
Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

Modeling Large-Scale Atmospheric and
Oceanic Flows 1

V. Zeitlin

1Laboratoire de Météorologie Dynamique, Univ. P. and M. Curie, Paris

Mathematics of the Oceans, Fields Institute, Toronto,
2013



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

Plan
Introduction

Review
Workflow

Crash course in fluid dynamics
Reminder : perfect fluid
Molecular dissipation

Primitive equations
Rotating frame. Spherical coordinates. Traditional
approximation. Tangent plane
"Primitive" equations (PE)

Vertically averaged models
Vertical averaging of PE
Vortices and waves

Vortex dynamics
Vortex dynamics in 1-layer RSW
2-layer QG model
QG dynamics by time averaging

Summary



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

GFD seen from space
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GFD : what is this ?

Hydrodynamics in all its complexity plus :

I Rotating frame
I Thermal effects, stratification
I Spherical geometry (large and medium scales)
I Complex domains (coasts, topography/bathymetry)
I Multi-phase fluid (water vapor, ice)
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Scales :

I Large : planetary 104 km
I Medium : atmosphere - synoptic, 103 km ; ocean -

meso-scle 10− 102 km
I Small : atmosphere - meso-scale 1− 10 km ; ocean -

sub-mesoscale 1 km
I Very small : meters

Our interest : modeling medium and large scales.
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Dynamical actors : vortices, atmosphere
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Atmospheric vortices for real
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Dynamical actors : vortices, ocean
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Dynamical actors : waves, atmosphere
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Dynamical actors : waves, ocean
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Work plan

We will :
I Remind the fundamentals
I Construct an hierarchy of models of decreasing

complexity by
1. vertically averaging and geting Rotating Shallow Water

models
2. filtering fast wave motions and geting

Quasi-Geostrophic models

I Review their basic properties
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General reminder

Governing equations for fluid envelopes of the Earth :

I Mechanical system ⇒ local conservation of momentum
I Continuous media ⇒ local conservation of mass
I Thermodynamical system ⇒ equation of state

Main difficulty - nonlinearity
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Example of essentially nonlinear process :
wave-breaking
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Governing equations :

Eulerian description of the perfect fluid in terms of velocity,
density and pressure fields : ~v(~x , t), ρ(~x , t), P(~x , t).

Equations of motion

I Newton’s second law :

ρ

(
∂~v
∂t

+ ~v · ~∇~v
)

= −~∇P + ~F , (1)

F - external forces.
I Continuity equation :

∂ρ

∂t
+ ~∇ · (ρ~v) = 0. (2)
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Closure
Equation of state

I General equation of state (1-phase system) :

P = P(ρ, s), (3)

s - mass density of entropy.
I Barotropic fluid :

P = P(ρ)↔ s = const, (4)

I Baroclinic fluid : :

P = P(ρ, s),⇒ (5)

equation for s neccessary. Perfect fluid :

∂s
∂t

+ ~v · ~∇s = 0. (6)
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Euler - Lagrange duality

Duality : ~x ↔ ~X , ~X (~x , t) - positions of fluid parcels.
Lagrangian derivative :

d
dt

=
∂

∂t
+ ~v · ~∇~v . (7)

Newton’s equations :

ρ(~X , t)
d2~X
dt2 = −~∇P(~X , t) + ~F . (8)

Continuity equation :

ρi (x)d3~x = ρ(~X , t)d3~X ,↔ ρi (x) = ρ(~X , t)J (9)

where ρi - initial distribution of density, J = ∂(X ,Y ,Z)
∂(x ,y ,z) Jacobi

determinant (Jacobian). Fluid velocity : ~v(~X , t) = d ~X
dt ≡ ~̇X .
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Particular case of barotropic fluid - incompressible
fluid :

Volume conservation :

J = 1↔ ~∇ · ~v = 0⇒ . (10)

pressure no more independent variable.

