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Abstract

The operator algebra approach to quantum groups resulted in a nice theory of locally
compact quantum groups (see [K-V1] and related papers). It seems natural to formulate
such a theory in the context of C∗-algebras because the theory of C∗-algebras can be
viewed as the non-commutative version of the theory of locally compact spaces. However,
for many other, more practical reasons, it turns out to be more appropriate to develop
locally compact quantum groups in a von Neumann algebraic framework. In this note,
we will explain why this is so. We will also show that it is rather easy to pass from one
setting to the other and in particular, we will see how the two approaches eventually yield
the same objects and the same results.

The results have been known for some time (see references in this paper), but our approach
is somewhat new. Furthermore, this note is of an expository nature and details will be
found in other publications.
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0. Introduction

Let G be a locally compact group. Consider the C∗-algebra C0(G) of complex continuous
functions on G, tending to 0 at infinity. We will identify the C∗-tensor product C0(G) ⊗
C0(G) with C0(G×G) and its multiplier algebraM(C0(G)⊗C0(G)) with Cb(G×G), the C∗-
algebra of all bounded complex continuous functions on the cartesian product G×G. The
product in G yields a non-degenerate ∗-homomorphism ∆ : C0(G) →M(C0(G)⊗C0(G)),
called a coproduct and defined by ∆(f)(p, q) = f(pq) where p, q ∈ G and f ∈ C0(G). The
associativity of the product in G gives the coassociativity of the coproduct (∆ ⊗ ι)∆ =
(ι⊗ ∆)∆ (where ι is the identity map).

In Section 1, we will recall the notion of a coproduct on any C∗-algebra (see Definition 1.1).
It is an obvious generalization of the above, motivating example.

It would be most natural to give a set of axioms for a pair (A,∆) of a C∗-algebra A and
a coproduct ∆ to be called a locally compact quantum group in terms of the existence of a
counit and an antipode (the analogues of the unit and the inverse in a group). Unfortu-
nately, this seems to be rather difficult. At this moment, there is no such theory where it
is possible to prove the existence of the Haar weights (the analogues of the Haar measures
on a locally compact group). On the other hand, there is a nice theory of locally compact
quantum groups where the starting point is a pair (A,∆) of a C∗-algebra with a coprod-
uct and where the existence of the Haar weights is assumed (see Definition 1.3 in Section
1). This theory was developed by Kustermans and Vaes, see [K-V1], [K-V2], [K-V3] and
[K-V4].

The development of the theory of locally compact quantum groups has a long history and
it would take us too far to describe this in all details. Such a survey can e.g. be found
in [E-S2], [K-V2], [M-N-W] and other papers. Because of the scope of this paper, let us
however look at the following steps.

The main result that people had in mind when developing this theory, was the duality
theorem of Pontryagin for locally compact abelian groups, see e.g. [P]. It says, roughly
speaking, that the dual of a locally compact abelian group is again a locally compact
abelian group and that taking the dual again, gives the original group. This result is the
basis of abstract harmonic analysis (generalizing Fourier analysis).

Of course, the result is no longer valid when the group is non-abelian. In the 60’s and 70’s,
many results have been obtained by various researchers giving suitable generalizations.
It was Kac and Vainerman [V-K] on the one hand, and Enock an Schwartz [E-S1] on
the other hand, who developed, independently, the theory now known as Kac algebras.
These objects contain all locally compact groups, allow the construction of a dual object
within the same category, and the duality extends the known dualities, in particular, the
Pontryagin duality for locally compact abelian groups. It is important to notice that the
theory of Kac algebras is formulated completely within the von Neumann algebraic context.

Later, mainly because of the work of Drinfel’d [D] and Jimbo [Ji] on quantum groups and
the work of Woronowicz on the quantum SUq(2) [W1], people realized that the axioms
for a Kac algebra where too restricive. The condition that the square of the antipode is
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the identity (assumed for Kac algebras), is not fulfilled in these examples. This motivated
researchers to look for generalizations of the theory without assuming this condition.

The first succesful structure was the one of a compact quantum group, due to Woronowicz,
see [W2] and [W3]). According to the philosophy at that time, the theory was now devel-
oped in the framework of C∗-algebras. Later, discrete quantum groups where introduced,
first as duals of compact quantum groups, see [P-W], and later as independent objects, see
[E-R] and [VD2]. In any case, the dual of a compact quantum group is a discrete quantum
group, and the dual of a discrete quantum group is a compact quantum group. Later, the
so-called algebraic quantum groups were introduced, see [VD3] and [VD4]. Compact and
discrete quantum groups fall into this category and again, the dual could be defined within
the same category, thus extending Pontryagin duality between compact abelian groups and
discrete abelian groups to compact quantum groups and discrete quantum groups. This
theory is formulated in a purely algebraic context, but it is also possible to develop an
operator algebra version of it, see [K] and [K-VD].

