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Introduction

We will start with a locally compact quantum group (M,∆) in
the von Neumann algebraic framework. Recall that M is a von
Neumann algebra and ∆ a unital and normal ∗-homomorphism
M → M ⊗ M satisfying coassociativity (∆⊗ ι)∆ = (ι⊗∆)∆.
Also the existence of a left and of a right Haar weight is
assumed. A left Haar weight is a faithful, normal semi-finite
weight satisfying left invariance

(ι⊗ ϕ)∆(x) = ϕ(x)1.

Similarly for a right Haar weight.

The first step in the development of the theory is the
construction of the left and of the right regular representations
of the locally compact quantum group (M,∆).

The next step is the construction of the antipode. This is a
problem.
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Introduction

In Hopf algebra theory, the antipode S is characterized with the
formulas

m(S ⊗ ι)∆(a) = ε(a)1 (1)

m(ι⊗ S)∆(a) = ε(a)1 (2)

where m stands for multiplication and where ε is the counit.
The counit is characterized by

(ε⊗ ι)∆(a) = a (3)

(ι⊗ ε)∆(a) = a. (4)

In the operator algebra approach, this causes two difficulties:
The definition of S ⊗ ι and S ⊗ ι on completed tensor
products.
The definition of the multiplication map on completed
tensor products.
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Introduction

In the traditional operator algebraic approaches, the antipode is
characterized in connection with the left Haar weight:

S((ι⊗ ϕ)(∆(a)(1 ⊗ b)) = (ι⊗ ϕ)((1 ⊗ a)∆(b)).

The main difficulty with this formula is that it makes the
definition of the antipode dependent on the choice of the left
Haar weight.

The main feature of the approach I present here is the
introduction of an antipode, without reference to the Haar
weights. The Haar weights are used to show that the antipode
is well-defined and that its domain is dense.

It is based on the Hopf algebra result:

a ⊗ 1 =
∑

∆(a(1))(1 ⊗ S(a(2))) (5)

S(a)⊗ 1 =
∑

(1 ⊗ a(1))∆(S(a(2))) (6)
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The right regular representation

Let (M,∆) be a locally compact quantum group (in the von
Neumann algebra setting). Let ϕ be a left Haar weight and let ψ
be a right Haar weight.

Let H be the underlying Hilbert space of the von Neumann
algebra M. Consider the GNS representation w.r.t. ψ. We will
let act M directly on Hψ.

Proposition

There is an isometric operator V on Hψ ⊗H given (formally) by

V (Λψ(x)⊗ ξ) =
∑

Λ(x(1))⊗ x(2)ξ.

This operator satisfies

V (x ⊗ 1) = ∆(x)V

(ι⊗∆)V = V12V13
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The left regular representation

Proposition

There is a co-isometric operator W on H⊗Hϕ given (formally)
by

W ∗(ξ ⊗ Λϕ(x)) =
∑

x(1)ξ ⊗ Λϕ(x(2)).

This operator satisfies

(1 ⊗ x)W = W∆(x)

(∆⊗ ι)W = W13W23

Later we will show that V and W are actually unitary operators.

Also the left and right Haar weights will be shown to be unique.

Then W and V are called the left and the right regular
representations of the locally compact quantum group (M,∆).
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The antipode - the von Neumann algebra level

We now introduce the antipode on the von Neumann algebra.

Definition

For an element x ∈ M we say that x ∈ D0 if there is an element
x1 ∈ M satisfying the following condition:

For all ε > 0 and vectors ξ1, ξ2, . . . , ξn, η1, η2, . . . , ηn in H, there
exist elements p1, p2, . . . , pm, q1, q2, . . . , qm in M such that

‖xξk ⊗ ηk −
∑

∆(pj)(ξk ⊗ q∗

j ηk )‖ < ε (7)

‖x1ξk ⊗ ηk −
∑

∆(qj)(ξk ⊗ p∗

j ηk )‖ < ε. (8)

We will define S0 : D0 → M by S0(x)∗ = x1.
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The antipode - the von Neumann algebra level

We will have the following properties.

Proposition

If x ∈ D0, then S0(x)∗ ∈ D0 and S0(S0(x)∗)∗ = x.

If x , y ∈ D0, then xy ∈ D0 and S0(xy) = S0(y)S0(x).

The map x → S0(x)∗ is closed for the strong operator
topology on M.

What are the problems and what are the solutions?

We need x1 = 0 if x = 0 to have S0 well defined.

We need the density of D0.

The right Haar weight is used to solve the first problem. The left
Haar weight is used to prove the density.
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The antipode - the Hilbert space level

We now define the map x 7→ S(x)∗ on the Hilbert space level.