1. If, in addition, ρ = const :

~∇ ·
(
~v · ~∇~v

)
= −1

ρ
~∇2P. (11)

2. Otherwise
dρ
dt

=
∂ρ

∂t
+ ~v · ~∇ρ = 0. (12)

and

~∇ ·
(
~v · ~∇~v

)
= −~∇ ·

(
~∇P
ρ

)
. (13)
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Energy and thermodynamics
1st principle, one-phase system

δε = T δs − Pδv , (14)

ε - internal energy , v = 1
ρ

Enthalpy per unit mass h = ε+ Pv :

δh = T δs + vδP. (15)

Energy density of the fluid :

e =
ρ~v2

2
+ ρε. (16)

Local conservation of energy :

∂e
∂t

+ ~∇ ·
[
ρ~v
(
~v2

2
+ h
)]

= 0. (17)

Barotropic fluid :

δh =
δP
ρ
↔

~∇P
ρ

= ~∇h. (18)
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Dissipation : molecular fluxes

Dissipation : correction of macroscopic fluxes of
I momentum
I mass
I internal energy (heat)

with corresponding molecular fluxes calculated from relations
flux - gradient :

~fA = −kA~∇A, (19)

A - a thermodynamical variable, ~fA - corresponding molecular
flux .
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"Corrected" equations
Viscosity, incompressible case ( Navier -Stokes equation

∂~v
∂t

+ ~v · ~∇~v = −
~∇P
ρ

+ ν ~∇2~v , ~∇ · ~v = 0. (20)

Diffusivity : continuity equation

∂ρ

∂t
+ ~∇ · (ρ~v) = D ~∇2ρ. (21)

Thermoconductivity : heat/temperature equation

∂T
∂t

+ ~v · ~∇T = χ~∇2T . (22)

Non-dimensional numbers
Reynolds : Re = UL/ν, U, L - scales of the flow. Peclet :
ν → D or χ.
Remark : Typical Re for synoptic motions →∞
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Euler equations in the rotating frame + gravity :

Coriolis force :

∂~v
∂t

+ ~v · ~∇~v + 2~Ω ∧ ~v − ~g∗ = −
~∇P
ρ

(23)

Effective gravity :

~g∗ = ~g + m~Ω ∧
(
~Ω ∧~r

)
(24)
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Euler and continuity equations

dvr

dt
−

v2
λ + v2

φ

r
− 2Ω cosφvλ + g∗ = −1

ρ
∂rP,

dvλ
dt

+
vrvλ − vφvλ tanφ

r
+ 2Ω (− sinφvφ + cosφvr )

= − 1
ρr
∂λP,

dvφ
dt

+
vrvφ + v2

λ tanφ
r

+ 2Ω sinφvλ = − 1
ρr sin θ

∂φP,

dρ
dt

+ ρ

[
1
r2
∂(r2vr )

∂r
+

1
r cosφ

(
∂(cosφvφ)

∂φ
+
∂vλ
∂λ

)]
,

d
dt

=
∂

∂t
+ vr∂r +

vθ
r
∂θ +

vφ
r sin θ

∂φ

Traditional approx. : green + red → out, r → R = const
Non-traditional approx : green → out.
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Tangent plane approximation

R

g

Ω

y

x

z

∂~v
∂t

+ ~v · ~∇~v + f ẑ ∧ ~v + ~g = −
~∇P
ρ

f - plane : f = const ; β - plane : f = f + βy ; f - Coriolis
parameter : f = 2Ω sinφ
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Ocean : observations

I Typical density profile :

ρ(~x , t) = ρ0 + ρs(z) + σ(x , y , z ; t), ρ0 � ρs � σ.

I Mesoscale motions close to hydrostatics :

gρ+ ∂zP = 0, ⇒ P = P0 + Ps(z) + π(x , y , z ; t),

I Water ≈ incompressible

~∇ · ~v = 0,



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

Equations of motion :

∂~vh

∂t
+ ~v · ~∇~vh + f ẑ ∧ ~vh = −~∇hφ, (25)

~v = ~vh + ẑw , φ = π
ρ0

- geopotential.