Later, Masuda and Nakagami extended the notion of a Kac algebra, replacing the con-
dition that the square of the antipode is the identity by some kind of (non-trivial) polar
decomposition of the antipode, see [M-N]. They work in the von Neumann algebra context
(as in the case of the original Kac algebras). A few years later, Woronowicz joined this
project and the result is a theory, along the same lines as the one developed in [M-N], but
now in the C∗-algebraic setting, see [M-N-W]. Observe that it took many years between
the moment the work was announced (in 1995) and the paper actually appeared (in 2003).

On the other hand, motivated by the work done in [VD3], [K] and [K-VD], Kustermans
started (in 1998) to develop a general theory of locally compact quantum groups, indepen-
dently of Masuda, Nakagami and Woronowicz. Soon, Vaes joined the project and this
resulted in their joined works [K-V*] (written independently of [M-N-W]). Their axioms
are simpler than the ones in [M-N-W]. The main difference is that Kustermans and Vaes
assume the existence of a left and of a right Haar weight and thus are able to prove the
existence of the antipode, whereas Masuda, Nakagami and Woronowicz only assume the
existence of a right Haar weight but also the existence of the antipode (with its polar
decomposition). However, it does not take too much effort to obtain the right Haar weight
from the left Haar weight and the polar decomposition of the antipode. So, I believe it
is fair to say that the axioms of [K-V*] are simpler and weaker and that therefore, their
theory is stronger than the one of [M-N-W]. Moreover, under the infuence of [K-V*], the
axioms in [M-N-W] have been slightly weakened so as to allow a theory with a non-trivial
scaling constant. This possibility was foreseen by Kustermans and Vaes and it was shown
in [VD5] that some of Woronowicz’ examples have this property. Nevertheless, it is right
to say that also the work of Masuda, Nakagami and Woronowicz is an important contribu-
tion to the theory and that the paper [M-N-W] contains interesting results and uses fine
techniques.

Let us recall that in all of these more general theories, one has to assume the existence of
the Haar weights. A theory with reasonable axioms from which the Haar weights can be
obtained is (still) not available. Only in special cases (like the compact and the discrete
quantum groups), there are existence theorems. Fortunately however, in all the known
examples, the Haar weights exist. In fact, there is even a more or less standard method to
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obtain the Haar weights for concrete examples (see e.g. [VD5], [V-VD] and [Ja]).

The theory of multiplicative unitaries also has a long history and in some sense, runs
parallel with the other attempts to generalize Pontryagin duality. Vanheeswijck in [VH]
was the first to develop an independent theory, but the objects where considered long
before (and carried different names: the Kac-Takesaki operator, the fundamental operator,
...). However, it was Baaj and Skandalis in [B-S] who studied multiplicative unitaries in
most detail and they obtained many strong results. Later also Woronowicz published a
fundamental paper on the subject, introducing the notion of manageability, see [W4] (and
also [S-W]). The theory of multiplicative unitaries however is of a different kind than the
other theories, previously discussed. Some people consider it as one form of the theory
of locally compact quantum groups, but I would mainly consider it as an important (and
indispensible) tool for this theory. Indeed, the theory of multiplicative unitaries is a theory
without the presence of the Haar weights. Also here, still it is not possible to give axioms
so that the Haar weights can be found. It must be mentioned however that in this case,
there are some indications that this might be possible in the near future (see again [VD5]
and [Ja]).

The present note is part of a set of papers that continues along the lines of [K-V*]. Recall
that the earlier theories (Kac algebras and the work of Masuda and Nakagami) are for-
mulated in the von Neumann algebraic setting. Later, mainly under the influence of the
leading works of Woronowicz on compact quantum groups, there was a strong tendency
to move to the C∗-algebra framework. There are certainly good reasons to do this. After
all, we are studying locally compact quantum groups and C∗-algebras can be viewed as
locally compact quantum spaces.

On the other hand, working with C∗-algebras also has some (more technical) disadvantages
and the von Neumann algebra setting is easier. First of all, the axioms in the C∗-setting
are somewhat more involved (see Section 1 of this paper). Secondly, the theory of weights
on von Neumann algebras is better developed and more widespread. And there are other
arguments for which I refer to the other papers [VD7] and [VD8] where the theory is being
developed within the von Neumann algebras.

In this note, we will focus on the intimate relation between the C∗-algebra approach and
the von Neumann algebra approach. In Section 1 we simply give the two main definitions
of locally compact quantum groups in each of these two frameworks. We illustrate these
with the two basic examples. In Section 2 we show that it is possible to pass from a locally
compact quantum group in the C∗-algebraic sense to one in the von Neumann algebraic
sense. This is done in a rather quick way and very little of the theory of locally compact
quantum groups (C∗-algebraic version) is needed for this step. This fact is very important
because it makes it possible to develop the theory of locally compact quantum groups
within the von Neumann algebra setting and deduce results about the C∗-theory. This
has technical advantages as we mentioned already. Also in this section, we look at our
examples. In Section 3 we discuss the other procedure. In this case, more of the theory is
needed, but this is no problem as we want to develop the theory in the framework of von
Neumann algebras anyway. We also see what happens when the two steps are performed
one after the other. Finally, in Section 4 we draw some conclusions.
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The paper is of an expository nature. Some of the basic proofs are briefly scetched but
for details, we refer to other papers. In [VD7] we develop the theory of locally compact
quantum groups completely within the von Neumann algebra setting. This paper is still
quite concisely written and it is aimed at people already familiar with the subject. On
the other hand, we also plan to write a set of lecture notes ([VD8]), especially for those
who are not familiar with the theory of locally compact quantum groups as it is known
now, but who like to learn more about this subject. In this note, we try to use as little
as possible of these other two papers because we focuss here on the relation between the
two approaches. Especially, as we already mentioned earlier, because the theory in these
two other papers is developed within the von Neumann algebra context, it is important
that we do not rely on the C∗-algebraic development of the theory. This point of view also
makes the difference between this note on the two approaches and the work of Kustermans
and Vaes about this subject (as found in [K-V3]).

