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General problematics

Importance of moisture in the atmosphere: obvious.
Influences large-scale dynamics via the latent heat
release, due to condensation and precipitation.
Atmospheric circulation modeling: equation of state of the
moist air extremely complex. Discretization/averaging:
problematic.
Current parametrizations of precipitations and latent heat
release:
relaxation to the equilibrium (saturation) profile of
humidity⇒ threshold effect⇒ essential nonlinearity
Consequences: no linear limit; linear thinking: modal
decomposition, linear stability analysis, etc impossible⇒
problems in quantifying predictability of moist - convective
dynamical systems.
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Aims and method I

Aim:
Understanding the influence of condensation and latent
heat release upon large-scale dynamical processes

Reminder:
I Simplest model for large-scale motions: rotating

shallow water.
I Link with primitive equations: vertical averaging
I Baroclinic effects: 2 (or more) layers.

Problem with this approach for moist air: averaging of
essentially nonlinear equation of state.
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Aims and method II

Our approach

I Combine (standard) vertical averaging of primitive
equations between the isobaric surfaces with that of
Lagrangian conservation of moist enthalpy

I Allow for convective fluxes (extra vertical velocity)
across the isobars

I Link these fluxes to condensation
I Use relaxation parametrization in terms of bulk

moisture in the layer for the
condensation/precipitation
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Aims and method III

Advantages:

I Simplicity, qualitative analysis of basic phenomena
straightforward

I Fully nonlinear in the hydrodynamic sector
I Well-adapted for studying discontinuities, in

particular precipitation fronts
I Efficient numerical tools available (finite-volume

codes for shallow water)
I Various limits giving known models
I Inclusion of topography (gentle or steep)

straightforward
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Primitive equations in pseudo-height
coordinates

d
dt

v + fk × v = −∇φ

d
dt
θ = 0

∇ · v + ∂zw = 0

∂zφ = g
θ

θ0

v = (u, v) and w - horizontal and vertical velocities,
d
dt = ∂t + v · ∇+ w∂z , f - Coriolis parameter, θ - potential
temperature, φ - geopotential.
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Moisture and moist enthalpy

Condensation turned off: conservation of specific
humidity of the air parcel:

d
dt

q = 0.

Condensation turned on: θ and q equations acquire
source and sink. Yet the moist enthalpy θ+ L

cp
q, where L -

latent heat release, cp - specific heat, is conserved for
any air parcel on isobaric surfaces:

d
dt

(
θ +

L
cp

q
)

= 0,
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Vertical averaging with convective fluxes

3 material surfaces:

w0 =
dz0

dt
, w1 =

dz1

dt
+ W1, w2 =

dz2

dt
+ W2.

W

W2

1

θ

θ1

2

0

2z

z

z

1

Mean-field + constant mean θ →
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Averaged momentum and mass conservation
equations:

{
∂tv1 + (v1 · ∇)v1 + fk × v1 = −∇φ(z1) + g θ1

θ0
∇z1,

∂tv2 + (v2 · ∇)v2 + fk × v2 = −∇φ(z2) + g θ2
θ0
∇z2 + v1−v2

h2
W1,{

∂th1 +∇ · (h1v1) = −W1,
∂th2 +∇ · (h2v2) = +W1 −W2,
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Linking convective fluxes to precipitation I

Bulk humidity: Qi =
∫ zi

zi−1
qdz. Precipitation sink:

∂tQi +∇ · (Qiv i) = −Pi .

In precipitating regions (Pi > 0), moisture is saturated
q(zi) = qs(zi) and the temperature of the air-mass
Widtdxdy convected due to the latent heat release
θ(zi) + L

cp
qs(zi), is the one of the upper layer: θi+1.

We assume "dry" stable background stratification:

θi+1 = θ(zi) +
L
cp

q(zi) ≈ θi +
L
cp

q(zi) > θi ,

with constant θ(zi) and q(zi).
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Integrating the moist enthalpy we get

Wi = βiPi

with a positive-definite coefficient

βi =
L

cp(θi+1 − θi)
≈ 1

q(zi)
> 0.

