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Part |: spectral triples from ergodic actions

Theorem (G. & Grensing — 2013)

If

@ a compact Lie group G acts ergodically
@ on a (unital) C*-algebra A,
then
@ a nt-summable spectral triple (A, 7, D) is defined.

Remarks:
@ Links algebraic and analytic properties.

@ Recovers spectral triples on NC tori.
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Plan of the talk e

triples

Joint project with M. GRENSING.

. 4
Aims of the talk: Prodhcts

Spectral

triples as
Kasparov
products

@ Construct a spectral triples from ergodic actions.

Conclusion

@ Introduce Generalized Crossed Products (GCPs).

© Sketch construction of spectral triple on these GCPs.

Disclaimers:
o all algebras are unital.

@ Part on GCPs is still work in progress!
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a: G~ Ais ergodic if (Vg € G,ag(a) =a) = ac Cl.
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Definition
a: G~ Ais ergodic if (Vg € G,ag(a) =a) = ac Cl.

Theorem (Hgegh-Krohn, Landstad & Stgrmer — 1981)
If a: G ~ Ais ergodic, then
the unique G-invariant state of A is a trace 7. Foles
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Ergodic actions of compact Lie groups

Definition
a: G~ Ais ergodic if (Vg € G,ag(a) =a) = ac Cl.

Theorem (Hgegh-Krohn, Landstad & Stgrmer — 1981)

If a: G ~ Ais ergodic, then

the unique G-invariant state of A is a trace 7.
Corollary
The Hilbert space 7 := GNS(A, ) is endowed with a
covariant representation of A and G.
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Ergodic actions of compact Lie groups

Definition

a: G~ Ais ergodic if (Vg € G,ag(a) =a) = ac Cl.

Theorem (Hgegh-Krohn, Landstad & Stgrmer — 1981)

If a: G ~ Ais ergodic, then
the unique G-invariant state of A is a trace 7.

Corollary
The Hilbert space 7 := GNS(A, ) is endowed with a

covariant representation of A and G.

Covariance relation: Va € A,Vx € 74,

ag(a)x = UgaUgx.

(Covariance)
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Ergodic actions of compact Lie groups

Definition

a: G~ Ais ergodic if (Vg € G,ag(a) =a) = ac Cl.

Theorem (Hgegh-Krohn, Landstad & Stgrmer — 1981)

If a: G ~ Ais ergodic, then
the unique G-invariant state of A is a trace 7.

Corollary

The Hilbert space 7 := GNS(A, ) is endowed with a
covariant representation of A and G.

| \

Covariance relation: Va € A,Vx € 74,

ag(a)x = UgaUgx. (Covariance)
Dense G-smooth o7 C A and J¢ C 4. Basis (0;) of g,
0 (2)¢ = 0)(ax) — ady(x) = [0, alx (Comm)

Relation [0}, a] = 8}-‘3{(3): yields bounded commutators.
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Spectral

Definition and properties of the Dirac operator riples

ClI(n), (complexified) Clifford algebra gen. by n elements F; s.t.

Fj>k = —Fj F_,Fk + FkFJ = _25jk- (Def—F) _
Crossed
Let S be a (fin. dim.) Clifford module, identify F; with 7(F;), Froduces
Spectral
triples as
D=Y9F (Dirac) e
Conclusion

is a symmetric unbounded operator on S ® S.

Properties:
(i) D has bounded commutators — clear from (Comm).
(i) D is essentially selfadjoint: ran(D =+ i) dense,

via Peter-Weyl decomposition of .74.
(iii) Grading, first order condition, Real structure...

(iv) D is nT-summable.



Summability condition Spectral

triples

If T compact op., then | T| := (T*T)Y/2 compact positive.
@ |T| admits a basis of eigenvectors,
@ with eigenvalues A\; > A\ > --- (with multiplicities).
The ideal £L"" C B(s#) is defined by

nt . >‘1 + -+ >\k trpless
£ = {T (S B(%) Sipw < OO} . Erzsdp:zsv

Conclusion

Definition

A spectral triple is nt-summable if (14 D?)~1/2 ¢ £

Such summable spectral triple defines a cyclic cocycle.

Example:

The spectral triple (C°°(M), 5, D) on a dimension n spin
manifold is n™-summable.



Spectral

Spectral subspaces for ergodic actions riples

Given Ey, irrep. of G of dim. dp, with norm. char.
xe(g) = dy Tr(me(g™1)), the associated spectral subspace is:

Generalized
Ay = {/ xe(g)ag(a)dg|a € A} C A broducts
¢ Spectral
triples as
It decomposes into my copies of Ej. Kai:ar;)v
products
Theorem (Hgegh-Krohn, Landstad & Stgrmer — 1981) Conclusion

If a: G ~ Ais ergodic, then

the multiplicity my as above is bounded: my < dp.

Theorem (G. & Grensing — 2013)

Given an ergodic action on A, with J% as above,

D has compact resolvent and is n™-summable.
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Part I: GNS for G compact

Theorem (G. & Grensing — 2013)

Given an ergodic action on A, with 7% as above,

D has compact resolvent and is nT-summable.

Idea of proof: comparison with spectral triple on </ = C*°(G).

o Set s := L2(G) ® S and Dt defined by (Dirac).
@ Peter-Weyl's decomposition for 77

ref ®E£®®de®5
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Part I: GNS for G compact el

Theorem (G. & Grensing — 2013)

Given an ergodic action on A, with 7% as above,

Generalized

Crossed

D has compact resolvent and is nT-summable. Products

Spectral
triples as

Idea of proof: comparison with spectral triple on & = C*°(G).  Kasparov

products
o Set s := L2(G) ® S and Dt defined by (Dirac). Conclusion
@ Peter-Weyl's decomposition for 77

ref ®E£®®de®5

@ Considering the trivial spin structure on G, D,es is a Dirac
operator on & = C*(G).