Let us finish this introduction with some conventions about the notations and by giving
some basic references.

For a C∗-algebra A, we use A∗ for the dual space of all continuous linear functionals on
A. When M is a von Neumann algebra, we use M∗ to denote the predual, i.e. the space of
all σ-weakly continuous linear functionals on M . The tensor product of C∗-algebras will
always be the (completed) minimal tensor product. The tensor product of von Neumann
algebras will be the von Neumann tensor product and the tensor product of Hilbert spaces
will be the Hilbert space tensor product. We will use the same symbol ⊗ for all these
different tensor products but it will be clear from the context which one is considered. We
will use ι to denote the identity map and so, when e.g. ω is a bounded linear functional
on a C∗-algebra A the slice map ι ⊗ ω will be a linear map from the minimal C∗-tensor
product A⊗A to A.

A good reference for the theory of operator algebras is [T] where also the weights on
C∗-algebras and von Neumann algebras, as well as the necessary elements of the Tomita-
Takesaki theory, needed for this note, are found. The standard works on Hopf algebras are
[A] and [S] and for multiplier Hopf algebras, it is [VD1]. Moreover, [K-S] can be consulted
for aspects of the standard theory of quantum groups. A survey on the theory of compact
quantum groups is found in [M-VD] and on locally compact quantum groups in [K-*]. In
[VD6], a short introduction to algebraic quantum groups is found and a discussion about
its role in the general theory.
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1. Two definitions

In this section, we will focus on the precise definitions. First we will recall the definition of
a locally compact quantum group in the C∗-algebraic formulation (due to Kustermans and
Vaes, see [K-V1] and [K-V2]). Secondly, we will give the definition in the von Neumann
algebra framework (also given by Kustermans and Vaes, see [K-V3]). In both cases, we use
the motivating example, coming from a locally compact group, to illustrate the definition.

First we recall what is meant by a coproduct on a C∗-algebra.

1.1 Definition Let A be a C∗-algebra and consider the minimal C∗- tensor product A⊗A
of A with itself. Let M(A⊗A) be the multiplier algebra of A⊗A. A comultiplication
(or a coproduct) on A is a non-degenerate ∗-homomorphism ∆ : A → M(A ⊗ A)
satisfying coassociativity (∆ ⊗ ι)∆ = (ι⊗ ∆)∆.

This definition requires some remarks. Non-degeneracy of ∆ means that ∆(A)(A ⊗ A) is
dense in A⊗A. It is easily seen that the maps ∆⊗ ι and ι⊗∆, extended to A⊗A by con-
tinuity, are still non-degenerate. It is also known that non-degenerate ∗-homomorphisms
have unique extensions to unital ∗-homomorphisms on the multiplier algebra. Therefore,
the formula for coassociativity makes sense.

Sometimes, for a comultiplication, it is required that ∆(A)(A ⊗ 1) and ∆(A)(1 ⊗ A) are
subsets of A⊗A. In this case, one can express coassociativity without the need to extend
∆, see [VD1]. The comultiplications considered in this theory, satisfy these conditions.
However, usually, a weaker condition is required:

1.2 Assumption The slices of the form (ω ⊗ ι)∆(a) and (ι ⊗ ω)∆(a) are well-defined
in M(A) for all a ∈ A and ω ∈ A∗. It will be assumed that these elements actually
belong to A and that, in each of the two cases, they span a dense subspace of A.

Also here, we like to add some remarks. First, notice that any ω ∈ A∗ has the form ρ( · b) for
some ρ ∈ A∗ and b ∈ A. This implies that slices as above are well-defined in the multiplier
algebra. Moreover, if e.g. ∆(A)(1 ⊗ A) is a subset of A ⊗ A, then also (ι ⊗ ω)∆(a) ∈ A

for all a ∈ A and ω ∈ A∗. Similarly for the other slices. Furthermore, if the spaces
∆(A)(1⊗A) and ∆(A)(A⊗ 1) are assumed to be dense, then also the above assumption is
fulfilled. In some other approaches to quantum groups, these stronger conditions are part
of the axioms. In the theory, developed by Kustermans and Vaes, the weaker conditons
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are assumed and the stonger conditions follow. These two forms of the density conditions
are related with the cancellation law in a group.

Now, we are ready for the first of the two main definitions.

