjoint lattice

N° = {z € R¥ : 7n(z)7(\) = n(\)n(2) forall X € A}.
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Janssen representation

Poisson summation formula:

Suppose F € ML(RY).

;F(ak,ﬂ/) (aB)” 1ZF(B’a
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Janssen representation

Poisson summation formula:

Suppose F € ML(RY).

;F(ak,ﬂl) (aB)~ 1ZF(6,Q .

For F(z) = Vgf(z) - Vhk(z) we have
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Janssen representation

Poisson summation formula:

Suppose F € ML(RY).

;F(ak,ﬂl) (aB)~ 1ZF(5,Q .

For F(z) = Vgf(z) - Vhk(z) we have
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Janssen representation

Poisson summation formula:

Suppose F € ML(RY).

;F(ak,ﬂ/) (aB)” 1ZF(5, .

For F(z) = Vgf(z) - Vhk(z) we have

Fundamental Identity of Gabor analysis:
> (f,w(ak, Bl)g)(m(ak, Bl)h, k) =

k.l

(@)™ D (h,7(F, §g) (G, 2)f k).

m,n

= [y =
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Janssen representation

Cheoem:

For f,g,h € MX(R) or in S(R) we have that

> (f,w(ak, Bl)g)(m(ak, BI)A

k.l

= (aﬁ)_l Z(h, W(%? ﬁ)g>7f(%= g)f
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Janssen representation

For f,g,h € MX(R) or in S(R) we have that

> (f,w(ak, Bl)g)(m(ak, BI)A

k.l

= (aﬁ)_l Z(h, W(%? ﬁ)g>7f(%= g)f
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Janssen representation

For f,g,h € MX(R) or in S(R) we have that

> (f,w(ak, Bl)g)(m(ak, BI)A

k.l

= (aﬁ)_l Z(h, W(%? ﬁ)g>7f(%= g)f

Sf=(aB)™' Y (g.m(F, 2)e)(n(F, B)f

m;n
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Well-localized Gabor frames

Suppose G(g,aZ x BZ) is a frame for L2(R).

Then one wants that the canonical dual atom Sglg has
the same time-frequency localization as the Gabor atom g.
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Well-localized Gabor frames

Suppose G(g,aZ x BZ) is a frame for L2(R).

m Then one wants that the canonical dual atom Sg_lg has
the same time-frequency localization as the Gabor atom g.

Janssen: Schwartz class provides good Gabor atoms.
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Well-localized Gabor frames

Suppose G(g,aZ x BZ) is a frame for L2(R).

m Then one wants that the canonical dual atom Sg_lg has
the same time-frequency localization as the Gabor atom g.

m Janssen: Schwartz class provides good Gabor atoms.

Grochenig-Leinert: M1(R) provides good Gabor atoms.
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Well-localized Gabor frames

Suppose G(g,aZ x BZ) is a frame for L2(R).

m Then one wants that the canonical dual atom Sg_lg has
the same time-frequency localization as the Gabor atom g.

m Janssen: Schwartz class provides good Gabor atoms.
m Grochenig-Leinert: MX(R) provides good Gabor atoms.

Janssen representation translates the problem into a
question about spectral invariance of subalgebras of the
noncommutative torus.
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Well-localized Gabor frames

Suppose G(g,aZ x BZ) is a frame for L2(R).

m Then one wants that the canonical dual atom Sg_lg has
the same time-frequency localization as the Gabor atom g.

m Janssen: Schwartz class provides good Gabor atoms.
m Grochenig-Leinert: MX(R) provides good Gabor atoms.

m Janssen representation translates the problem into a
question about spectral invariance of subalgebras of the
noncommutative torus.

o ”)) Zg n;.n ’ (n]_(/z)

m,n
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Well-localized Gabor frames

Suppose G(g,aZ x BZ) is a frame for L2(R).

m Then one wants that the canonical dual atom Sg_lg has
the same time-frequency localization as the Gabor atom g.

m Janssen: Schwartz class provides good Gabor atoms.
m Grochenig-Leinert: MX(R) provides good Gabor atoms.

m Janssen representation translates the problem into a
question about spectral invariance of subalgebras of the
noncommutative torus.