∂tρ+ ~v · ~∇ρ = 0, ~∇ · ~v = 0. (26)

Boundary conditions (no dissipation) :
Rigid lid/flat bottom :

w |z=0 = w |z=H = 0 (27)

Non-trivial bathymetry : w |z=b = db
dt

Forcing/dissipation : external forces, viscosity - in (25) ; mass
sources/sinks, diffusivity - in (26)
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Atmosphere : Observations

I Mean pressure - monotonic with height,
I Synoptic motions - close to hydrostatics,
I Vertical velocities - small
I Potential temperature θ = es mostly advected (dry

situation)

Pressure as vertical coordinate + hydrostatics ⇒
I r.h.s. of the horizontal momentum eqns → gradient of

geopotential
I velocity incompressible ~∇ · ~v = 0

Additional change of vert. coord. ("pseudo-height") +
smallness of the vertical velocity → hydrostatic relation
standard, up to a sign.



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

Equations of motion

In the absence of forcing/dissipation :

∂~vh

∂t
+ ~v · ~∇~vh + f ẑ ∧ ~vh = −~∇hφ, (28)

−g
θ

θ0
+
∂φ

∂z̄
= 0, (29)

∂θ

∂t
+ ~v · ~∇θ = 0; ~∇ · ~v = 0. (30)

Identical to oceanic primitive equations with σ → −θ.
Forcing/dissipation : external forces + viscosity in (28),
thermal sources + thermoconductivity in (30)
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Conservative form and verical averaging
Equations of horizontal motion

∂t(ρu) +∂x(ρu2) +∂y (ρvu) +∂z(ρwu)− f ρv = −∂xp, (31)

∂t(ρv) +∂x(ρuv) +∂y (ρv2) +∂z(ρwv) + f ρu = −∂yp, (32)

Integration between two material surfaces z1,2.
By definition :

w |zi
=

dzi

dt
= ∂tzi + u∂xzi + v∂yzi , i = 1, 2. (33)

Leibnitz formula :

∫ z2

z1
dz∂xF = ∂x

∫ z2

z1
dzF − ∂xz2 F |z2 + ∂xz1 F |z1 (34)
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Motion of material surfaces

g f/2
z

x

z2

z1w1= dz1/dt

w2= dz2/dt
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Integrated momentum equations

Using (33), (34) we get :

∂t

∫ z2

z1
dzρu + ∂x

∫ z2

z1
dzρu2 + ∂y

∫ z2

z1
dzρuv

− f
∫ z2

z1
dzρv = −∂x

∫ z2

z1
dzp − ∂xz1 p|z1 + ∂xz2 p|z2 .

∂t

∫ z2

z1
dzρv + ∂x

∫ z2

z1
dzρuv + ∂y

∫ z2

z1
dzρv2

+ f
∫ z2

z1
dzρu = −∂y

∫ z2

z1
dzp − ∂yz1 p|z1 + ∂yz2 p|z2 .
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Integrated continuity equation :

∂t

∫ z2

z1
dzρ+ ∂x

∫ z2

z1
dzρu + ∂y

∫ z2

z1
dzρv = 0. (35)

Integrated density + hydrostatics :

µ =

∫ z2

z1
dzρ = − 1

g
(
p|z2 − p|z1

)
, (36)

Introducing density-weighted vertical average :

〈F 〉 =
1
µ

∫ z2

z1
dzρF . (37)
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Equations for the averages :

∂t (µ〈u〉) + ∂x
(
µ〈u2〉

)
+ ∂y (µ〈uv〉)− f µ〈v〉 =

− ∂x

∫ z2

z1
dzp − ∂xz1 p|z1 + ∂xz2 p|z2 , (38)

∂t (µ〈v〉) + ∂x (µ〈uv〉) + ∂y
(
µ〈v2〉

)
+ f µ〈u〉 =

− ∂y

∫ z2

z1
dzp − ∂yz1 p|z1 + ∂yz2 p|z2 , (39)

∂tµ+ ∂x (µ〈u〉) + ∂y (µ〈v〉) = 0. (40)
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Pressure and mean-field approximation

Expression for pressure
Pressure inside the layer (z1, z2) in terms of pressure at the
lower surface and position :

p(x , y , z , t) = −g
∫ z

z1
dz ′ρ(x , y , z ′, t) + p|z1 . (41)

Closure hypothesis :
Weak variations in the vertical (columnar motion),
correlations decoupled :