Part I: GNS for G compact el

Theorem (G. & Grensing — 2013)

Given an ergodic action on A, with 7% as above,

Generalized

Crossed

D has compact resolvent and is nT-summable. Products

Spectral

i . . triples as

Idea of proof: comparison with spectral triple on &/ = C*°(G). Kasparos
o Set s := L2(G) ® S and Dt defined by (Dirac). Conclusion

@ Peter-Weyl's decomposition for 77
ref @ EZ & (Dde X S.

@ Considering the trivial spin structure on G, D,es is a Dirac
operator on &7 = C*(G).
@ Hence D, has compact resolvent and is n™-summable.



Spectral

Part |: end of proof

@ Peter-Weyl's decomposition for J73:
= @ E, @ C™
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Spectral

Part |: end of proof riples

@ Peter-Weyl's decomposition for J73:
= @ E, @ C™

@ Since 7 = GNS(A, 7) and multiplicities in A are
controlled (prev. Theorem), get my < dy. Products
Spectral
triples as
Kasparov

products

Conclusion



Spectral

Part |: end of proof riples

@ Peter-Weyl's decomposition for J73:
= @ E, @ C™

@ Since 7 = GNS(A, 7) and multiplicities in A are
controlled (prev. Theorem), get m; < d;. Products
@ Thus J ® S — e, Drer and D coincide on E . Spectral
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Spectral

Part |: end of proof riples

@ Peter-Weyl's decomposition for J73:
o= PE T
@ Since 7 = GNS(A, 7) and multiplicities in A are

controlled (prev. Theorem), get m; < dj. e

@ Thus J ® S — e, Drer and D coincide on E . Spectral
.. . riples as

e Writing Ax (resp. ) for eigenvalues of Dyef (resp. D). Kasparow

products

Conclusion



Spectral

Part |: end of proof riples

@ Peter-Weyl's decomposition for J73:
Hy =P EoC™

@ Since 7 = GNS(A, 7) and multiplicities in A are eneralized
controlled (prev. Theorem), get m; < dj. i
@ Thus J ® S — e, Drer and D coincide on E . Spectral
e Writing Ax (resp. ) for eigenvalues of Dyef (resp. D). E;‘;;irii
products

o Get A\g < pk: suppressing terms in increasing sequence
yields a faster increasing sequence.

Conclusion



Part |: end of proof

Spectral
triples

Peter-Weyl's decomposition for J#:
Hy = @ E, @ C™

Since 5 = GNS(A, 7) and multiplicities in A are
controlled (prev. Theorem), get m; < dj.
Thus 75 ® S — Hfer; Drer and D coincide on Ep .
Writing Ak (resp. k) for eigenvalues of Dyes (resp. D).
Get A\x < pk: suppressing terms in increasing sequence
yields a faster increasing sequence.
Consider f(x) = (1 + x?)~1/2,

Setting X}, := f(Ax) and ) := f(uk), we get ) < A

/
k-
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Spectral

Part |: end of proof riples

@ Peter-Weyl's decomposition for J73:
Hy =P EoC™

@ Since 7 = GNS(A, 7) and multiplicities in A are Generalized
controlled (prev. Theorem), get m; < dj. i
@ Thus J ® S — e, Drer and D coincide on E . Spectral
e Writing Ax (resp. ) for eigenvalues of Dyef (resp. D). Kasparor
o Get A\g < pk: suppressing terms in increasing sequence Zr:::::m
yields a faster increasing sequence.
o Consider f(x) = (14 x2)~/2,
Setting X}, := f(\x) and p) := f(pk), we get p) < N).
@ Dief is nT-summable means

ZpO p
. Spk(" 0/n < 00.

(1 + Dref)fl/2




Part |: end of proof

Spectral
triples

@ Peter-Weyl's decomposition for J73:

Hy =P EoC™
Since 5 = GNS(A, 7) and multiplicities in A are
controlled (prev. Theorem), get m; < dj.
Thus 75 ® S — Hfer; Drer and D coincide on Ep .
Writing Ak (resp. k) for eigenvalues of Dyes (resp. D).
Get A\x < pk: suppressing terms in increasing sequence
yields a faster increasing sequence.

o Consider f(x) = (14 x2)~/2,
Setting X}, := f(\x) and p) := f(pk), we get p) < N).
@ Dyt is nT-summable means
—1/2 _ Zp 0 p
(1 + Dref) o S k(” 0)/n < 0.

e Consequently, D is n+—summab|e:

H (1 + D2>_1/2 ~ = sup %(E_é)/;: H (1 + Dref>_1/2

nt

< 0.
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Remarks on Part | and further research Spectra

triples

About the degree of summability:
@ We only get an upper bound on summability.

Products
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Remarks on Part | and further research

About the degree of summability:

@ We only get an upper bound on summability.
@ It is not saturated in general!
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Spectral

Remarks on Part | and further research Hiples

About the degree of summability:
@ We only get an upper bound on summability.
@ It is not saturated in general!
@ However, orientability condition — Hochschild cocycle .
C:ZC0J®C1J®"'®CHJEZP('Q{VQ()S't' SP:::IS
Z C()J[D, C1J] s [D, CnJ] =. Eiaifzrii

products

Conclusion
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Spectral

Remarks on Part | and further research Hiples

About the degree of summability:
@ We only get an upper bound on summability.
@ It is not saturated in general!

@ However, orientability condition — Hochschild cocycle Crossed
Produ:
C:ZC0J®C1J®"'®C,,JEZP(%,%)S.t. soc:Ctls
pectra
ripl
Z C()J[D, ClJ] s [D, CnJ] =. La‘;:rii

products

Conclusion

Perspectives:
e Is the trace ¢(a) = Tr, a|D|™" G-invariant?

10



Spectral

Remarks on Part | and further research Hiples

About the degree of summability:
@ We only get an upper bound on summability.
@ It is not saturated in general!