S=(apf)! Z(gﬂr(%, 2em (g
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Hilbert C*(aZ x [Z, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g = mpa(a)- g = [Z a(ak,Bl)m(\)]g for ac (Y(aZ x BZ)
kI
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Hilbert C*(aZ x [Z, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g =mn(a)-g = [ > _a(ak,Bl)w(\)|g for ac (i(aZ x BZ)
k.l

AF.g) =) (f,m(ak, Bl)g)m(ak, B)

k,l
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Hilbert C*(aZ x [Z, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g =mn(a)-g = [ > _a(ak,Bl)w(\)|g for ac (i(aZ x BZ)
k.l

AF.g) =Y (F,m(ak, B)g)w(ak, BI)
kI

For f,g € M1(R) define
AFg) = Ta(Vef) =, (f, m(ak, Bl)g)m(ak, 1)
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Hilbert C*(aZ x [Z, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g =mn(a)-g = [ > _a(ak,Bl)w(\)|g for ac (i(aZ x BZ)
k.l

AF.g) =D (f,m(ak, Bl)g)m(ak, B)
kI
m For f, g € M}(R) define
n(f, &) = Ta(Vgf) = > (F, m(ak, Bl)g)m(ak, BI)
Af.8) = (g, )"
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Hilbert C*(aZ x [Z, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g =mn(a)-g = [ > _a(ak,Bl)w(\)|g for ac (i(aZ x BZ)
k.l

A(f.8) =D (f,m(ak, Blg)m(ak, B)
kI
m For f, g € M}(R) define
MFog) = ma(Vef) = 2y (F m(ak, Bl)g)m(ak, B1)
u /\(fag> = /\<g: f>*
/\<ﬁ/\(a)f.g> = T/\(a) /\<f.g>
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Hilbert C*(aZ x [Z, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g =mn(a)-g = [ > _a(ak,Bl)w(\)|g for ac (i(aZ x BZ)
k.l

N(F.g) =D _(f,w(ak, Bl)g)m(ak, BI)
k.l
m For f, g € M}(R) define
M, g) = ma(Vef) = 2o (f, mlak, Bl)g)m(ak, B1)
Af.8) = alg f)"
ama(a)f, g) = ma(a) a(f, g)
A(f, > is positive in C*(aZ x BZ,c), acutally in

Al(aZ x BZ, c)
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Hilbert C*(aZ x BZ, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g =mn(a)-g = [ > _a(ak,Bl)w(\)|g for ac (i(aZ x BZ)
k.l

rf.g) =D (F.m(ak, Bl)g)m(ak, B1)
k.l
m For f,g € M}(R) define
AF,8) = TA(Vef) = 2o (f m(ak, Bl)g)m(ak, BI)
u A<f7g> = /\<g; f>*
u A<7T/\(a)f7g> = WA(a)/\<f7g>
m A\(f,f) is positive in C*(aZ x BZ,c), acutally in
AL(aZ x BZ, c)
The Gabor frame operator is a Hilbert module operator:
Sg,hf = /\<ga h) -f.
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Hilbert C*(aZ x BZ, c)-modules

Left action of AL(aZ x BZ,c) on ML(RY) by

D.g =mn(a)-g = [ > _a(ak,Bl)w(\)|g for ac (i(aZ x BZ)
k.l

rf.g) =D (F.m(ak, Bl)g)m(ak, B1)
k.l
m For f,g € M}(R) define
AF,8) = TA(Vef) = 2o (f m(ak, Bl)g)m(ak, BI)
u A<f7g> = /\<g; f>*
u A<7T/\(a)f7g> = WA(a)/\<f7g>
m A\(f,f) is positive in C*(aZ x BZ,c), acutally in
AL(aZ x BZ, c)
The Gabor frame operator is a Hilbert module operator:
Sg,hf = /\<ga h) -f.
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Hilbert C*(a~1Z, 3717, c)-modules

For b € (}(a™'Z,3717Z) and g € MX(R) we define

)

g mae(b) = > m(. )b,

m,n

Qls

(f.g)ne =Y (3, 2) (g, m(F, 2)f) f,g € M}(RY)

m,n
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Hilbert C*(a~1Z, 3717, c)-modules

For b € (}(a™'Z,3717Z) and g € MX(R) we define

)

g mae(b) = > m(. )b,

m,n

Qls

<f5g>/\° = Zﬂ-(%vg)*<g7ﬂ-(%7§)f> f,g € Msl(Rd)

m,n

MZX(RY) is an equivalence bimodule between Al(aZ x BZ, c)
and Al(a71Z,571Z,7),
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Hilbert C*(a~1Z, 3717, c)-modules

For b € (}(a™'Z,3717Z) and g € MX(R) we define

ML(R?) is an equivalence bimodule between Al(aZ x BZ, c)
and Al(a71Z,571Z,7),

/\<f7g> Sh=f- <g7 h>A°-
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Projective modules over noncommutative tori

ML(R) is a finitely generated projective right
Al(a™1Z,8717Z,7).

n n

f=> alf.g) &= flg,gin:

=i i=1
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Projective modules over noncommutative tori

Cheorem:

ML(R) is a finitely generated projective right
Al(a™1Z,8717Z,7).