〈uv〉 ≈ 〈u〉〈v〉, 〈u2〉 ≈ 〈u〉〈u〉, 〈v2〉 ≈ 〈v〉〈v〉. (42)

Remark : corrections may be intruduced via turbulent
viscosity/diffusivity.
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Mean density and pressure

Mean density

ρ̄ =
1

(z2 − z1)

∫ z2

z1
dzρ, µ = ρ̄(z2 − z1). (43)

Pressure in terms of ρ̄ :

p(x , y , z , t) ≈ −g ρ̄(z − z1) + p|z1 . (44)

Hypothesis : ρ̄ = const (ρ̄(x , y , t) also possible → Ripa’s
equations).
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Master equations

For any pair of material surfaces :

Momentum :

ρ̄(z2 − z1)(∂t〈vh〉+ 〈vh〉 · ∇h〈vh〉+ f ẑ ∧ 〈vh〉) =

−∇h

(
−g ρ̄

(z2 − z1)2

2
+ (z2 − z1) p|z1

)
−∇hz1 p|z1 +∇hz2 p|z2 . (45)

Mass :

(z2 − z1)t +∇h · ((z2 − z1)〈vh〉) = 0. (46)
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Multi-layer Rotating Shallow Water models
Workflow

I Choose N material surfaces z1, z2, ..., zN

I Write down the master equations for each layer
(zi+1, zi ), i = 1, 2,N − 1

I Apply appropriate boundary conditions at z1,N

I Require continuity of pressure across each interface

Generalizations
I Non-constant ρ̄ = ρ̄(x , y , t) ⇒ advection of ρ̄ +

additional term in the pressure gradient
I Deviations from the mean-field and/or molecular

dissipation/diffusion ⇒ terms ∝ ∇2
hvh, ∇2

h(zi+1 − zi ) in
the momentum and mass equations

I Additional fluxes across the interfaces (convection,
exchanges with boundary layers) : to be added while
expressing wi in terms of dzi/dt.
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Example : rotating shallow water (RSW), 2 layers

Configuration 2 layers, rigid lid
Application of equations (45) to the fluid between the flat
bottom z1 = 0 and the lid z3 = H. Choose a material surface
z = z2(x , y , t) ≡ h(x , y , t) inside the fluid,
~∇h → ~∇, ~vh → v. Vertical boundaries - material surfaces .
Generalization to non-trivial topography : z1 → b(x , y).

g f/2

z

x

h

H

p2

p1

v2

v1 rho1

rho2
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Equations of motion
v1(2), ρ̄1(2) - velosity and density in the lower (upper) layer.

∂tv2 + v2 · ∇v2 + f ẑ ∧ v2 = − 1
ρ̄2
∇ p|H (47)

∂tv1 +v1 ·∇v1 + f ẑ∧v1 = − 1
ρ̄1
∇ p|H −g

ρ̄1 − ρ̄2

ρ̄1
∇h, (48)

∂th +∇ · (v1h) = 0 , (49)

∂t(H − h) +∇ · (v2(H − h)) = 0 , (50)
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Classical one-layer RSW model
2-layer RSW in the limit ρ̄2 → 0 ⇒

∂tv + v · ∇v + f ẑ ∧ v + g∇h = 0 , (51)

∂th +∇ · (vh) = 0 ⇒ (52)

Motion of fluid columns :

g f/2
z

h

v

x

y

If non-trivial bathymetry : h→ h − b(x , y) in (52).
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Conservation laws - RSW model

Energy
By construction, equations (51), (52) express the local
momentum and mass conservation. Energy density :

e = h
v2

2
+ g

h2

2
(53)

obeys the conservation law :

∂te +∇ ·
(

vh
(

v2

2
+ gh

))
= 0, (54)

and total energy, E =
∫

dxdy e, is constant for isolated
system.
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Potential vorticity - RSW model
Specific Lagrangian conservation law : of potential vorticity q
(PV), which is built from relative vorticity ζ = vx − uy ,
Coriolis parameter f , and the fluid depth h.

q =
ζ + f

h
. (55)

Here ζ + f -absolute vorticity, f - planetary vorticity.
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Lagrangian conservation :

dq
dt
≡ (∂t + v · ∇) q = 0, (56)

is obtained by combining equations of vorticity :

d(ζ + f )

dt
+ (ζ + f )∇ · v = 0, (57)

and continuity
dh
dt

+ h∇ · v = 0 : (58)

d
dt
ζ + f

h
=

1
h

d
dt

(ζ + f )− ζ + f
h2

d
dt

h = 0, (59)
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Eulerian expression
Conservation of PV is expressed as time - independence of
any integral : ∫

dxdy hF(q), (60)

over the domain of the flow, shere F is arbitrary function.