H P P . Generalized
o However, orientability condition — Hochschild cocycle Crossed
Products
c=Xc®ca,;® - ®cnj € Zy(H, ) st.
Spectral
triples as
Z COJ[D? ClJ] T [Dv Cn,j] =7 Kasparov

products

Conclusion

Perspectives:
e Is the trace (a) = Tr, a|D|™" G-invariant?

Consequences: if ¢ is G-inv. then
@ I\ > 0s.t. ¢ = A7 (unicity of G-inv. 1),
@ thus we should get:

Try, (VQO[Da 21] U [Dv an][D|_n):
ZE(U)T(aoao(l)(al) e 80(,,)(3,7))

It works for NC 2-tori and Quantum Heisenberg Manifolds! o



Generalized Crossed Products (GCP)
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A with o, pointwise continuous gauge action of S = R/7Z.
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e Va€ A, t— o¢a) 1-periodic, Banach-valued cont. funct.
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Generalized Crossed Products (GCP) ler

A with o, pointwise continuous gauge action of S = R/7Z.

e Va€ A, t— o¢a) 1-periodic, Banach-valued cont. funct.

o Fourier series: introduce subspaces A, n € Z

rossed
Products

A, = {a € A’Vt € R,o0¢(a) = e’27”’ta} . Spesiie
triples as
Kasparov

products

Conclusion
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Generalized Crossed Products (GCP) ler

A with o, pointwise continuous gauge action of S = R/7Z.

e Va€ A, t— o¢a) 1-periodic, Banach-valued cont. funct.

o Fourier series: introduce subspaces A, n € Z

Crossed
Products

An = {a c A’Vf & R, O’t(a) = elzﬂnta} . Sr_:ectral
triples as
Kasparov

products

0" DALDALPAIDAI DA D" is dense in A.

Conclusion
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Generalized Crossed Products (GCP) ler

A with o, pointwise continuous gauge action of S = R/7Z.

e Va€ A, t— o¢a) 1-periodic, Banach-valued cont. funct.

o Fourier series: introduce subspaces A, n € Z

Crossed
Products

An = {a c A’Vf & R, O’t(a) = elzﬂnta} . Sr_:ectral
triples as
Kasparov

products

0" DALDALPAIDAI DA D" is dense in A.
Properties: A_1 = (A1)*; A1, Hilbert bimodule over Ay @D,

Conclusion
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Generalized Crossed Products (GCP) Sacel

triples

A with o, pointwise continuous gauge action of S = R/7Z.

e Va€ A, t— o¢a) 1-periodic, Banach-valued cont. funct.

o Fourier series: introduce subspaces A, n € Z

. __ i2wnt
An = {a S A’Vt S R) Jt(a) - el o a} . triples as
Kasparov

0 BALBAIDA DA DA @ ---"is dense in A. products

Conclusion

Properties: A_1 = (A1)*; A1, Hilbert bimodule over Ay @D,

Definition (Generalized Crossed Product)

The C*-algebra A is a generalized crossed product iff it is
generated (as C*-algebra) by Ag and A;.

11



Generalized Crossed Products (GCP) Sacel

triples

A with o, pointwise continuous gauge action of S = R/7Z.

e Va€ A, t— o¢a) 1-periodic, Banach-valued cont. funct.

o Fourier series: introduce subspaces A, n € Z

. __ qi2mnt pectra
An == {a S A’Vt S R) Ut(a) - el o a} : triples as
Kasparov

0 BALBAIDA DA DA @ ---"is dense in A. products

Conclusion

Properties: A_1 = (A1)*; A1, Hilbert bimodule over Ay @D,

Definition (Generalized Crossed Product)

The C*-algebra A is a generalized crossed product iff it is
generated (as C*-algebra) by Ap and A;.

Inversely, given B = Aq (basis algebra) and E = Ay,
~ define A = B Xg 7, as universal C*-algebra
generated by b€ B and £ € E.

11
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Examples of GCP:

Products

Spectral

triples as
Kasparov
products

Conclusion

12



Examples of GCP — QHM Spectral
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Examples of GCP:
Crossed products by Z: take Ag = B and E = BU;

Products

Spectral

triples as
Kasparov
products
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Examples of GCP — QHM ler

Examples of GCP:

Crossed products by Z: take Ag = B and E = BU;

rossed
Commutative case: if moreover AJA; = Ao, then Products
continuous functions on a S!-principal bundle P — X: Spectral
riples as
— — K
B =C(X) A= C(P). g

The gauge action corresponds to the principal action. Conclusion
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Examples of GCP — QHM ler

Examples of GCP:

Crossed products by Z: take Ag = B and E = BU;

Generalized
. . * Crossed
Commutative case: if moreover AJA; = Ao, then Products
continuous functions on a S!-principal bundle P — X: o
— — K
B = C(X) A= C(P). s
The gauge action corresponds to the principal action. Conclusion

Quantum Heisenberg Manifolds (QHM — Rieffel, 1989):
o Take B := C(T?), E:=T(T?L), line bundle £ — T2
o Natural right action B on E and Hermitian structure.
o Left action: b-& = &7,,,(b), translat. on T2 by pu,v € R .
o “Twisted” left Hermitian structure.
QHM: algebras Dy, ,, indices ¢ € Z (class. £) and u,v € R.

Also: ergodic action of Heisenberg group.
12



Spectral

Vertical class in K-homology riples

All GCP come with a natural class in KK1(A, B).
@ The action o yields a conditional expectation E: A — B.

It induces a A-B-C*-correspondance X:

e X is a right B-Hilbert module, completion of A for Sectra
triples as
(a1, a2)g = E(aja2). s
A acts naturally on the left of X. conen
o Gauge action o4(b) = b, 0+(&) = €?7t¢ extends naturally

to X. Denote 0; its derivative.
(X,0¢) = [0] is an unbounded Kasparov module in KK1(A, B)
(see e.g. Wahl "10 or Carey, Neshveyev, Nest & Rennie '11).
Definition (Vertical class)
We call [0] the vertical class of the GCP A.