n
f=z fgl nghgl
i=1
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Projective modules over noncommutative tori

ML(R) is a finitely generated projective right
Al(a™1Z,8717Z,7).

n
f=z fgl nghgl
i=1
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Projective modules over noncommutative tori

Theorem:

ML(R) is a finitely generated projective right
Al(a™1Z,8717Z,7).

n
fzz fg/ ngng/
i=1

In terms of noncommutative geometry this statement translates
into the following:

A Gabor frame G(g,aZ x Z) ia a line bundle over the twisted

group algebra A'(a=1Z, 371Z,7).
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Frames for Hilbert C*-modules

m Let A be a unital C*-algebra. A sequence
{gj :j=1,...,n} in a (left) Hilbert A-module 4V is called
a standard module frame if there are positive reals C, D
such that

n
Calf.f) <> alf, g alg f) < Dalf,f)

Jj=1
for each f € 4V.
Let A be a unital C*-algebra. A sequence
{gj:j=1,...,n} in a (left) Hilbert A-module 4V is a
standard module frame if the reconstruction formula

f=> alf.g)- g forall fe V.
j=1
=] [ = E = na
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Frames for Hilbert C*-modules

m Let A be a unital C*-algebra. A sequence
{gj :j=1,...,n} in a (left) Hilbert A-module 4V is called
a standard module frame if there are positive reals C, D
such that

Calf,f) <> alf,g)alg, f) < Dalf,f)
j=1

for each f € 4V.

m Let A be a unital C*-algebra. A sequence
{gj :j=1,...,n} in a (left) Hilbert A-module 4V is a
standard module frame if the reconstruction formula

F=Y 4lf.g) g forall fe4V.
j=1
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Existence of multi-window Gabor frames

Then there exist gi, ..., g, in ML(R) such that for all f in L?(R)

IF13 =D (F, w(ak, 81)gi) >

i=1 k,l

G(g1,-..,8n, @Z x BZ) is a multi-window Gabor frame for
L2(R)).
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Existence of multi-window Gabor frames

Theorem:
Then there exist gi, ..., g, in ML(R) such that for all f in L?(R)

113 =D [(F, w(ak, BN .
i=1 k,l

G(g1,-..,8n, @Z x BZ) is a multi-window Gabor frame for
L2(R)).

By a result of Feichtinger and Grochenig this implies that
G(g1,-..,8n, @Z x BZ) is a multi-window Gabor frame for the
class of modulation spaces M57(R).
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Existence of good Gabor frames

m G(g,aZ x B7Z) is a Gabor frame if and only if M(R) is a
singly-generated projective right AL(A°, €)-module.

Given a lattice A. Then there exists a g € MX(RY) if and only
if vol(A) < 1.
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Existence of good Gabor frames

m G(g,aZ x B7Z) is a Gabor frame if and only if M(R) is a
singly-generated projective right AL(A°, €)-module.

Given a lattice A. Then there exists a g € M2(R9) if and only
if vol(A) < 1.
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Existence of good Gabor frames

m G(g,aZ x B7Z) is a Gabor frame if and only if M(R) is a
singly-generated projective right AL(A°, €)-module.

Given a lattice A. Then there exists a g € M2(R9) if and only
if vol(A) < 1.

The existence of a g € L2(RY) was established by Bekka in
2004, where the condition is vol(A) < 1.
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Existence of good Gabor frames

m G(g,aZ x B7Z) is a Gabor frame if and only if M(R) is a
singly-generated projective right AL(A°, €)-module.

Given a lattice A. Then there exists a g € M2(R9) if and only
if vol(A) < 1.

The existence of a g € L2(RY) was established by Bekka in
2004, where the condition is vol(A) < 1.
Balian-Low theorem excludes (critical) lattices with vol(A) = 1.
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Existence of good Gabor frames

m G(g,aZ x B7Z) is a Gabor frame if and only if M(R) is a
singly-generated projective right AL(A°, €)-module.

Given a lattice A. Then there exists a g € M2(R9) if and only
if vol(A) < 1.

The existence of a g € L2(RY) was established by Bekka in
2004, where the condition is vol(A) < 1.
Balian-Low theorem excludes (critical) lattices with vol(A) = 1.
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Moyal plane

In the discussion of time-frequency channels we considered
operators of the form

A= / /R a(2)r(2)de

for a € L1(IR?), i.e. integrated representation of the
Schrédinger representation.

An equivalent way to express the Weyl quantization of an
operator, spreading representation, pseudodifferential
operators: Moyal plane.
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Moyal plane

In the discussion of time-frequency channels we considered
operators of the form

A= / /R a(2)r(2)de

for a € L1(IR?), i.e. integrated representation of the
Schrédinger representation.