1.3 Definition A pair (A,∆) of a C∗-algebra A and a coproduct ∆ on A is called a locally
compact quantum group if there exist a left and a right Haar weight on A.

What is a left Haar weight? It is a faithful, lower semi-continuous and densely defined
weight ϕ on A satisfying left invariance, i.e. for all ω ∈ A∗ with ω ≥ 0 and all a ∈ A with
a ≥ 0 and ϕ(a) <∞, we require that ϕ((ω⊗ ι)∆(a)) = ‖ω‖ϕ(a). Some extra condition on
the weight is necessary: it is assumed to be central as will be explained in Section 2 (see
Defition 2.3). Similarly, a right Haar weight is defined. It is an important result of the
theory that such Haar weights are unique (up to a scalar) if they both exist.

Let us now consider the first of our two motivating examples.

1.4 Example Let G be a locally compact group and let A be the C∗-algebra C0(G) of
continuous complex functions on G tending to 0 at infinity. Identifying, as explained
in the introduction, A ⊗ A with C0(G × G) and M(A ⊗ A) with Cb(G × G), one
can define a comultiplication ∆ on A by ∆(f)(p, q) = f(pq) where f ∈ C0(G) and
p, q ∈ G. In this case, we see that (∆(f)(1⊗ g))(p, q) = f(pq)g(q) and it follows easily
that the map f ⊗ g → ∆(f)(1⊗ g) extends to an isomorphism of A⊗A with itself. In
particular, the stronger density conditions are fulfilled and also ∆ is non-degenerate.
Coassociativity comes from the associativity of the product in G. Integrating w.r.t.
the left Haar measure, gives rise to the left Haar weight and the right Haar measure
will give the right Haar weight. Hence, (C0(G),∆) is a locally compact quantum
group in the sense of Definition 1.3.

Conversely, it can be shown that any locally compact quantum group (A,∆) (in the sense
of Definition 1.3) with an underlying abelian C∗-algebra A must be of the above form.

Later in this section, we will consider a second example (dual to the previous one), but it
will be easier to give this example after we have described the notion of a locally compact
quantum group in the von Neumann algebraic setting.

1.5 Definition Let M be a von Neumann algebra and M⊗M the von Neumann algebraic
tensor product. A comultiplication on M is a unital, normal ∗-homomorphism ∆ :
M →M ⊗M , satisfying coassociativity (∆ ⊗ ι)∆ = (ι⊗ ∆)∆.

Observe that the definition here is less complicated than in the case of a C∗-algebra.
There is no need to consider multiplier algebras and non-degeneracy is simply replaced by
∆(1) = 1⊗1. The maps ∆⊗ ι and ι⊗∆ extend by continuity and so coassociativity makes
sense without further considerations.

Also, there is no need for any form of density conditions. These will turn out to be
automatic. We will discuss more about this in Section 3 (where we describe the passage
from von Neumann algebras to C∗-algebras).
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So, we are ready immediately for the second of our two main definitions:

1.6 Definition A pair (M,∆) of a von Neumann algebra M and a comultiplication ∆ on
M is called a locally compact quantum group (in the von Neumann algebraic sense)
if there exist a left and a right Haar weight.

In this context, a left Haar weight is a faithful, normal, semi-finite weight ϕ on M satisfying
left invariance, i.e. for all ω ∈ M∗ with ω ≥ 0 and x ∈ M with x ≥ 0 and ϕ(x) < ∞, we
have ϕ((ω ⊗ ι)∆(x)) = ω(1)ϕ(x). Here, unlike the case in the C∗-algebraic context, no
extra condition is needed. Similarly, a right Haar weight is defined. Also here, it can be
shown that these weights are unique (up to a scalar) if they both exist.

The example that we considered in Example 1.4 can also be formulated in this context:

1.7 Example Let G be a locally compact group as before. Now let M = L∞(G) where
G is considered with the left (or equivalently, with the right) Haar measure. Define
again ∆(f)(p, q) = f(pq) where now f ∈ L∞(G) and p, q ∈ G. We get obviously a
comultiplication on the von Neumann algebra M . Left and right Haar weights are
obtained again by integrating respectively over the left and the right Haar measures
on G.

Also in this case, one can show that any locally compact quantum group (M,∆) where
the underlying von Neumann algebra M is abelian, has to be of the above form.

Let us now also consider the dual example.

1.8 Example Let G be a locally compact group. Consider the Hilbert space L2(G) (for
the left Haar measure) and the left regular representation λ of G on L2(G), defined
as usual by (λpξ)(q) = ξ(p−1q) where p, q ∈ G and ξ ∈ L2(G). Consider the von
Neumann algebra M , generated by the operators λp with p ∈ G. Define a unitary
operator W on L2(G × G) by (Wξ)(p, q) = ξ(p, p−1q). It is straighforward to verify
that W (λp ⊗ 1)W ∗ = λp ⊗ λp for all p ∈ G. Then x 7→W (x⊗ 1)W ∗ is a normal and
unital ∗-homomophism from M to M ⊗M . It is a comultiplication on M . Again, the
pair (M,∆) will be a locally compact quantum group in the sense of Definition 1.6. In
this case, the left and right Haar weights coincide (because ∆ is ’co-abelian’) and they
are given by the formula ϕ(λ(f)) = f(e) when λ(f) =

∫
f(p)λpdp for a continuous

function f on G with compact support (and where of course e is the identity in the
group). In order to define ϕ in a correct way and to prove the left invariance properly,
one can use standard techniques from the Tomita-Takesaki theory.