13



Summary of the construction Spectra

triples

Idea: investigate “permanence properties” of spectral triples,
just like in Adam Skalski's talk.
Assume that:
Q S'~ Aisa GCP with B:= AS',
@ (B, ,D) is a spectral triple on B triples as
with D described by (Dirac) as in Part |, | peduce.
© we have a two-sided Hermitian connexion V on E = Ay oo
which is associated to D

then

@ we construct a spectral triple (A,.2,D) on A= B xg 7Z,
@ in KK-theory, [D] represents the (inner) Kasparov product:

[D] = [0] ®s [D].

14



Connexions e

For D =3 0; ® Fj, then B-bimodule of differential forms is

Qb = { Y bojD, bujl|bos, brj € Z} CB& (R, Fa).

Definition (connexion) triples as
Kasparov
A connexion is densely defined map V: £ — E ®g Q} s.t. products
Conclusion
V(éb) = (VE)b+E® (D, b (R-Connexion)
Proposition

V satisfies (R-Connexion) iff there are maps V;: &€ — E s.t.

V) =D Vi) ®F  Vi(sb) = V()b + £(b)

Proof: identify E ®g Q} with E® (Fi,. .., F,) and expand...

15



Spectral

Two-sided Hermitian connexions: definition Driples

For our purposes, we will need more properties:

 Definiton

A two-sided Hermitian connexion on E is V =3 V;® Fj s.t.

V;i(€b) = V;(§)b+£0;(b)  0;(£™n) = Vi(§)'n +E£°V;(n)

(Hermitian right-connexion) and: products

triples as
Kasparov

Conclusion

V;j(b§) = 9;(b) + bV;(&)  0;(&n™) = V,;(En™ +£V,(n)"

Define of as x-algebraic span of % and &£ inside A= B xg Z.

Hypotheses on V; and 0; suffice to obtain:

V; unique x-derivation on 7 extending V; and 0;.
Necessary properties:

Vi €) = Y;(m)-€+n-Vi(€) Vi) = (V,(9))

*

16



Two-sided Hermitian connexions: examples e

triples

Example 1: action 8 of Lie group G on E over B:

Definition

A Hilbert bimodule action 3 associated to « satisfies:
B(&b) = B(&)(b) a((&me) = (B(£),B(n))s specal
pbE) = a(b)5(E) a(s(&:m) = 6(B(E), B(n)) Kasparov

products

Conclusion

Infinitesimal generators of § ~~ two-sided Hermitian connexion.
Link part 1: g ~~ action G ~ A, combine gauge action,
~~+ obtain action of G x S! and apply previous theory!

Example 2: quantum Heisenberg manifolds. Reminder:
B = C(T?) and E = C(T?; L) with £ — T2, line bundle.
@ Action a of G := T2 on B ~ canonical Dirac on B.
@ Connexion V on E assoc. to «, two-sided and Hermitian.
o Not of the previous type: curvature V2 # 0!

17



Spectral triple: algebraic expression

Reminder: X, C*-correspondence constructed from A to B

obtained out of E : A — B, conditional expectation.

If (B, 7, D), spectral triple on basis B of A,
define a spectral triple (A, 22, D) by

o = X ®pg  (well-defined Hilbert space),
e A represented on JZ by a- ([d'] ® x) = [ad] ® x,
e If (B,.#,D) is even with grading v (acting on S), set

D= (V,®1+1R)®F+d:0ly

with domain Dom(D) = & Oz H#5° ® S.

Spectral
triples

Products
Spectral

triples as
Kasparov
products

Conclusion
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Spectral

Spectral triple: algebraic expression riples

Reminder: X, C*-correspondence constructed from A to B
obtained out of E : A — B, conditional expectation.

Generalized
If (B, 7, D), spectral triple on basis B of A, Frosuc
define a spectral triple (A, 22, D) by e

o = X ®pg  (well-defined Hilbert space), promucse

o A represented on 2 by a- ([d] ® x) = [ad'] ® x, conclusion

e If (B,.#,D) is even with grading v (acting on S), set

D= (V,®1+1R)®F+d:0ly

with domain Dom(D) = & Oz H#5° ® S.

For odd spectral triple, double S and more involved expression.

18



Unbounded symmetric operator Specal

triples

D= (V,®1+10d)cF+0:21xy

on Dom(D) = & ©g H5° ® S defines a symmetric operator:

Products

Spectral

triples as
Kasparov
products

Conclusion
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Spectral

Unbounded symmetric operator e

D= (V,®1+1R09)@F+0:010y

on Dom(D) = & ©g H5° ® S defines a symmetric operator:

Crossed

Q Is D well-defined? Products
Spectral

Problem of the tensor product over %: EE‘;':;?
z_j(ab) ®x+ab® 8j(x) = zj(a) Qbx+a® Bj(bx) products

Conclusion
Requires:
o right-connection property: V;(ab) = V,(a)b + ad”(b),
o and 9;(bx) = 87 (b)x + bdj;(x).

19



Spectral

Unbounded symmetric operator e

D= (V;01+1®9)®F+0:®1®y

on Dom(D) = & ©g H5° ® S defines a symmetric operator:

Crossed
@ Is D well-defined? Products
Spectral
Problem of the tensor product over %: EE‘;':;ZS
V;(ab) ® x + ab ® 9j(x) = V;(a) ® bx + a ® J;(bx). Zr:::::on
Requires:

e right-connection property: Zj(ab) = Zj(a)b + aﬁjgg(b),
e and 0;(bx) = 81'-%(b)x + bo;(x).

@ Is D symmetric?
o V; and 9; commute with the gauge action...

o ... hence consider n ® x and ' ® x’ for n, 1 € X,,.
o Check property for all j separately. Clear for ;.