Qualitative view of the RSW dynamics :

Two-dimensional motion of fluid columns of variable depth,
each preserving its potential vorticity.
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Spectrum of small perturbations - RSW model

Linearised equations :
Perturbations about the state of rest v = 0, h = H0 = const
on the f -plane :

ut − fv + gηx = 0,
vt + fu + gηy = 0, (61)

ηt + H0(ux + vy ) = 0,

Fourier-transform
Solutions - harmonic waves :

(u, v , η) = (u0, v0, η0)e i(ωt−k·x), (62)

with ω, k - frequency and wavenumber, respectively.⇒
algebraic system for (u0, v0, η0).
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Dispersion relation

Solvability condition :

det

 iω −f −igkx
f iω −igky

−iH0kx −iH0ky iω

 = 0,⇒ (63)

ω
(
ω2 − gH0k2 − f 2) = 0. (64)

Three roots :
I Stationary solutions ω = 0
I Propagative waves with dispersion relation,

Inertia-gravity waves :

ω =
√

gH0k2 + f 2 ≥ f . (65)
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Preliminary conclusions.

I Two dynamical actors : vortices and waves
I Vortex motions : slow, related to Lagrangian

conservation of PV ; zero frequency in lineair
approximation .

I Wave motions : fast
I Frequencies of waves and vortices are separated by the

spectral gap.



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

General equations of horizontal motion

∂~vh

∂t
+ ~v · ~∇~vh + f ẑ ∧ ~vh = −~∇hΦ. (66)

f = f0(1 + βy), Φ = Φ0 + φ = g(H0 + h) (67)

h - geopotential height.

Scaling for vortex motions

I Velocity ~vh = (u, v), u, v ∼ U, w ∼W << U
I Unique horizontal scaleL,
I Vertical scale H << L,
I Time-scale : turnover time T ∼ L/U.

Geostrophic equilibrium :
Equilibrium between the Coriolis and pressure forces :

f ẑ ∧ vg = −∇hΦ (68)
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Characteristic parameters of horizontal motions

Intrinsic scale : deformation (Rossby) radius :

Rd =

√
gH0

f0
(69)

Non-dimensional parameters :

I Rossby number : Ro = U
f0L ,

I Burger number : Bu =
R2

d
L2 ,

I Characteristc nonlinearity : λ = ∆H/H0, where ∆H is a
typical value of h,

I Non-dimensional gradient of f : β̃ ∼ βL
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Non-dimensional RSW quations

Ro (∂tv + v · ∇v) + (1 + β̃y)ẑ ∧ v = −λBu
Ro
∇η , (70)

λ∂tη +∇ · (v(1 + λη)) = 0 . (71)

Examples of dynamical regimes close to geostrophy :
Ro ≡ ε� 1

I Quasi-geostrophic(QG) : small nonlinearity :

λ ∼ Ro,⇒ Bu ∼ 1,⇒ L ∼ Rd , β̃ ∼ Ro (72)

I Frontal geostrophic (FG) : strong nonlinearity :

λ ∼ 1,⇒ Bu ∼ Ro,⇒ L� Rd , β̃ ∼ Ro (73)
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Dearivation of 1-layer QG equations

ε (∂tv + v · ∇v) + (1 + εy)ẑ ∧ v = −∇η , (74)

ε∂tη +∇ · (v(1 + εη)) = 0 . (75)

Asymptotic expansions in Ro :

v = v(0) + εv(1) + ε2v(2) + ... (76)

Order ε0 - geostrophy :

u(0) = −∂yη, v (0) = ∂xη ⇒ ∂xu(0) + ∂yv (0) = 0, (77)

d (0)

dt
· · · = ∂t ...+ u(0)∂x ...+ v (0)∂y ... ≡ ∂t · · ·+ J (η, ...).