From this example, we see that we can easily deduce the dual example in the C∗-algebraic
context. Simply consider the reduced group C∗-algebra C∗

r (G) which is the C∗-subalgebra
of M generated by the convolution operators λ(f) with f continuous and of compact
support. It can easily be shown that the restriction of ∆ to this C∗-algebra is a comulti-
plication and that the restricion of the Haar weight is a Haar weight on the C∗-algebra.
Also compare with Example 3.6.ii).
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All these examples will be used throughout the note to illustrate several of the main ideas
and the different procedures.

Let us finish this section with a few remarks already about the two different approaches.

First of all, it is clear that the definition in the C∗-algebraic setting is already more involved
(as we mentioned already) than in the von Neumann algebraic setting. But there is more.
Also when we look at the second example in the von Neumann algebra case (Example
1.8), we see that it is easier to first consider it in the von Neumann algebraic framework
and then obtain the C∗-algebraic version by ’restriction’. This procedure is a special case
of the general one as will be described in Section 3. And even though the first example
(Example 1.4) is somewhat easier, and certainly more natural within the C∗-frame, it
should be mentioned that this is rather an exception. In general, examples are more easily
constructed in the von Neumann algebra setting first (as is already the case with the dual
example here).

2. From C∗-algebras to von Neumann algebras

In this section, we will describe a procedure to pass from a locally compact quantum group
in the C∗-algebra formulation (cf. Definition 1.3) to the one in the von Neumann algebra
setting (cf. Definition 1.6). The way we will do this here is different from (and more direct
than) the method used in the original papers by Kustermans and Vaes (cf. [K-V3]). As
we already mentioned, the fact that this procedure is simplified, is one of the reasons why
the theory of locally compact quantum groups is more easily developed wihtin the von
Neumann algebra framework.

So, in what follows, let (A,∆) be a pair of a C∗-algebra A and a comultiplication ∆ on A
(cf. Definition 1.1), satisfying the Assumption 1.2 and such that there exist a left and a
right Haar weight (cf. Definition 1.3).

Consider the double dual A∗∗ of A, i.e. the enveloping von Neumann algebra of A. We will
denote it by Ã. We have the following result.

2.1 Proposition There is a unique coproduct ∆̃ on the von Neumann algebra Ã (in the

sense of Definition 1.5) that extends the original coproduct ∆ from A to Ã.

This result is not very deep. We know that M(A ⊗ A) sits in the von Neumann algebra

tensor product Ã⊗ Ã and that A is σ-weakly dense in Ã. Then, essentially by definition of
Ã, the ∗-homomorphism ∆ extends uniquely to a normal ∗-homomorphism ∆̃ : Ã→ Ã⊗Ã.
It is unital because ∆ is assumed to be non-degenerate so that the extension to M(A) is

already unital. The coassociativity of ∆̃ on Ã follows from the coassociativity of ∆ on A.

Next, let ϕ be a left Haar weight on A. Then the following is true.

2.2 Proposition There is a unique normal semi-finite weight ϕ̃ on Ã, extending ϕ on A.
Moreover, ϕ̃ is still left invariant.
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The first property is standard. Indeed, by lower semi-continuity, we have ϕ(a) = supω(a)
for all a ∈ A with a ≥ 0 where the supremum is taken over all ω ∈ A∗ with ω ≥ 0
and ω ≤ ϕ. By definition, any ω extends to an element ω̃ in Ã∗ and ϕ̃ is defined as the
supremum of these extensions (see e.g. [B]). The second property is certainly expected but
the proof is not so simple. It first requires some left Hilbert algebra techniques to show
that the G.N.S.-representation of ϕ̃ is realized, in a natural way, in the same Hilbert space
as the G.N.S.-representation of ϕ on A. Then, it is relatively straightforward to show that
ϕ̃ is still invariant. For details, we refer to [VD7] and [VD8].

Now, we will formulate the extra assumption on the Haar weights on a locally compact
quantum group (A,∆) that we announced earlier (cf. Definition 1.3).

2.3 Definition Let ϕ be a lower semi-continuous weight on a C∗-algebra A. Consider the
normal extension ϕ̃ on Ã as in Proposition 2.2. We call ϕ central if the support of ϕ̃
is a central projection in the von Neumann algebra Ã.