19



Unbounded symmetric operator

Spectral
triples

D= (V;®1+1R0)®@F+0; 010~
on Dom(D) = & ©4 H#5° @ S defines a symmetric operator:

Q Is D well-defined?
Problem of the tensor product over %:
V;(ab) ® x + ab ® 0;(x) = V;(a) ® bx + a ® 0;(bx).
Requires:
e right-connection property: V;(ab) = V,(a)b + ac‘?f’”(b),
o and 9;(bx) = 87 (b)x + bdj;(x).
@ Is D symmetric?
o V; and 9; commute with the gauge action...

o ... hence consider n ® x and ' ® x’ for n, 1 € X,,.
o Check property for all j separately. Clear for ;.

@ Does D have bounded commutators?
Yes! Action of <7 on Dom(D) and V; derivations.

Generalized
Crossed
Products

Spectral

triples as
Kasparov
products

Conclusion
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Spectral

Selfadjoint operator rples

The difficulties that remain:
@ show that D is selfadjoint;

@ prove that it has compact resolvent. Generalized
Crossed
Products
To prove this rely on: Spectral

triples as
Kasparov
products

Spectral flow and the unbounded Kasparov product

by J. Kaad and M. Lesch (to appear)

Conclusion

Given two unbounded Kasparov modules, they show how to:
@ construct another unbounded Kasparov module,

@ prove this is the Kasparov product of the original modules

@ Similar to B. Mesland '09...

@ ...major technical improvements: “Cl-version” of Hilbert
module (operator x-module) instead of “smooth version”.
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Spectral

Operator *-algebra rples

Definition (Operator *-algebra, Mesland '09 & Ivankov '11)
A Banach algebra Z is an operator x-algebra if
@ 2 is an operator space,

@ the multiplication m on £ is completely bounded, o
pectra

© the involution * on & is also completely bounded. triples as

Kasparov
products

Example: 7 : 2 — L(F¢) faithful rep. and §: Z — L(F) s.t. Conclusion
5(bb’) = 6(b)n(b') + w(b)s(b') 5(b*) = Us(b)" U

for some unitary U € L(F) which commutes with b € %,
we obtain an operator x-algebra By as completion of A for:

pe(b) = (ggg Wfb)> € L(Fa F).

Properties:
@ Bj is a subalgebra of B iff § is closable.
@ In this case, Bj is stable under holom. funct. calculus. o1



Operator *-module

Similar “C!-version” for Hilbert module: operator x-module.

Definition (operator *-module, Kaad & Lesch '11)

Y7 is an operator *-module over the operator x-algebra A; if:

@ Yj is an operator space,
@ the product Y; x A1 — Y7 is completely bounded,

@ there is a completely bounded pairing Y1 X Y7 — A; with
the usual properties of Hilbert modules,

@ Yj is a direct summand of the standard module over A;.

y

Example: given
o (m,0) for Z C B as before and
e & dense in E, f.g proj. Hilbert module with (£,&) C By,
@ with a Hermitian closable connection V assoc. to 6,
then we get an operator *-module E; as completion of £ for

pE() = (g((?) W?€)> e L(F & F).

Spectral

triples

Spectral

triples as
Kasparov
products

Conclusion



Frames of operator x-module

Spectral
triples

Proposition (G. & Grensing - '13)

Given a Hermitian closable connexion V and a finitely
generated proj. E with (Ej, E;) C By then

there is a frame of E inside Ej.

Conversely, a frame of E inside E; imposes that V is closable.

In particular, E; is a direct summand of BY'.

Proof: (first implication only)

Crossed
Products

Spectral

triples as
Kasparov
products

Conclusion
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Frames of operator x-module

Proposition (G. & Grensing - '13)

Given a Hermitian closable connexion V and a finitely
generated proj. E with (Ej, E;) C By then

there is a frame of E inside Ej.

Conversely, a frame of E inside E; imposes that V is closable.

In particular, E; is a direct summand of BY'.

Proof: (first implication only)
e Consider C; :={T € Endg(E)|T(E1) C E1}.

triples

Crossed
Products
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triples as
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products

Conclusion

23



Spectral

Frames of operator *x-module riples

Proposition (G. & Grensing - '13)

Given a Hermitian closable connexion V and a finitely

generated proj. E with (Ej, E;) C By then Generalize
rosse
. i i Products
there is a frame of E inside Ej. —
triples as
Conversely, a frame of E inside E; imposes that V is closable. e

v

Conclusion

In particular, E; is a direct summand of B{V.

Proof: (first implication only)
o Consider C; :={T € Endg(E)|T(E1) C E1}.
@ I(T)(&) :=V(T(E) — (T ®1)(V(E)) is a densely defined
and closed derivation on End(E).
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Frames of operator *x-module riples

Proposition (G. & Grensing - '13)

Given a Hermitian closable connexion V and a finitely
generated proj. E with (Ej, E;) C By then Generalized

Crossed
. . . Products
there is a frame of E inside E;. E—
triples as
Kasparov

Conversely, a frame of E inside E; imposes that V is closable. MG,

v

Conclusion

In particular, E; is a direct summand of B{V.
Proof: (first implication only)
o Consider C; :={T € Endg(E)|T(E1) C E1}.
@ I(T)(&) :=V(T(E) — (T ®1)(V(E)) is a densely defined
and closed derivation on End(E).
e C; C End(E), dense and stable under holom. calculus.
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Frames of operator *x-module riples

Proposition (G. & Grensing - '13)

Given a Hermitian closable connexion V and a finitely
generated proj. E with (Ej, E;) C By then Generalized

Crossed
. . . Products
there is a frame of E inside E;. E—
triples as
Kasparov

Conversely, a frame of E inside E; imposes that V is closable. MG,

v

Conclusion

In particular, E; is a direct summand of B{V.
Proof: (first implication only)
o Consider C; :={T € Endg(E)|T(E1) C E1}.
@ I(T)(&) :=V(T(E) — (T ®1)(V(E)) is a densely defined
and closed derivation on End(E).
e C; C End(E), dense and stable under holom. calculus.
@ Frame for E, perturb and rectify ~~ frame for E;.