Last step: relaxation formula with relaxation time τ .

Pi =
Qi −Qs

i
τ

H(Qi −Qs
i )

where H(.) is the Heaviside (step) function.
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2-layer model with a dry upper layer

Vertical boundary conditions: upper surface isobaric
z2 = const, geopotential at the bottom constant (ground)
φ(z0) = const, Q2 = 0, Q1 = Q:

∂tv1 + (v1 · ∇)v1 + fk × v1 = −g∇(h1 + h2),

∂tv2 + (v2 · ∇)v2 + fk × v2 = −g∇(h1 + αh2) + v1−v2
h2

βP,
∂th1 +∇ · (h1v1) = −βP,
∂th2 +∇ · (h2v2) = +βP,
∂tQ +∇ · (Qv1) = −P, P = Q−Qs

τ H(Q −Qs)

α = θ2
θ1

- stratification parameter.
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Sketch of the model

θ

θ1

2
h

h1

2W

P>0
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Immediate relaxation limit

τ → 0, ⇒ P = −Qs∇ · v1 (Gill, 1982), and

∂tv1 + (v1 · ∇)v1 + fk × v1 = −g∇(h1 + h2),

∂tv2 + (v2 · ∇)v2 + fk × v2 = −g∇(h1 + αh2)

− v1 − v2

h2
βQs∇ · v1,

∂th1 +∇ · (h1v1) = +βQs∇ · v1,

∂th2 +∇ · (h2v2) = −βQs∇ · v1,

humidity staying at the saturation value: Q = Qs.
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Baroclinic reduction

Rewriting the model in terms of baroclinic and barotropic
velocities:

vbt =
h1v1 + h2v2

h1 + h2
, vbc = v1 − v2,

and linearizing in the hydrodynamic sector gives:
∂tvbc + fk × vbc = −ge∇η,
∂tη + He∇ · vbc = −βP,
∂tQ + Qe∇ · vbc = −P,

,

where ge = g(α− 1), Qe = He
H1

Qs, η - perturbation of the
interface, He - equivalent height.
Model first proposed by Gill (1982) and studied by Majda
et al (2004, 2006, 2008).
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Quasigeostrophic limit

In the small Rossby number limit on the β-plane Lapeyre
& Held (2004) model follows:

d (0)
1
dt

(∇2ψ1 + y − η1

D1
) =

βP
D1

,

d (0)
2
dt

(∇2ψ2 + y − η2

D2
) = −βP

D2
,

Here d (0)
i
dt = ∂t + (v (0)

i · ∇), k × v (0)
i = −∇ψi , Di = Hi

H0
, and

ψ1,2 (geostrophic streamfunctions) are related to the
free-surface (η2) and interface (η1) perturbations as:

ψ1 = η1 + η2, ψ2 = η1 + αη2.
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1-layer moist-convective RSW

In the limit H1/(H1 + H2)→ 0 the reduced-gravity
one-layer moist-convective shallow water follows
(Bouchut, Lambaerts, Lapeyre & Zeitlin, 2009):

∂tv1 + (v1 · ∇)v1 + fk × v1 = −∇η,
∂tη +∇ · {v1 (1 + η)} = −βP,
∂tQ +∇ · (Qv1) = −P,

(Nondimensional equations, η - free-surface perturbation)



Large-Scale Flows
2. Modeling

two-phase flows

Introduction

Methodology

Constructing the
model

Limiting equations
and relation to the
known models

General properties
of the model
Conservation laws

Characteritics and fronts

Example: scattering of a
simple wave on a moisture
front

Introducing evaporation

Moist vs dry
baroclinic
instability
(Dry) linear stability of the
baroclinic jet

Comparison of the evolution
of dry and moist instabilities

Conclusions

Literature

Horizontal momentum

(∂t + v1 · ∇)(v1h1) + v1h1∇ · v1 + fk × (v1h1)