An equivalent way to express the Weyl quantization of an
operator, spreading representation, pseudodifferential
operators: Maoyal plane.

If a € ML(IR?), then A is a trace-class operator.
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Moyal plane

In the discussion of time-frequency channels we considered
operators of the form

A= / /R a(2)n(2)dz

for a € L1(IR?), i.e. integrated representation of the
Schrédinger representation.

An equivalent way to express the Weyl quantization of an
operator, spreading representation, pseudodifferential
operators: Maoyal plane.

Feichtinger:

If a € ML(R?), then A is a trace-class operator.
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Moyal plane

In the discussion of time-frequency channels we considered
operators of the form

A= / /R a(2)n(2)dz

for a € L1(IR?), i.e. integrated representation of the
Schrédinger representation.

An equivalent way to express the Weyl quantization of an
operator, spreading representation, pseudodifferential
operators: Maoyal plane.

Feichtinger:

If a € ML(R?), then A is a trace-class operator.

We denote all operators A with a € S(R?) with A®(RR?, ¢) and
call it the smooth Moyal plane. L
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Moyal plane

Stone-von Neumann:

A>(R?, ¢) is Morita equivalent to the complex numbers C.

Define a Hermitian structure on A (R?, ¢) via

and as left action:

2(A-f.g) = '//‘g(a:ng)(z)ﬁ(z)dz
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Moyal plane

Stone-von Neumann:

A>(R?, ¢) is Morita equivalent to the complex numbers C.

Define a Hermitian structure on A®(R2, ¢) via

if.g) = [[ (Fr@e)m(z)ee
and as left action:

r2(A-f,g) / (ahVef)(2)n(z)dz
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Moyal plane

Stone-von Neumann:

A>(R?, ¢) is Morita equivalent to the complex numbers C.

Define a Hermitian structure on A®(R2, ¢) via

(g = [ [ (Fr(e)n()ez
and as left action:
A f.8) = [[ @Rz
On C we take as innerproduct

<f’g>c = <g7 f>2
and as right action:
g-Ai=g\ AeC
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Moyal plane

Stone-von Neumann:

A>(R?, ¢) is Morita equivalent to the complex numbers C.

Define a Hermitian structure on A®(R2, ¢) via

(g = [ [ (Fr(e)n()ez
and as left action:
A f.8) = [[ @Rz
On C we take as innerproduct

<f’g>c = <g7 f>2
and as right action:
g-Ai=g\ AeC

Franz Luef Noncommutative geometry and time-frequency analysis



Connections on noncommutative tori and Moyal

plane

Derivations 91 and 9> on A>(R?, ¢):

hA= 27ri// xa(x,w)m(x,w)dxdw
R2

hA = 2mi // wa(x,w)m(x,w)dxdw
J. *_12
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Connections on noncommutative tori and Moyal

plane

Derivations 91 and 9> on A>(R?, ¢):

hA= 27ri// xa(x,w)m(x,w)dxdw
R2

A =27i // wa(x, w)m(x, w)dxdw
R2
We define covariant derivatives V1 and V5 on S(R):
(V1g)(t) = 2ritg(t) and (V2g)(t) = g'(t).

Vao(A-g)=(0A) - g+ A-(Vag)

h(A-g)= 27\_/.[/\}‘// z)gdz + //
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Connections on noncommutative tori and Moyal

plane

Derivations 91 and 9> on A>(R?, ¢):

hA= 27ri// xa(x,w)m(x,w)dxdw
R2

A =27i // wa(x, w)m(x, w)dxdw
R2
We define covariant derivatives V1 and V5, on S(R):
(V1g)(t) = 2mitg(t) and (Vag)(t) = g'(t).

Va(A-g)=(0A) g+ A-(Vag)

h(A-g) =2miw // a(z)m(z) gdz—l—// a(z)m(z)g'dz.
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Connections on Moyal plane

compatibility condition
0i(R(f,8)) = r2(Vif, 8) + r2(f, Vig)
For example,
2miwVef(x,w) = Vgf'(x,w) + Vg f(x,w)
covariant derivatives on S(R):

(V1g)(t) = 2miatg(t) and (Vag)(t) = Bg'(t)
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Connections on Moyal plane

compatibility condition
0i(R(f,8)) = r2(Vif, 8) + r2(f, Vig)
For example,
2miwVef(x,w) = Vgf'(x,w) + Vg f(x,w)
covariant derivatives on S(R):