23



Spectral

Frames of operator *x-module riples

Proposition (G. & Grensing - '13)

Given a Hermitian closable connexion V and a finitely
generated proj. E with (Ej, E;) C By then Generalized

Crossed
. . . Products
there is a frame of E inside E;. E—
triples as
Kasparov

Conversely, a frame of E inside E; imposes that V is closable. MG,

v

Conclusion

In particular, E; is a direct summand of B{V.

Proof: (first implication only)
o Consider C; :={T € Endg(E)|T(E1) C E1}.
@ I(T)(&) :=V(T(E) — (T ®1)(V(E)) is a densely defined
and closed derivation on End(E).
e C; C End(E), dense and stable under holom. calculus.
@ Frame for E, perturb and rectify ~~ frame for E;.
Use this to construct a closable connexion V on X,

assuming E is left and right f.g. projective.
23



Kasparov product (Kaad-Lesch)

Theorem (Kaad-Lesch, to appear)
If
e (X,D1) and (Y, Dy) are two unbounded Kasparov
modules for (A, B) and (B, C) resp.
@ there is a correspondence (X1, V) from (X, D1) to (Y, D»),
e Vp,: X1 — X®gL(Y) be any Hermitian D,-connexion,
then
o (D1 xy Dy, (X&gY)?), even Kasparov A-C module...
o ...which is the Kasparov product of (X, D1) and (Y, D»).

A Ds-connexion V is a completely bounded linear map
V: X1 — X®L(Y) which is a (R-Connexion).

v

We can now apply this theorem to (X, D;) the vertical class [J]
and (Y, Dy) the spectral triple on B.

Spectral
triples

products

Conclusion
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@ Construction of spectral triples from ergodic actions.

@ Introduction of Generalized Crossed Products (GCP).

@ Extension of spectral triples from basis to GCP.
Perspectives:

e Link between fa|D|~" and 77
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Conclusion

Summary:

@ Construction of spectral triples from ergodic actions.
@ Introduction of Generalized Crossed Products (GCP).

@ Extension of spectral triples from basis to GCP.

Perspectives:

e Link between fa|D|~" and 77

@ Do the same “extension construction” and Kasparov
product for SU(2)-principal bundles?

Spectral
triples

Crossed
Products
Spectral
triples as
Kasparov
products

Conclusion

26



References

@ For ergodic actions:

[ O. G. and M. GRENSING
Ergodic actions and spectral triples
http://arxiv.org/abs/1302.0426

@ For generalized crossed products:

[ O. G. and M. GRENSING
Generalized crossed products and spectral triples
Coming soon!

Spectral
triples

Products

Spectral

triples as
Kasparov
products

Conclusion

27


http://arxiv.org/abs/1302.0426

Thank you for your attention! Spectral

triples

Spectral

triples as
Kasparov
products

Conclusion

28



Spectral

Additional properties riples

Spectral triple of dimension n = dim G.
Parity For even n, grading operator v s.t. v =1, v* =~

ay=r~a D~ =—~D
Motivations: K-homology.
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Additional properties riples

Spectral triple of dimension n = dim G.
Parity For even n, grading operator v s.t. v =1, v* =~

ay=na Dy = —~vD
Motivations: K-homology.

Real structure and order one
Norm-preserving antilinear operator J: 77 — 97 s.t.

[a, Jb*J] = 0, [[D, a], Jb*J] = 0, P=¢,
and
J(Dom(D)) C Dom(D) JD=epDJ Jy=eJ,
with €,ep and (possibly) e, in £1, depending on n @D,
Motivations:
o KR-homology for .7 @ &7° with ¥£(a® b°) = b* @ (a*)?,

e . as A-bimodule, Poincaré duality in KK-theory. @D
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Spectral

Additional properties riples

Spectral triple of dimension n = dim G.
Parity For even n, grading operator v s.t. v =1, v* =~

ay=na Dy = —~vD
Motivations: K-homology.

Real structure and order one
Norm-preserving antilinear operator J: 77 — 97 s.t.

[a, Jb*J] = 0, [[D, a], Jb*J] = 0, P=¢,
and
J(Dom(D)) C Dom(D) JD=epDJ Jy=eJ,
with €,ep and (possibly) e, in £1, depending on n @D,
Motivations:
o KR-homology for .7 @ &7° with ¥£(a® b°) = b* @ (a*)?,

e . as A-bimodule, Poincaré duality in KK-theory. @D
For Poincaré duality: K-theory class in K(A® A%)? [ < Back ]
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Spectral

Operator spaces rples

A Banach space (X, || - ||) is an operator space if there exists a
norm | - ||x: M(X) — [0, c0) on the finite matrices over X s.t.

e for all finite matrices over C v, w € M(C), and any
matrix x € M(X), we have:

[v-x-wlx < lIvie Ix]x wllc
e for any projections p,q € M(C) with pg =0 and
x,y € M(X), we have:
Ipxp + ayqllx = max{[|pxp||x. llayallx}

e for any projection p € M(C) of rank 1 and x € X, we
have [|p % x|lx = ||
Last condition: original || - || is “compatible” with || - ||x.
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Spectral

Unbounded Kasparov modules Files

An unbounded Kasparov module A-B module is (X, D) where
e X, B-Hilbert module with action ¢: A — L(Xg),
@ D is an unbounded regular selfadjoint operator on X,
such that

@ there is a dense subalgebra & C A with
o a(Dom(D)) C Dom(D),
e and [D, a] extends to a bounded operator on X,

e the resolvent (D — i)~ € K(X) is B-compact.

y

In particular, D has to be selfadjoint.
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Spectral

Covariant representation and compact Lie groups riples

Proposition

If G is compact, then

D defined in (Dirac) is essentially selfadjoint.

Proof:
Criterion: both ran(D £ i) are dense in ' = 4 R S.