Definition

Let ξ ∈ Hψ. We say that ξ ∈ D(K ) if there is a vector ξ1 ∈ Hψ

satisfying the following condition:

For all ε > 0 and vectors η1, η2, . . . , ηn in Hψ, there exist
elements p1, p2, . . . , pm, q1, q2, . . . , qm in Nψ such that

‖ξ ⊗ ηk − V (
∑

Λψ(pj)⊗ q∗

j ηk )‖ < ε (9)

‖ξ1 ⊗ ηk − V (
∑

Λψ(qj)⊗ p∗

j ηk )‖ < ε. (10)

We will show that ξ1 = 0 if ξ = 0. Then we can define
K (ξ) = ξ1.
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The antipode - implementation

Here is the relation between the two operators.

Proposition

If ξ ∈ D(K ), then K ξ ∈ D(K ) and K (K ξ)) = ξ.

K is a closed operator.

Proposition

Let x ∈ D0 and assume that x1 is as before. If ξ ∈ D(K ) then
xξ ∈ D(K ) and Kxξ = x1K ξ.

If we can show that the domain of K is dense, it follows that S0

will be well-defined. Also Kxξ = S0(x)∗K ξ when x ∈ D0.

The proof of the density of D0 and of D(K ) is similar and uses
the left Haar weight.
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The operator K is well-defined

Proposition

The operator K is well-defined.

Proof.
Assume that
∑

Λψ(pj)⊗ q∗

j η → V ∗(ξ ⊗ η) and
∑

Λψ(qj)⊗ p∗

j η → 0.

Take the scalar product of the first expression with a vector
π′(ζ)ζ ′ ⊗ η′ where ζ and η′ are right bounded. Then

∑
〈Λψ(pj)⊗ q∗

j η, π
′(ζ)∗ζ ′ ⊗ η′〉 =

∑
〈ζ ⊗ π′(η′)∗η, p∗

j ζ
′ ⊗ Λψ(qj)〉

This proves that 〈V ∗(ξ ⊗ η), π′(ζ)∗ζ ′ ⊗ η′〉 = 0 and hence
V ∗(ξ ⊗ η) = 0.
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The operator K is densely defined

If c ∈ Nψ and ω ∈ B(Hϕ)∗ one can show that

(ι⊗ ω(c · ))W ∈ Nψ

where W is the left regular representation.

Proposition

Let c, d ∈ Nψ and ω ∈ B(Hϕ)∗ and define

ξ = Λψ((ι⊗ ω(c · d∗))W ).

Then ξ ∈ D(K ) and K ξ = Λψ((ι⊗ ω(d · c∗))W ).

Proof.

We take ω = 〈 · ξ′, η′〉, an orthonormal basis (ξj) and

pj = (ι⊗ 〈 · ξj , c
∗η′〉)W and qj = (ι⊗ 〈 · ξj , d

∗ξ′〉)W .

Then pj , qj ∈ Nψ and they will give the required elements.
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The operator K is densely defined

Define

K = sp{Λψ((ι⊗ ω(c · ))W ) | c ∈ Nψ, ω ∈ B(Hϕ)∗}.

One can show that also

K = sp{Λψ((ι⊗ ω)∆(x)) | x ∈ Nψ, ω ∈ M∗}.

Furthermore, it is possible to show that

K ⊗Hϕ ⊆ V (K ⊗Hϕ) and V (Hψ ⊗Hϕ) ⊆ K ⊗Hϕ.

All these properties together give the following results.

Proposition

V is unitary.

D(K ) is dense in Hψ.

By symmetry, also W will be unitary.
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D0 is dense en S0 is well-defined

Because K is densely defined, S0 is well-defined.

Proposition

Let ω ∈ B(Hϕ)∗ and x = (ι⊗ ω)W and x1 = (ι⊗ ω)W, then
x ∈ D0 and x1 = S0(x)∗.

Proof.

Assume that ω = 〈 · ξ, η〉. Take an orthonormal basis (ξj) in Hϕ.
Define

pj = (ι⊗ 〈 · ξj , η〉)W and qj = (ι⊗ 〈 · ξj , ξ〉)W .

Using the formula (∆⊗ ι)W = W13W23, one can show that
these are the elements we need.
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Conclusions

In the first lecture we discussed the passage from a
C∗-algebraic locally compact quantum group to a von
Neumann algebraic one.

In this lecture, we introduced the left and the right regular
representations W and V associated with a left and a right
Haar weight ϕ and ψ.

We defined the antipode without reference to the Haar
weights.

We used the left and the right Haar weights to show that (1)
the antipode is well-defined and (2) it is densely defined.

This approach differs from other approaches where the
Haar weights are used to define the antipode. This causes
a problem because at the beginning of the development, it
is not shown yet that the Haar weights are unique.
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