= −g∇
h2

1
2
− gh1∇h2 − v1βP,

(∂t + v2 · ∇)(v2h2) + v2h2∇ · v2 + fk × (v2h2)

= −αg∇
h2

2
2
− gh2∇h1 + v1βP,

Red: moist convection drag. Total momentum:
v1h1 + v2h2 is not affected by convection.
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Energy

Energy densities of the layers:{
e1 = h1

v2
1

2 + g h2
1

2 ,

e2 = h2
v2

2
2 + gh1h2 + αg h2

2
2 ,

For the total energy E =
∫

dxdy(e1 + e2) we get:

∂tE = −
∫

dx βP
(

gh2(1− α) +
(v1 − v2)2

2

)
.

1st term: production of PE (for stable stratification); 2nd
term destruction of KE.
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Potential vorticity

(∂t + v1 · ∇)
ζ1 + f

h1
=
ζ1 + f

h2
1

βP,

(∂t + v2 · ∇)
ζ2 + f

h2
= −ζ2 + f

h2
2

βP +
k
h2
·
{
∇×

(
v1 − v2

h2
βP
)}

,

where ζi = k · (∇× v i) = ∂xvi − ∂yui (i = 1,2)- relative
vorticity.
PV in each layer is not a Lagrangian invariant in
precipitating regions.
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Moist enthalpy and moist PV

Moist enthalpy in the lower layer: m1 = h1 − βQ and is
always locally conserved:

∂tm1 +∇ · (m1v1) = 0.

Conservation of the moist enthalpy in the lower layer
allows to derive a new Lagrangian invariant, the moist PV:

(∂t + v1 · ∇)
ζ1 + f

m1
= 0.
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Quasilinear form and characteristic equations

1-d reduction: ∂y (...) = 0, ⇒ quasilinear system:

∂t f + A(f )∂x f = b(f ).

Characteristic equation: det(A− cI) = 0
I "Dry" characteristic equation

F(c) =
{

(u1 − c)2 − gh1

}{
(u2 − c)2 − αgh2

}
−gh1gh2 = 0,

I "Moist" characteristic equation (τ → 0)

Fm(c) = F(c) + ((u1 − u2)2 − (α− 1)gh2)gβQs = 0.
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Characteristic velocities about the rest state

I "Dry" characteristics:

C± = g(H1 + αH2)
1±
√

∆

2
,

I "Moist" characteristics:

Cm
± = g(H1 + αH2)

1±
√

∆m

2
.

Here C = c2 and

∆ = 1− 4H1H2(α− 1)

(H1 + αH2)2 =
(H1 − αH2)2 + 4H1H2

(H1 + αH2)2 .

∆m = ∆ +
4(α− 1)βQsH2

(H1 + αH2)2 .
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Moist vs dry characteristic velocities

cm is real for positive moist enthalpy of the lower layer in
the state of rest : M1 = H1 − βQs > 0, and

Cm
− < C− <

g(H1 + αH2)

2
< C+ < Cm

+ ,

for 0 < M1 < H1 ⇒ moist internal (mainly baroclinic)
mode propagates slower than the dry one, consistent
with observations.
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Discontinuities in dependent variables (no
rotation)

Rankine-Hugoniot (RH) conditions (immediate
relaxation):

−s[v1h1 + v2h2] + [u1v1h1 + u2v2h2] = 0,
−s[m1] + [m1u1] = 0,
−s[h2] + [h2u2 + βQsu1] = 0.

s - propagation speed of the discontinuity.
Remark: mass conservation→ moist enthalpy
conservation in the lower layer.
Due to limxs→a limb→xs

∫ b
a P = 0, P does not enter RH

conditions for u, v ,h.
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Discontinuities in derivatives

RH conditions linearized about the rest state:{
(s2 − C+)(s2 − C−)[∂xu1] = −(α− 1)gH2gβ[P],
(s2 − Cm

+ )(s2 − Cm
− )[∂xu1] = −s(α− 1)gH2gβ[∂xQ].