(78)
J (A,B) ≡ ∂xA∂yB − ∂yA∂xB. (79)
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Order ε1 - quasi-geostrophy :

u(1) = −d (0)

dt
v (0) − yu(0), v (1) =

d (0)

dt
u(0) − yv (0),⇒ (80)

∂xu(1) + ∂yv (1) = −d (0)

dt
~∇2η − v (0),⇒ (81)

d (0)

dt

(
η − ~∇2η

)
− ∂xη = 0↔ d (0)

dt

(
η − ~∇2η − y

)
= 0.
(82)

Restituted dimensions

d (0)

dt

(
f 2
0

gH0

(
gh
f0

)
− ~∇2

(
gh
f0

)
− f0(1 + βy)

)
= 0.



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

QG equation on the β- and f -planes :
β - plane

∂tη − ∂t ~∇2η − J (η, ~∇2η)− ∂xη = 0. (83)

Physical meaning : conservation of PV in QG approximation.
Formal linearisation :

∂tη − ∂t ~∇2η − ∂xη = 0,⇒ (84)

Waves : η ∝ expi(kx+ly−ωt) → dispersion : ω = − k
k2+l2+1 →

Rossby waves.

f -plane

∂tη − ~∇2∂tη − J (η, ~∇2η) = 0. (85)

⇔ 2D Euler equations for incompressible fluid with
streamfunction η and modified streamfunction - vorticity
relation : ζ = −η + ~∇2η. Rd →∞ - standard 2D Euler.
.



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

Adding dissipation and forcing

Molecular viscosity
Non-dimensional Navier-Stokes : Euler + 1

Re∇
2~v ⇒ Vorticity

equation : Euler + 1
Re∇

2ζ.

Interaction of free QG flow with boundary layer
Viscosity ⇒ boundary layer. Rotating fluid : Ekman layer.
Small Rossby numbers ⇔ QG regime : vertical velocity on
top of the boundary layer : w(x , y , t) ∝ ζ ⇒ term
−rζ, r = const in the r.h.s. of the vorticity equation.

Forced-dissipative QG equation :

dQG ζ

dt
= −rζ +

1
Re
∇2ζ + F , (86)

where dQG ζ
dt · · · = ∂t · · ·+ J (η, . . . ) - QG advection,

ζ = − 1
R2

d
η + ~∇2η + βy in dimensionful terms.
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Parameters and scales of the 2-layer RSW

Parameters :
I Rossby number : Ro = U

f0L
I Non-dimensional typical deviation of the interface : λ
I Non-dimensional gradient of Coriolis parameter : β̃
I Aspect ratio : d = H1

H2
= D1

D2
, D1,2 =

H1,2
H

I Stratification parameter : N = 2ρ2−ρ1ρ2+ρ1

I Burger number : Bu =
R2

d
L2 , R2

d = NgH
f 20

Characteristic scales :
Baroclinic deformation radius : R2

d = g ′H
f0 , g ′ - reduced

gravity g ′ = gN ; Prssures in the layers : Pi ∼ ρiULf0.
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Non-dimensional equations

ε
di

dt
vi + (1 + β̃y)ẑ ∧ vi = −~∇πi , i = 1, 2. (87)

−λd1

dt
η + (D1 − λη)~∇ · v1 = 0

λ
d2

dt
η + (D2 + λη)~∇ · v2 = 0 (88)

π2 − π1 +
N
2

(π2 + π1) =
λBu
2ε

η. (89)

di

dt
= ∂t + vi · ∇ (90)
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QG regime

λ ∼ β̃ ∼ ε� 1, ⇒ L ∼ Rd (91)

Asymptotic expansion in ε⇒

ui = u(0)
i − ε

[
∂tv

(0)
i + J (πi , v

(0)
i ) + yu(0)

i

]
+ ...

vi = v (0)
i + ε

[
∂tu

(0)
i + J (πi , u

(0)
i )− yv (0)

i

]
+ ... (92)
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Geostrophy :

u(0)
i = −∂yπi , v (0)

i = ∂xπi . (93)

Divergence :

∂xu
(1)
i + ∂yv (1)

i = −
[
∂t ~∇2πi + J (πi , ~∇2πi ) + ∂xπ

]
(94)

Equations for η :

∂tη+J (πi , η)−(−1)iDi

[
∂t ~∇2πi + J (πi , ~∇2πi ) + ∂xπ

]
= 0, i = 1, 2.
(95)



Large-Scale
Flows 1. Models.