@ By Peter-Weyl's decomposition theorem:
Ay =P E2C™

For each Ey, choose spaces E; x. Projections Py on J%.
Qe = Py ® 1s commutes with D.

Q¢,k D selfadjoint on finite dimensional space,

hence it has real eigenvalues and...

... QD £ iis surjective!

Corollary of proof: D admits a basis of eigenvectors.
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Spectral

Regular operator e

Let E and F be two Hilbert modules over A.

A regular (unbounded) operator from E to F is
a densely defined closed A-linear map T: Dom(T) — F s.t.

@ T is densely defined,
@ and 1+ T*T has dense range.

Lemma

If T: E — E is densely defined and selfadjoint, then

T is regular if and only if the operators T + i are surjective.
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Clifford algebra C/(n) — I ler

Proposition (Dabrowski & Dossena — 2011)
For any n € N, consider S with its matrices as in (Def-F).
@ For even n, grading operator s with 75 = 7s, ’y% =1 and
vsFj = —Fjys.
o Antilinear map Js s.t. (Jss, Jss') = (s',s) and

J2=¢, JsFj =epFjJs Jsvs =eyys Is,

where €,ep and e: either —1 or 1, as in Table

If 745 = GNS(A, 7) for a G-invariant trace 7 on A,
e 7 is naturally endowed with a covariant rep. of (A, G),

@ we use the above to get better properties for D.
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Unbounded symmetric operator — part Il Seccal

triples

If 765 = GNS(A, 7), consider .7 := 7% ® S and still
D =3 0; ® F; defined on Dom(D) = J5° @¢ S C 7.
Proposition

The operator D on 7 has further properties:
(i) For even n, grading operator Y = 1 ® s s.t. 72 =1 and
for all a € A,

va=ay 7y(DomD)C Dom(D) ~D = —Dr;

(iv) D has a real structure, i.e. antilinear J = Jy ® Js on
with commutation relations of

(v) D and J satisfy the first order condition, i.e. for all
a,d € o,
[[D,d],Ja* I =0;

(vi) D admits a selfadjoint extension D.
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Spectral

Sketch of proof rples

General idea: use properties of tensor product.

(iii) Grading operator: v =1 ® s and ~ys satisfies all required
properties...

(iv) Real structure: J = Jy ® Js. Since 5 := GNS(A, 7), the
set [a] € %4 is dense. Set Jy([a]) = [a*] then

Ugo([a]) = [ag(a")] = [ag(a)"] = JoUg([a])

and all properties follow.

(v) First order condition: notice that JobJy*([a]) = [ab*] so
[D, a'] and JaJ~! act on “different sides” of 7.

(vi) Selfadjoint extension: very different idea. Requires a
theorem by von Neumann.

Existence of selfadjoint extension: why is it interesting?

36



Example of conditions: real structure

@ Real structure antilinear operator J: 57 — 2 s.t.
(JE, In) = (n,€), J2 =€, [a,Ib*J] = 0 and

J(Dom(D)) € Dom(D) JD=epDJ Jy=¢eyvJ,

where €,ep and (possibly) e, are all 1, depending on n:

n
£y
ED
Ey

< Clifford algebra

+++ o0

2

_l’_

4

+
+

6
+
+

1 3 5 7
+ - - 4+
-+ -+

< Additional properties

Spectral
triples
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Spectral

Example of conditions: real structure Files

@ Real structure antilinear operator J: 57 — 2 s.t.
(JE, In) = (n,€), J2 =€, [a,Ib*J] = 0 and

J(Dom(D)) € Dom(D) JD=epDJ Jy=¢eyvJ,

where €,ep and (possibly) e, are all 1, depending on n:

n 0 2 4 6 1 3 5 7
e+ - - + o+ - - 4+
eb + + + + - 4+ — +
e + - + -
Motivations:

o Real K-homology (KR-homology). Spin.

e Turns 7 into &/ ® &/°P module. Natural involution
a® b%® — b* ® (a*)°P. Poincaré duality.

o Tomita operator (traceless case).

< Clifford algebra < Additional properties
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Hilbert bimodule e

Hilbert bimodule: a Hilbert module on both left and right.

Definition (Hilbert bimodule)
A-B-bimodule E such that
o E is a left A-Hilbert module,
with an A-valued scalar product 4(, ).

o E is a right A-Hilbert module,
with an A-valued scalar product (, )a.

@ condition de compatibilité : pour tous &, (,n dans E,

§<<7 77>B = A(é.a <>77

o Closely related notion: Morita equivalence bimodule.

Example:
E = A with the standard action on both sides and

al&m) =&n" (&ma=¢&.
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Spectral

Modules hilbertiens : idée générale Files

Idée : généralisation des espaces hilbertiens pour C*-algebres
autres que C.
Exemple dans le cas commutatif :

e M, variété riemannienn lisse et A= C(M).

@ TM, fibré tangent de M.

E, sections continues de TM: module sur A.
Formule (£, 7m)(x) = (£(x),n(x)): définit un produit scalaire a
valeur dans A !

Definition (: module hilbertien (a droite))

E, A-module (a droite) et produit scalaire (-,-) a valeur dans A.

o Définition similaire pour les modules hilbertiens a gauche.
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Spectral

Modules hilbertiens : définition compléte biles

Soit A une C*-algebre,

Definition (: module hilbertien (a droite))

E, A-module a droite et (-|-), produit scalaire a valeur dans A:
forall {,n € E and a € A,

O 0 < (£[¢) dans A.