For a configuration where it rains at the right side of the
discontinuity, P− = 0 and P+ = −Qs∂xu1+ > 0 , there
exist five types of precipitation fronts:
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Precipitation fronts

1. the dry external fronts,
√

C+ < s <
√

Cm
+ ,

2. the dry internal subsonic fronts,
√

Cm
− < s <

√
C−,

3. the moist internal subsonic fronts, −
√

Cm
− < s < 0,

4. the moist internal supersonic fronts,
−
√

C+ < s < −
√

C−,
5. the moist external fronts, s < −

√
Cm
+ .

This result confirms previous studies within a linear
baroclinic model (Frierson et al, 2004).
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Wave scattering on a moisture front: setting

Localized internal simple wave centred at xP = 2 and
moving eastward:

u1(x ,0) =

{
σ(x − xP)2 + U0 if −

√
U0
σ ≤ x − xP ≤

√
U0
σ ,

0 otherwise,U0 = 0.01, σ = −1
(1)

Stationary moisture front at xM = 5, saturated air at the
east, unsaturated at the west:

Q(x ,0) = Qs{1 + q0 tanh(x − xM)H(−x + xM)},q0 = 0.05.
(2)

Strong downflow convergence in the lower layer→ P > 0
near the moisture front.
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Wave scattering on a moisture front:
baroclinic velocity and moisture
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Wave scattering on a moisture front:
condensation zone I
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Characteristics and fronts in the
condensation zone
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Evaporation and its parametrizations

In the presence of evaporation source E

∂tQ +∇ · (Qv1) = E − P

Hence:
∂tm1 +∇ · (m1v1) = −βE

Simple parametrizations of E (may be combined):

I Relaxational: E = Q̂−Q
τE

H(m1), where Q̂ - equilibrium
value.

I Dynamic: E = αE |v1|H(m1)

m1 should stay positive (plays a role of static stability)
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Baroclinic Bickley jet

Geostrophically balanced upper-layer jet on the f -plane.
non-dimensional profiles of velocity and thikness
perturbations:

ū1 = 0, η̄1 =
1

α− 1
tanh(y),

ū2 = sech2(y), η̄2 =
−1
α− 1

tanh(y).

No deviation of the free surface: η̄1 + η̄2 = 0.
Parameters: Ro = 0.1, Bu = 10 - typical for atmospheric
jets.
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Linear stability diagram
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The most unstable mode
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Early stages: evolution of moisture
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Early stages: growth rates
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Cyclone-anticyclone asymmetry
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How condensation enhances cyclones:
1-layer model
For Ro → 0 and Bu ∼ O(1), close to saturation
ψ ∼ q̃ << 1:

(∂t + v (0) · ∇)
[
∇2ψ − ψ

]
= βP, (3)

(∂t + v (0) · ∇)
[
q̃ −Qs∇2ψ

]
= −P, (4)

v (0) = (−∂yψ, ∂xψ) - geostrophic velocity, ψ = η̄ + η, and
q̃ is moisture anomaly with respect to Qs.
⇒ PV of the fluid columns which pass through the
precipitating regions increases. For τ → 0 q̃ ≈ 0, and:

Qs(∂t + v (0) · ∇)
[
∇2ψ

]
≈ Pτ→0 > 0, (5)

⇒ increase of geostrophic vorticity in the precipitation
regions.
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Dry vs moist simulations: evolution of relative
vorticity
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Dry vs moist simulations: formation of
secondary zonal jets at late stages
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Unbalanced (aheostrophic) motions:
baroclinic divergence
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Moist baroclinic instability in Nature
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Conclusions 1

The model
I Physically and mathematically consistent
I Simple, physics transparent
I Efficient high-resolution numerical schemes available
I Benchmarks: good
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Conclusions 2

Moist vs dry baroclinic instability

I local enhancement of the growth rate of the
moist-convective instability at the precipitation onset,

I significant increase in intensity of ageostrophic
motions during the evolution of the moist instability,

I substantial cyclone - anticyclone asymmetry, which
develops due to the moist convection effects.

I substantial differences in the structure of zonal jets
resulting at the late stage of saturation.
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