Introduction
Review
Workflow

Crash course in
fluid dynamics
Reminder :
perfect fluid
Molecular
dissipation

Primitive
equations
Rotating frame.
Spherical
coordinates.
Traditional
approximation.
Tangent plane
"Primitive"
equations (PE)

Vertically
averaged models
Vertical averaging
of PE
Vortices and
waves

Vortex dynamics
Vortex dynamics
in 1-layer RSW
2-layer QG model
QG dynamics by
time averaging

Summary

2-layer QG equations

Equations for the pressure layerwise :

d (0)
i
dt
[
∇2πi − (−1)iD−1

i η + y
]

= 0 , i = 1, 2. (96)

where

d (0)
i
dt

(...) := ∂t (...) + J (πi , ...) , i = 1, 2 (97)

Standard limit : weak stratification → ρ2 → ρ1 ⇒
η = π2 − π1

Remarks : 1) on the f - plane - coupled 2D Euler equations
with modified streamfunction - vorticity relation ; 2) forcing
and dissipation are introduced as in 1-layer case.
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RSW equations at small Ro and 2 temporal scales

Hypotheses :
I f - plane, open domain,
I unique spatial scale L,
I small Rossby numberε, regime QG : λ ∼ ε,
I rapide t ∼ f −1

0 and slow t1 ∼ (εf0)−1 time-scales

Non-dimensional equations :

(∂t + ε∂t1)v + ε(v · ∇v) + ẑ ∧ v +∇h = 0 , (98)

(∂t + ε∂t1)h + (1 + εh)∇ · v + εv · ∇h = 0 , (99)

∂tQ + εv · ∇Q = 0 , Q = ε
ζ − h
1 + εh

− PV anomaly. (100)
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Geostrophic adjustement
Cauchy problem with localised i.c.

u|t=0 = uI , v |t=0 = vI , h|t=0 = hI . (101)

Multi-scale asymptotic expansions

v = v0(x , y ; t, t1, ...) + εv1(x , y ; t, t1, ...) + ... (102)
h = h0(x , y ; t, t1, ...) + εh1(x , y ; t, t1, ...) + ...,

Slow-fast decomposition order by order in ε :

hi = h̄i (x , y ; t1, ...) + h̃i (x , y ; t, t1, ...), i = 0, 1, 2, ... (103)

h̄i (x , y ; t1, ...) = lim
T→∞

1
T

∫ T

0
hi (x , y , t, t1, ...) dt, (104)
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Approximation ε0

∂tv0 + ẑ ∧ v0 = −∇h0 , (105)

∂t(ζ0 − h0) = 0 , (106)

where ζ0 = ẑ · ∇ ∧ v0 - relative vorticity, and PV equation is
used. I.c. :

u0|t=0 = uI , v0|t=0 = vI , h0|t=0 = hI . (107)

Re-writing (105) in terms of relative vorticity ζ and
divergence D = ∇ · v0 :

∂tζ0 + D0 = 0 , (108)

∂tD0 − ζ0 = −∇2h0 . (109)

Integration of (106) in fast time t :

ζ0 − h0 = Π0 , (110)

where Π0 is yet unknown function of x , y , t1 ( integration
"constant" ).
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Approximation ε0 - contd

Elimination of ζ0 et D0- linear inhomogeneous equation for
h0 :

− ∂2h0

∂t2 − h0 +∇2h0 = Π0(x , y ; t1, t2, ...) . (111)

Solution - fast + slow :

h0 = h̃0(x , y ; t, ...) + h̄0(x , y ; t1, ...) (112)

− ∂2h̃0

∂t2 − h̃0 +∇2h̃0 = 0 ; (113)

− h̄0 +∇2h̄0 = Π0 (114)

Klein - Gordon (KG) and Helmholtz equations.
Π0 : geostrophic PV constructed with the help of slow
component h̄0.
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Initialisation problem :
How to separate i.c. in slow/fast ?