(V1g)(t) = 2miatg(t) and (Vag)(t) = Bg'(t)
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Connections on noncommutative tori

derivations on the noncommutative torus C*(aZ x SZ,c):
O1(A) = 2mia Y kaym(ak, BI)
k.l
0a(A) =2miB Y laym(ak, A1)
k.l
Connections on C*(aZ x BZ,c)
Vig(t) = 2miatg(t) and Vag(t) = Bg'(t)
derivations on the noncommutative torus

C*(B~Z x a~17Z,7¢):

O1(A) =27iB 1> " mam,m (7, 1)

m,n
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Connections on noncommutative tori

derivations on the noncommutative torus C*(aZ x SZ,c):
O1(A) = 2mia Y kaym(ak, BI)
kI

0a(A) =2miB Y laym(ak, A1)

K,
Connections on C*(aZ x SZ,c)
Vig(t) = 2miatg(t) and Vag(t) = Bg'(t)
derivations on the noncommutative torus
C*(B71Z x a~1Z,¢):
On(A) =27iB 1Y mamym(F, 2)

m,n
02(A) = 2mia™ Y " namam (5, 1)
mn <o & E z = wace
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Connections on noncommutative tori

Connections

1g(t) = 2mif tg(t) and Vig(t) =~ g/(t)
curvature Fip on C*(aZ x BZ,c):

Fio = —2miapl
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Connections on noncommutative tori

Connections

1g(t) = 2mif " tg(t) and Vig(t) = a 'g'(t)
curvature Fip on C*(aZ x BZ, c):

F12 = —27riaﬁl

1

curvature F, on C*(B7Z x a™1Z,¢):

N 2
o
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Connections on noncommutative tori

Connections
tg(t) =27 "tg(t) and Vig(t) =a 'g'(t)
curvature Fip on C*(aZ x BZ, c):
Fio = —2mwiapl
curvature F, on C*(871Z x a™1Z,?):

2mi
Fo=——1
12 B

Note that a3 is the area of the fundamental domain of

A = aZ x BZ and (af3)~! the area of the fundamental domain
of A°.

=] =
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Connections on noncommutative tori

Connections
tg(t) =27 "tg(t) and Vig(t) =a 'g'(t)
curvature Fip on C*(aZ x BZ, c):
Fio = —2mwiapl
curvature F, on C*(871Z x a™1Z,?):

2mi
Fo=——1
12 B

Note that af is the area of the fundamental domain of

A = aZ x BZ and (af)~! the area of the fundamental domain
of A°.

=] =

Franz Luef Noncommutative geometry and time-frequency analysis



Connections on noncommutative tori and Gabor

HETNES

Let's consider the case A = A(f, g) in more detail:

Vi(a(f.g) - h) = 0i(a(f,8)) - h+a(f,g) - Vih
provides a relation between a Gabor system G(g,A) and
G(Vig,N).
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Connections on noncommutative tori and Gabor

HETNES

Let's consider the case A = A(f, g) in more detail:
u

Vi(a(f.g) - h) =6i(a{f,8)) - h+a(f.g) - Vih
provides a relation between a Gabor system G(g, ) and
g(vlgv/\)

Vi(n(f,g)-h) = a(Vif,g)-h+a(f,Vig)-h+a(f,g)Vi-h

shows that the analysis and synthesis steps need to have
the same regularity.
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Connections on noncommutative tori and Gabor

HETNES

Let's consider the case A = A(f, g) in more detail:
u

Vi(a(f.g) - h) =6i(a{f,8)) - h+a(f.g) - Vih
provides a relation between a Gabor system G(g, ) and
g(vlgv/\)

| |
Vi(a(f,g)-h) = a(Vif,g)-h+a(f,Vig)-h+a(f,g)Vi-h

shows that the analysis and synthesis steps need to have
the same regularity.
Suppose (g, hyao =1, i.e. G(g, ) is a frame.

Vi(f) = 6i(a(f, &) - h+ a(f,g) - Vih
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Connections on noncommutative tori and Gabor

HETNES

Let's consider the case A = A(f, g) in more detail:
u

Vi(a(f.g) - h) =6i(a{f,8)) - h+a(f.g) - Vih
provides a relation between a Gabor system G(g, ) and
g(vlgv/\)

|

Vi(a(f,g)-h) = a(Vif,g)-h+a(f,Vig)-h+a(f,g)Vi-h

shows that the analysis and synthesis steps need to have
the same regularity.
m Suppose (g, h)pe =1, i.e. G(g,N) is a frame.

V,(f) = 51(/\<f7g>) “h +/\<f7g> - Vih
Associativity condition yields

/ o \ / O I\
[\Tlg h/\//\ - —(gDV, hﬁ/\l/\
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Connections on noncommutative tori and Gabor

HETNES

Let's consider the case A = A(f, g) in more detail:
u

Vi(a(f.g) - h) =6i(a{f,8)) - h+a(f.g) - Vih
provides a relation between a Gabor system G(g, ) and
g(vlgv/\)

|

Vi(a(f,g)-h) = a(Vif,g)-h+a(f,Vig)-h+a(f,g)Vi-h

shows that the analysis and synthesis steps need to have
the same regularity.
m Suppose (g, h)pe =1, i.e. G(g,N) is a frame.