Q () =0=¢=0

Q (¢na) = ({Im)a

Q (¢[m)* = (nl§)

© E est complet pour la norme €] = [|(€]€)]|.
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Spectral

Poincaré duality in KK-theory e

Let A and B be two C*-algebras, assume we have two elements
a€ KK(A® B,C) g€ KK(C,A® B)
such that
fRaa=1g€ KK(B,B) pfepa=14¢€ KK(A,A)
which exchanges K-theory and K-homology for A and B:

K.(A) = KK(C, A) ~ KK(B, C) = K*(B)
K.(B) = KK(T, B) ~ KK(A, C) = K*(A)
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Spectral

Reminder: unbounded operators Files

Given densely defined T, Dom(T*) set of x € ./ s.t.

dz € ,Vy € Dom(T), (x, Ty) = (z,y).
@ The adjoint T* of T is defined by T*x = z.
o T selfadjoint iff T = T* (in part. Dom(T) = Dom(T*)).

Delicate equilibrium: enlarging Dom(T) puts more constraints,
thus restricting Dom(T%)...

42



Spectral

Reminder: unbounded operators Files

Given densely defined T, Dom(T*) set of x € ./ s.t.

dz € ,Vy € Dom(T), (x, Ty) = (z,y).
@ The adjoint T* of T is defined by T*x = z.
o T selfadjoint iff T = T* (in part. Dom(T) = Dom(T*)).

Delicate equilibrium: enlarging Dom(T) puts more constraints,
thus restricting Dom(T%)...

e For symmetric T, i.e. Vx,y € Dom(T), (Tx,y) = (x, Ty),
we have Dom(T) C Dom(T*).
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Reminder: unbounded operators Files

Given densely defined T, Dom(T*) set of x € ./ s.t.

dz € ,Vy € Dom(T), (x, Ty) = (z,y).
@ The adjoint T* of T is defined by T*x = z.
o T selfadjoint iff T = T* (in part. Dom(T) = Dom(T*)).

Delicate equilibrium: enlarging Dom(T) puts more constraints,
thus restricting Dom(T%)...
e For symmetric T, i.e. Vx,y € Dom(T), (Tx,y) = (x, Ty),
we have Dom(T) C Dom(T*).
o In this case, the closure T is defined on Dom(T),
completion of Dom(T) for ||x||% = ||x||? + || Tx||2.
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Reminder: unbounded operators Files

Given densely defined T, Dom(T*) set of x € ./ s.t.

dz € ,Vy € Dom(T), (x, Ty) = (z,y).
@ The adjoint T* of T is defined by T*x = z.
o T selfadjoint iff T = T* (in part. Dom(T) = Dom(T*)).

Delicate equilibrium: enlarging Dom(T) puts more constraints,
thus restricting Dom(T%)...
e For symmetric T, i.e. Vx,y € Dom(T), (Tx,y) = (x, Ty),
we have Dom(T) C Dom(T*).
o In this case, the closure T is defined on Dom(T),
completion of Dom(T) for ||x||% = ||x||? + || Tx||2.
T is essentially selfadjoint if T is selfadjoint.
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Spectral

Reminder: unbounded operators Files

Given densely defined T, Dom(T*) set of x € ./ s.t.

dz € ,Vy € Dom(T), (x, Ty) = (z,y).
@ The adjoint T* of T is defined by T*x = z.
o T selfadjoint iff T = T* (in part. Dom(T) = Dom(T*)).

Delicate equilibrium: enlarging Dom(T) puts more constraints,
thus restricting Dom(T%)...
e For symmetric T, i.e. ¥x,y € Dom(T), (Tx,y) = (x, Ty),
we have Dom(T) C Dom(T*).
o In this case, the closure T is defined on Dom(T),
completion of Dom(T) for ||x||% = ||x||? + || Tx||2.
T is essentially selfadjoint if T is selfadjoint.

The spectral theorem only holds for selfadjoint operators!
2



Spectral

Reminder: essentially selfadjoint operators rples

Proposition
If T is symmetric, TFAE:
@ T is essentially selfadjoint;
@ ker(T*+1i)={0} and ker(T* — i) = {0};
@ Both ran(T + i) and ran(T — i) are dense in 7.

Example: T = id/ds with
Dom(T) := {f € H*([0,1]), f(0) = 0 = f(1)}

o Integration by parts: T is symmetric.
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Spectral

Reminder: essentially selfadjoint operators  «ga e

Proposition
If T is symmetric, TFAE:
@ T is essentially selfadjoint;
@ ker(T*+1i)={0} and ker(T* — i) = {0};
@ Both ran(T + i) and ran(T — i) are dense in 7.

Example: T = id/ds with
Dom(T) := {f € H*([0,1]), f(0) = 0 = f(1)}

o Integration by parts: T is symmetric.
e Adjoint: T* = id/ds on Dom(T*) = H([0,1]),
~~ no restriction on f(0) and £(1)!

43



Spectral

Reminder: essentially selfadjoint operators  «ga e

Proposition
If T is symmetric, TFAE:
@ T is essentially selfadjoint;
@ ker(T*+1i)={0} and ker(T* — i) = {0};
@ Both ran(T + i) and ran(T — i) are dense in 7.

Example: T = id/ds with
Dom(T) := {f € H'([0,1]), f(0) = 0 = £(1)}
o Integration by parts: T is symmetric.
e Adjoint: T* = id/ds on Dom(T*) = H([0,1]),
~~ no restriction on f(0) and £(1)!

e T is not essentially selfadjoint:
et* € Dom(T*) and (T* £ i)e** = 0.
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Reminder: essentially selfadjoint operators  «ga e

Proposition
If T is symmetric, TFAE:
@ T is essentially selfadjoint;
@ ker(T*+1i)={0} and ker(T* — i) = {0};
@ Both ran(T + i) and ran(T — i) are dense in 7.

Example: T = id/ds with
Dom(T) := {f € H*([0,1]), f(0) = 0 = f(1)}
o Integration by parts: T is symmetric.
e Adjoint: T* = id/ds on Dom(T*) = H([0,1]),
~~ no restriction on f(0) and £(1)!
@ T is not essentially selfadjoint:
et* € Dom(T*) and (T* £ i)e** = 0.

Selfadjoint extensions? Yes! T, for |a| =1 with:

Dom(T,) := {f € AC([0,1]), f(0) = af(1)}
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