There are various other ways to formulate this condition on the weights. In [K-V2], it is
assumed that the ’extension’ of the weight ϕ to the von Neumann algebra πϕ(a)′′ (where
πϕ is the G.N.S. representation) is faithful and then the weight is called approximately
K.M.S. It is more or less clear that this condition is equivalent with the one formulated
in Definition 2.3 above. In [M-N-W], still another condition is assumed and the weights
satisfying this condition are called strictly faithful. Using left Hilbert algebra thechniques,
one can relatively easily show that all these notions are the same. We have chosen to work
with the above characterization because of the scope of this work. After all, we focus on
the von Neumann algebra approach. Moreover, since in most cases, examples are first
constructed in the von Neumann algebra setting, this condition is essentially automatic
because the constructed weights are faithful on the von Neumann algebra.

Now, we prove a crucial lemma.

2.4 Lemma Let ϕ be a left Haar weight on (A,∆) and let ψ be a right Haar weight.

Denote by e the support of ϕ̃ and by f the support of ψ̃ (the extension of ψ). Then
e = f .

Proof: First observe that e and f are central projections in Ã because Haar weights
are supposed to be central (see the remark after Definition 1.3).

We have ϕ̃(1−e) = 0 because e is the support of ϕ̃. By left invariance of ϕ, we also get

ϕ((ρ⊗ι)∆̃(1−e)) = 0 whenever ρ ∈ Ã∗ and ρ ≥ 0. It follows that ((ρ⊗ι)∆̃(1−e))e = 0

for all such ρ and therefore also ∆̃(1 − e)(1 ⊗ e) = 0. Now, multiply from the left

with ∆̃(x) where x is any element in Ã satisfying x ≥ 0 and ψ̃(x) < ∞. Because e is

central, we still have x(1 − e) ≥ 0 and ψ̃(x(1 − e)) <∞. Then, from right invariance

of ψ̃, we find ψ̃(x(1 − e))e = 0 and because e 6= 0, also ψ̃(x(1 − e)) = 0. Because this
is true for all such x, we must have f(1 − e) = 0 and so f = fe.

Similarly, e = ef and so e = f .

The above result is not new. Essentially, it is already present in the work of Kustermans
and Vaes (see [K-V2]). Certainly, the above argument is original, relatively simple and
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straightforward. But more important is the following observation. It is known that Haar
weights are unique, but in the original papers, this result is only proven in an advanced
stage of the theory. From the lemma however, we see immediately that two left invariant
weights must have the same central support in the von Neumann algebra Ã (because these
supports are equal to the support of any right invariant weight). But this means that there
is a distinguished von Neumann algebra, given by this support. It is an important result
and it gives us quicky the following theorem.

2.5 Theorem Let (A,∆) be a locally compact quantum group (in the sense of Defini-

tion 1.3). Consider the associated pair (Ã, ∆̃) as in Proposition 2.1. Define the von

Neumann algebra M = Ãe where as before, e is the support of the extension ϕ̃ of
a left Haar weight ϕ on A. If we define ∆1 on M by ∆1(x) = ∆̃(x)(e ⊗ e), we get
a comultiplication on M and (M,∆1) is a locally compact quantum group (in the
sense of Definition 1.6). Moreover, A sits inside M as a dense C∗-subalgebra and ∆1

coincides with ∆ on A.

Proof: First, it is clear that ∆1 is a normal ∗-homomorphism from M to M ⊗M .
In the proof of Lemma 2.4 we have seen that ∆̃(e)(1 ⊗ e) = 1 ⊗ e and it follows that
∆1(e) = e ⊗ e. Therefore, ∆1 is a unital ∗-homomorphism on M (because e is the

identity in M). The formula ∆̃(e)(e⊗ e) = e⊗ e is also used to show that ∆1 is still
coassociative.

Of course, the Haar weights on M are obtained by restricting the weights ϕ̃ and ψ̃ to
M (where, as before, ϕ and ψ are left and right Haar weights on A). Cutting down
with e makes these restrictions faithful and it has also no effect on the invariance.

That A is a subalgebra of M is a simple consequence of the fact that the Haar weights
are assumed to be faithful on A and from ∆(A) ⊆M(A⊗A) it then also follows that
∆1 coincides with the original comultiplication ∆ on A.

Because of this last statement, it makes sense to denote the coproduct ∆1 on M again
simply with ∆.

We will finish this section by looking at our main examples. But first, we would like to
make an important remark.

2.6 Remark We see from the results above that little is needed to pass from a locally
compact quantum group in the C∗-algebraic sense to one in the von Neumann al-
gebraic sense. This makes it appropriate to develop the theory of locally compact
quantum groups mainly within the setting of von Neumann algebras. This is also eas-
ier. Uniqueness of Haar weights is e.g. proven using Connes’ cocycle Radon Nikodym
theorem in an elegant way (see [VD7] and [VD8]). But there are also other reasons
for working with von Neumann algebras. The theory of weights on von Neumann
algebras is better known than the one on C∗-algebras e.g.

In the next section, we will see how one goes back from von Neumann algebras to C∗-
algebras and how results obtained in the von Neumann algebra context give rise to similar
results for the C∗-algebras (without much effort).
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Now, let us discuss briefly the above procedure in the case of our main examples.