V,(f) = 51(/\<f7g>) “h +/\<f7g> . Vlh
Associativity condition yields
<V})g, h>/\° = _<g7mv?h%/\°
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Complex structures on noncommutative tori and
Moyal plane

[ | (9(,-) =01 — 0> and 5-: 01+ 10>
V(,’) =V1—-1iVsand V, =Vi+1iVs
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Complex structures on noncommutative tori and
Moyal plane

] (9(,-) =01 —i0p and 0; = 01 + iD»
[ ] V(,-) =V —-1iVsand V;= Vi+iVs
V(ig(t) = 2mitg(t) — ig'(t) and

Vis(t) = 2nitg(t) + ig/(2)
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Complex structures on noncommutative tori and
Moyal plane

[ | (9(,-) =01 — 0> and 5-: 01+ 10>
[ ] V(,-) =V —-1iVsand V;= Vi+iVs

m V()g(t) = 2mitg(t) — ig'(t) and

V_(,-)g(t) = 2mitg(t) + ig'(t)

V(i) is the creation operator and V ;) the annihilation
operator
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Complex structures on noncommutative tori and
Moyal plane

[ | 8(,-) =01 — 0> and 5-: 01+ 10>
[ ] V(,-) =V —-1iVsand V;= Vi+iVs
m V()g(t) = 2mitg(t) — ig'(t) and

V_(,-)g(t) = 2mitg(t) + ig'(t)
m V(;) is the creation operator and V_(,) the annihilation
operator

holomorphic vector for Moyal plane: Gaussians
g(t)=e"
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Complex structures on noncommutative tori and
Moyal plane

[ | 8(,-) =01 — 0> and 5-: 01+ 10>
[ ] V(,-) =V —-1iVsand V;= Vi+iVs
m V()g(t) = 2mitg(t) — ig'(t) and
V_(,-)g(t) = 2mitg(t) + ig'(t)
m V(;) is the creation operator and V_(,) the annihilation
operator

m holomorphic vector for Moyal plane: Gaussians

2
glt)=e
holomorphic vector for noncommutative tori:
a2
g(t)y=e 2"
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Complex structures on noncommutative tori and
Moyal plane

[ | 8(,-) =01 — 0> and 5-: 01+ 10>

[ ] V(,-) =V —-1iVsand V;= Vi+iVs

m V()g(t) = 2mitg(t) — ig'(t) and
V_(,-)g(t) = 2mitg(t) + ig'(t)

m V(;) is the creation operator and V_(,) the annihilation
operator

m holomorphic vector for Moyal plane: Gaussians
g(t)y=e""

m holomorphic vector for noncommutative tori:

g(t) =5
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Balian-Low theorem

Balian-Low:

Let G(g,aZ x BZ) be a Riesz basis for its closed span H in
L2(R). Then V;g or V;h is not in H, where h denotes the
canonical dual Gabor atom h = Sg_’é.
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Balian-Low theorem

Balian-Low:

Let G(g,aZ x BZ) be a Riesz basis for its closed span H in
L2(R). Then V;g or V;h is not in H, where h denotes the
canonical dual Gabor atom h = Sg_’é.

Proof is based on an observation of G. Battle, which uses the
left Leibniz property for A = w(ak, 51) implies:

(Vig, m(ak, B1)h) = (r(—ak,—5l)g, Vih)
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Balian-Low theorem

Balian-Low:

Let G(g,aZ x BZ) be a Riesz basis for its closed span H in
L2(R). Then V;g or V;h is not in H, where h denotes the
canonical dual Gabor atom h = Sg_’é.

Proof is based on an observation of G. Battle, which uses the
left Leibniz property for A = w(ak, 51) implies:

(Vig, m(ak, B1)h) = (r(—ak,—5l)g, Vih)

Suppose V;g and V;h are in H for i = 1,2. Then using the
frame expansion we have that
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Balian-Low theorem

(V1g,Vah) = (> (Vig,m(ak,B)hyr(ak,Bl)g, Vah)

k.l
= > (n(—ak,—Bl)g,V1h)(Vaog, m(—ak, —BI)h)
k1
= (Vag,» _(Vih m(ak, Bl)g)m(ak, BI)h)
k.l
= (Vag,Vih)

However, V1Vs — VoV1 = 27il, canonical commutation
relations, gives
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Projections in noncommutative tori