Response (unique at ε→ 0)

I By definition :

Π0(x , y ; 0) = ∂xvI − ∂yuI − hI ≡ ΠI (x , y) (115)

I Determination of initial value h̄0I de h̄0 by inversion :

− h̄0I +∇2h̄0I = ΠI , ⇒ h̄0I = −(∇2 − 1)−1ΠI . (116)

I Determination of initial value h̃0I de h̃0 :

h̃0I = hI − h̄0I . (117)

I Second i.c.for h̃0 ( PV and ζ - D eqns) :

∂t h̃0

∣∣∣
t=0

= −DI ≡ ∂xuI + ∂yvI . (118)
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Approximation ε0 - contd

Decomposition for v :

v0 = ṽ0(x , y ; t, ...) + v̄0(x , y ; t1, ...) , (119)

slow components verify geostrophic relation :

v̄0 = ẑ ∧∇h̄0 (120)

and slow ones obey the equations :

∂t ṽ0 + ẑ ∧ ṽ0 = −∇h̃0 (121)

with i.c. :

ũ(0)
I = uI − ū0I ; ṽ (0)

I = vI − v̄0I , (122)

where ū0I , v̄0I , h̄0I verify (120). Linearized PV ζ̃0 − h̃0 of the
fast component is identically zero.
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Approximation ε0 - contd

Fast component solution for h :
Inertia-gravity waves propagating out of initial perturbation ;
generated by its non-balanced part ũ(0)

I , ṽ (0)
I , h̃0I :

h̃0(x; t) =
∑
±

∫
dkH(±)

0 (k)e i(k·x±Ωkt) , (123)

where

H(±)
0 (k) =

1
2

(
ˆ̃h0I (k)± i

D̂I (k)

Ωk

)
, (124)

and notation .̂.. is used for Fourier-transforms.
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Approximation ε0 - end

Résumé of the first approximation

I Fast and slow components are defined unambiguously
I Slow and fast motions are dynamically split

(non-interacting)
I Fast part is completely resolved :inertia-gravity waves

propagate out of initial perturbation
I Evolution of the slow component remains to be

determined
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Approximation ε1

Momentum equations :

∂tv1 + ẑ ∧ v1 = −∇h1 − (∂t1 + v0 · ∇) v0 . (125)

PV equation, first order :

∂t (ζ1−h1)−Π0 ∂t h̃0+ũ(0)∂xΠ0+ṽ (0)∂y Π0 = −∂t1Π0−J(h̄0,Π0) .
(126)

Integrability condition ↔ averaging in t :

∂t1Π0 + J(h̄0,Π0) ≡ ∂t1(∇2h̄0 − h̄0) + J(h̄0,∇2h̄0) = 0 .
(127)

⇒ QG equation . Originates from elimination of resonances
for the fast component at order 1.
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Numerical simulations of the geostrophic
ajustement. Initial perturbation of h.

t=0.000
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Initial stage of adjustement, h field.

t=1.650
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Initial stage of adjustement, h field.

t=12.000
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Initial stage of adjustement, velocity field.
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Advanced stage of adjustement, velocity field.
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Preliminary conclusions : QG model(s)

In the limit Ro → 0, and with the choce of vortex (slow)
time-scale

I Inertia-gravity waves are filtered out
I Resulting equations for vortex motions in the f -plane

approximation are 2D Euler equations with modified
streamfunction-vorticity relation

I Specific strongly anysotropic vortex waves (Rossby
waves) are present in the β - plane approximation

I QG dynamics ⇔ fast-time averaging of the full
equations.
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Hierarchy of simplified models :

I Large-scale atmospheric and oceanic motions : same
primitive equations up to changes of variables

I Typical horizontal scale � vertical scales → vertical
averaging ⇒ rotating shallow water equations

I Wave-vortex dichotomy ; vortex - slow, waves - fast
I Fast-time averaging at small Rossby numbers -

quasi-geostrophic vortex dynamics equations ≈ 2D
Euler/Navier -Stokes
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