2.7 Examples i) First, consider Example 1.4 where A = C0(G) for a locally compact
group G. Because left and right Haar measures are absolutely continuous with respect
to each other, it follows that they will yield the same von Neumann algebra L∞(G).
Obviously, the above procedure will yield Example 1.7.

ii) Secondly, consider Example 1.8 where M is the von Neumann algebra generated
by the left regular representation of the group G. Because here, the C∗-algebra A is
C∗

r (G), as sitting in M , and because the pair (A,∆) is obtained from the pair (M,∆)
by ’restriction’, again it is quite obvious that the procedure, described in this section,
when applied to the pair (A,∆) will give back the original pair (M,∆).

3. From von Neumann algebras to C∗-algebras

In this section, we start with a locally compact quantum group (M,∆) in the von Neumann
algebraic sense. We do not assume from the start that it is coming from a pair (A,∆)
as in the previous section. Only later in this section, we will consider this case. First,
we will briefly describe the (more or less standard) procedure to obtain a distinguished
C∗-subalgebra A of M , left invariant by the coproduct.

So, let (M,∆) be a pair of a von Neumann algebra M with a comultiplication ∆ as in
Definition 1.5 and assume the existence of left and right Haar weights (as in Definition
1.6).

We first need to define the left regular representation.

Let ϕ be a left Haar weight on M . Consider the G.N.S.-representation of M associated
with ϕ. As usual, we denote by Hϕ the Hilbert space. The left ideal Nϕ is defined as
the set of elements x ∈ M satisfying ϕ(x∗x) < ∞ and the canonical map Λϕ : Nϕ → Hϕ

satisfies 〈Λϕ(x),Λϕ(x)〉 = ϕ(x∗x) for all x ∈ Nϕ. We let M act directly on Hϕ so that
yΛϕ(x) = Λϕ(yx) whenever y ∈M and x ∈ Nϕ.

3.1 Proposition There exists a unitary operator W ∈M ⊗ B(Hϕ) defined by

Λϕ((ω ⊗ ι)∆(x)) = ((ω ⊗ ι)W ∗)Λϕ(x)

for all x ∈ Nϕ and ω ∈M∗. Moreover, we have

i) (∆ ⊗ ι)W = W13W23 (where we use the standard leg numbering notation),
ii) W ∗(1 ⊗ x)W = ∆(x) for all x ∈M .

Most of the proof of this result is standard. First one must argue that (ω ⊗ ι)∆(x) ∈ Nϕ

when x ∈ Nϕ and ω ∈ M∗. This is a straightforward consequence of the left invariance
of ϕ. Then the formula in the definition makes sense. The next step is to show that this
formula defines a bounded operator W and that WW ∗ = 1. Also this part follows directly
from the left invariance of ϕ. Essentially from the definition, we get W ∈ M ⊗ B(Hϕ).
The two formulas i) and ii) follow after some careful calculations. To complete the proof
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of ii) however, it is already needed that also W ∗W = 1. Only this last part is non-trivial.
Usually, the right Haar weight is used to show this result.

The details of this proof can be found in the original paper [K-V2]. In [VD7] and [VD8]
we present another argument for the more difficult aspect (the unitarity of W ).

Once this is done, it is relatively easy to get the associated C∗-algebra.

3.2 Theorem Let A be the norm closure of the set {(ι⊗ ρ)W | ρ ∈ B(Hϕ)∗}. Then A is
a C∗-algebra and a subalgebra of M . The restriction of ∆ to A is a comultiplication
on A and the restrictions of the Haar weights give Haar weights on A. So, (A,∆) is
a locally compact quantum group in the C∗-algebraic sense (cf. Definition 1.3).

Also the proof of this result is more or less standard and it can be found in [K-V3].
Again, in [VD7] and [VD8] we present a slightly different approach. We do not use the
manageability of W to show that A is invariant under the involution (the only non-easy
part to show that it is a C∗-algebra).

The procedure to go from the von Neumann algebra to the C∗-algebra, although more
standard, is also more involved than the other one (as we saw in the previous section).
Here, it is necessary to develop the theory up to a certain stage before it can be shown that
the pair (A,∆), as defined in 3.2, indeed satisfies the axioms. Fortunately, from our point
of view, this is not a problem. Indeed, we propose in [VD7] the development of the theory
of locally compact quantum groups in the von Neumann algebra setting. Therefore, as we
have said already, it is more important that the other stap does not require too much (as
we saw is the case).

Also the following remark is important.

3.3 Remark When developing the theory in the von Neumann algebra setting, several
objects are constructed. One of them is the antipode S with its polar decompostion.
This polar decomposition has the form S = Rτ

−
i

2

where R is an involutive ∗-anti-

automorphism (the unitary antipode) and where τ
−

i

2

is the analytic extension to the

point − i
2

of a one-parameter group (τt)t∈R of ∗-automorphisms (the scaling group).
It can be shown that these objects also leave the C∗-algebra, defined in Theorem 3.2,
invariant. Similar results hold for other objects constructed in the process.

We will not go further into the details here, but we refer again to [VD7] and [VD8].
However, we must say what happens when the two procedures (the one from this section
and the one from Section 2), are applied, one after the other. Do we recover the original
object? We will state the results in two separate theorems. We begin with the easier case.