Let G(g, ) be a Gabor system on L2(Rd).Then ps = A (g, &) is
a projection in C*(A,c) if and only if g - (g, g)r> = &.
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Projections in noncommutative tori

Let G(g,\) be a Gabor system on L2(R?).Then p, = alg, g) is
a projection in C*(A, c) if and only if g- (g,g)ac = g.!1
(g, g)ne = 1, then we have

G(g, M) is a tight Gabor frame for L?(R9).
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Projections in noncommutative tori

Let G(g, ) be a Gabor system on L?(R?).Then pe = n(g,g) is
a projection in C*(A, c) if and only if g - (g,g)a> = g.If
{g,g)no = I, then we have

m G(g, ) is a tight Gabor frame for L?(R9).

G(g,N°) is an orthogonal system.
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Projections in noncommutative tori

Let G(g,\) be a Gabor system on L2(R?).Then p, = alg, g) is
a projection in C*(A, c) if and only if g - (g,g)a> = g.If
(g, g)no = 1, then we have
m G(g,N) is a tight Gabor frame for L2(R9).
m G(g,/\°) is an orthogonal system.
(g, m(A\°)g) = vol(A)dye o for all A° € A°.
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Projections in noncommutative tori

Cheoem:

Let G(g,\) be a Gabor system on L2(R?).Then p, = alg, g) is
a projection in C*(A, c) if and only if g - (g,g)a> = g.If

(g, g)no = 1, then we have

m G(g,N) is a tight Gabor frame for L2(R9).

m G(g,/\°) is an orthogonal system.

m (g, m(\°)g) = vol(A)dxo o for all A° € A°.
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Projections in noncommutative tori

Let G(g,\) be a Gabor system on L2(R?).Then p, = alg, g) is
a projection in C*(A, c) if and only if g - (g,g)a> = g.If

(g, g)no = 1, then we have

m G(g,N) is a tight Gabor frame for L2(R9).

m G(g,/\°) is an orthogonal system.

m (g, m(\°)g) = vol(A)dxo o for all A° € A°.
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Projections in noncommutative tori

Let G(g,\) be a Gabor system on L2(R?).Then p, = alg, g) is
a projection in C*(A, c) if and only if g - (g,g)a> = g.If
(g, g)no = 1, then we have

m G(g,N) is a tight Gabor frame for L2(R9).

m G(g,/\°) is an orthogonal system.

m (g, m(\°)g) = vol(A)dxo o for all A° € A°.

In particular the canonical tight Gabor atom hg := S~1/2g
yields a projection pp, in C*(A, c).
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Projections in noncommutative tori — continued

Proposition:

Let g be in AVio. Then P, := (g, g) is a projection in
C*(aZ x BZ,c) if and only if g(g, g)ro = g. If g € ML(R) or
Z(R), then P, gives a projection in Al(aZ x BZ,c) or
A>(aZ x BZ,c), respectively.
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Projections in noncommutative tori — continued

Proposition:

Let g be in AVio. Then P, := (g, g) is a projection in
C*(aZ x BZ,c) if and only if g(g, g)ro = g. If g € ML(R) or
Z(R), then P, gives a projection in Al(aZ x BZ,c) or
A>(aZ x BZ,c), respectively.

First we assume that g(g, g)a> = g for some g in AVpo. Then
we have that

P2 = nlg.8)n(g,8) = a(n(g.8)8,8) = rlg(g. &)ne, 8) = A (g, 8)
and P; = Py.
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Projections in noncommutative tori — continued

Proposition:

Let g be in AVio. Then P, := (g, g) is a projection in
C*(aZ x BZ,c) if and only if g(g, g)ro = g. If g € ML(R) or
Z(R), then P, gives a projection in Al(aZ x BZ,c) or
A>(aZ x BZ,c), respectively.

First we assume that g(g, g)a> = g for some g in AVpo. Then
we have that

P2 = nlg.8)n(g,8) = a(n(g.8)8,8) = rlg(g. &)ne, 8) = A (g, 8)
and P; = Py.

Now we suppose that a(g, g) is a projection in C*(aZ x BZ, c).
Then an elementary computation yields the assertion:
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Projections in noncommutative tori — continued

Proposition:

Let g be in AVio. Then P, := (g, g) is a projection in
C*(aZ x BZ,c) if and only if g(g, g)ro = g. If g € ML(R) or
Z(R), then P, gives a projection in Al(aZ x BZ,c) or
A>(aZ x BZ,c), respectively.

First we assume that g(g, g)a> = g for some g in AVpo. Then
we have that

P2 =rg.8)nlg.8) = a{(r(g.8)g.&8) = n(g(g.8)r. &) = r(g. &)
and P; = Py.