3.4 Theorem Let (M,∆) be a locally compact quantum group in the von Neumann
algebraic sense (see Defintion 1.6). Associate the pair (A,∆) as in Theorem 3.2. If
the procedure of Section 2 is applied to this pair (A,∆), we recover the original pair
(M,∆).
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This result is certainly not very deep. Because the Haar weights on A are obtained by
restricting the Haar weights of M and because these are assumed to be faithful, it is quite
obvious that M will be the von Neumann algebra when applying Theorem 2.5.

This is the other case:

3.5 Theorem Let (A,∆) be a locally compact quantum group in the C∗-algebraic frame-
work (cf. Definition 1.3). Associate the pair (M,∆) as in Theorem 2.5. If we apply
the procedure, described in this section to (M,∆), we again recover the original pair
(A,∆).

Why is this result more involved? Well, it is here that, for the first time, the density
conditions (Assumption 1.2) are needed. In general, the C∗-algebra obtained from (M,∆),
using Theorem 3.2, will yield a smaller one than the one we started with. In order to get
all of the original C∗-algebra, we need that the spaces, spanned by the slices (ω ⊗ ι)∆(a)
or by (ι⊗ ω)∆(a), where a ∈ A and ω ∈ A∗, both are dense in A (cf. 1.2).

In the von Neumann algebra case, such density conditions are not assumed (but still true
- they are proven). In the C∗-algebra case, they are needed, not in the first place because
of Theorem 3.5 however, but in order to be able to apply the results, obtained in the von
Neumann algebraic setting, to the C∗-algebra pair (A,∆). In particular, this is needed
to show that the antipode, together with its polar decomposition, also exists in the C∗-
algebraic formulation (cf. Remark 3.3).

Again, we finish this section by illustrating these results in the case of the two main
examples.

3.6 Examples i) First, consider Example 1.7 where M = L∞(G) for a locally compact
group G. In this case, the left regular representation W , as defined in Proposition
3.1, is the unitary operator on L2(G × G) given by (Wξ)(p, q) = ξ(p, p−1q) where
p, q ∈ G and ξ ∈ L2(G × G). If now ρ ∈ B(L2(G))∗ has the form ρ = 〈 · ξ1, η1〉
for ξ1, η1 ∈ L2(G), a straightforward calculation gives that the operator (ι ⊗ ρ)W is
multiplication on L2(G) with the function f given by f(p) =

∫
η1(q)ξ1(p

−1q) dq (where
we integrate over the left Haar measure on G). As a convolution of two functions in
L2(G), we get that f ∈ C0(G). So we see that the C∗-algebra A, as defined in Theorem
3.2, in this case gives precisely C0(G).

ii) In the second example, one verifies that W is again a unitary on L2(G × G), but
now given by (Wξ)(p, q) = ξ(qp, p). If again ρ has the form 〈 · ξ1, η1〉, we find that
(ι ⊗ ρ)W is a convolution operator of the form

∫
f(p)λp dp with f(p) = η1(p)ξ1(p).

Again we see that the C∗-algebra from the theorem will be precisely C∗

r (G).

4. Conclusions

The theory of locally compact quantum groups has been developed first in the C∗-algebraic
framework by Kustermans and Vaes, see [K-V1] and [K-V2]. From a certain point of view,
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it was quite natural to do so. Shortly later, it was shown in [K-V3] that it is also possible
to use von Neumann algebras as the underlying frame and that the two approaches are
equivalent. The same objects are studied, but starting from a different set of axioms in a
different framework.

In this note, we have given the two definitions of a locally compact quantum group (in
each of these settings), see Section 1. We have shown in Section 2 that it is possible to go
from a locally compact quantum group in the C∗-algebraic formulation to one in the von
Neumann algebraic setting without much effort and in particular, without having to prove
too many results from the starting definition. Therefore, and for other reasons mentioned
in this note, it now seems more appropriate to develop the theory first within the von
Neumann algebras. We also saw in Section 3 how one can go back and conclude results in
the C∗-algebraic setting from the theory in the von Neumann algebraic setting.

In [VD7] we have developed the theory independently in the von Neumann algebraic frame.
The approach turns out to be more direct than in [K-V3] and also simpler. Moreover, in
combination with the short procedure described in Section 2 of this note, it also gives an
easier treatment of the C∗-case than in the original papers.

As mentioned already, the paper [VD7] is rather condensed. It is aimed at readers who
have at least some knowledge about the theory of locally compact quantum groups already.
On the other hand, a paper [VD8] is planned where all details will appear so as to be useful
for anyone who wants to learn and get more familiar with the theory of locally compact
quantum groups. This note should be considered as preliminary to these two papers.
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[D] V.G. Drinfel’d: Quantum groups. Proceedings ICM Berkeley (1986) 798-820.

[E-R] E.G. Effros & Z.-J. Ruan : Discrete quantum groups I. The Haar measure. Int. J.
Math. 5 (1994) 681-723.

[E-S1] M. Enock & J.-M. Schwartz: Une dualité dans les algèbres de von Neumann. Supp.
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