Now we suppose that a(g, g) is a projection in C*(aZ x BZ, c).
Then an elementary computation yields the assertion:

r(glg.g)n —g.8(g,8)n —g) =0.

(=)
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Consequences

The unit sphere of the Hilbert C*(371Z x a~'Z,<)-module
V is defined by S(V) = {g € Vi(g,g)poc = I}, that 15 the et
of all tight Gabor frames.
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Consequences

The unit sphere of the Hilbert C*(371Z x a~'Z,<)-module
V is defined by S(V) = {g € Vi(g,g)ac = I}, that is the set
of all tight Gabor frames.

gi(t) = ()4 ™ a Gaussian, g(t) = (5)/2 ok — the

hyperbolic secant and gz(t) = e ™!l the two-sided exponential.
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Consequences

The unit sphere of the Hilbert C*(371Z x a~'Z,<)-module
V is defined by S(V) = {g € Vi(g,g)ac = I}, that is the set
of all tight Gabor frames.

gi(t) = (2)Y4e ™ a Gaussian, go(t) = (Z)/2 L the

cosh(nt)
hyperbolic secant and g3(t) = e~ ™Il the two-sided exponential.

Let A = aZ x BZ. Then p,, = a(gi, &i) is a projection in
C*(aZ x BZ,c) if and only if af < 1.
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Consequences

The unit sphere of the Hilbert C*(371Z x a~'Z,<)-module
V is defined by S(V) = {g € Vi(g,g)ac = I}, that is the set
of all tight Gabor frames.

gi(t) = (2)Y4e ™ a Gaussian, go(t) = (Z)/2 L the

cosh(nt)
hyperbolic secant and g3(t) = e~ ™Il the two-sided exponential.

Let A = aZ x BZ. Then p,, = a(gi, gi) is a projection in
C*(aZ x BZ,c) if and only if a8 < 1.
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Consequences

The unit sphere of the Hilbert C*(371Z x a~'Z,<)-module
V is defined by S(V) = {g € Vi(g,g)ac = I}, that is the set
of all tight Gabor frames.

gi(t) = (2)Y4e ™ a Gaussian, go(t) = (Z)/2 L the

cosh(nt)
hyperbolic secant and g3(t) = e~ ™Il the two-sided exponential.

Let A = aZ x BZ. Then p,, = a(gi, gi) is a projection in
C*(aZ x BZ,c) if and only if a8 < 1.

The case of the Gaussian gy is known as Boca’s projection. In
Manin's work pg, = a(g1,81) appears as quantum theta
functions.
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Consequences

The unit sphere of the Hilbert C*(371Z x a~'Z,<)-module
V is defined by S(V) = {g € Vi(g,g)ac = I}, that is the set
of all tight Gabor frames.

gi(t) = (2)Y4e ™ a Gaussian, go(t) = (Z)/2 L the

cosh(nt)
hyperbolic secant and g3(t) = e~ ™Il the two-sided exponential.

Let A = aZ x BZ. Then p,, = a(gi, gi) is a projection in
C*(aZ x BZ,c) if and only if a8 < 1.

The case of the Gaussian gy is known as Boca’s projection. In
Manin's work pg, = a(g1,81) appears as quantum theta
functions.
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From Time-frequency analysis to Noncommutative
Geometry

Summary:

m projective representation of phase space R?9,
representations of the Heisenberg group

time-frequency localization — modulation spaces
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From Time-frequency analysis to Noncommutative
Geometry

m projective representation of phase space R?9,
representations of the Heisenberg group

m time-frequency localization — modulation spaces

frames for Hilbert spaces
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From Time-frequency analysis to Noncommutative
Geometry

m projective representation of phase space R?9,
representations of the Heisenberg group

m time-frequency localization — modulation spaces
m frames for Hilbert spaces

Gabor frames
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From Time-frequency analysis to Noncommutative
Geometry

m projective representation of phase space R?9,
representations of the Heisenberg group

m time-frequency localization — modulation spaces
m frames for Hilbert spaces
m Gabor frames

noncommutative tori
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From Time-frequency analysis to Noncommutative
Geometry

CSummary

m projective representation of phase space R?9,
representations of the Heisenberg group

time-frequency localization — modulation spaces
frames for Hilbert spaces

Gabor frames

noncommutative tori

strong Morita equivalence of operator algebras

connections on noncommutative tori
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From Time-frequency analysis to Noncommutative
Geometry

m projective representation of phase space R?9,
representations of the Heisenberg group

time-frequency localization — modulation spaces
frames for Hilbert spaces

Gabor frames

noncommutative tori

strong Morita equivalence of operator algebras

connections on noncommutative tori
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