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Surface signature of internal waves

Strait of Gibraltar - ESA Sulu Sea - NASA

Internal waves are not directly visible to the observer,
however their surface signature appears as strips of rough water
(the ‘rip’), producing changes in reflectance on satellite images



Rip phenomenon

Schematic of internal-surface wave interaction (www.ifm.zmaw.de/ ers-sar)

Surface roughness induced by an internal wave (Forgot where?)



Rip phenomenon

http://myweb.dal.ca/kelley/SLEIWEX/gallery (Ile Aux Lievres, Quebec)



Millpond effect

Rip approaching the vessel (Osborne & Burch 1980)



Millpond effect

During and after the rip (Osborne & Burch 1980)



Millpond effect
From Osborne & Burch (1980):
“Observable in the distance is a long band of breaking waves about
1.8 m high approaching from due west ... the rip continues to
approach ... the rip band reaches the survey vessel with 1.8-m waves.
This condition persisted for several minutes until the trailing edge of
the rip passed by ... and the wave heights quickly dropped to less than
0.1 m. The surface of the Andaman Sea had the appearance of a
millpond”.



Ray approach

Phase-averaged model for surface waves

∂tN +∇kN · k̇ +∇xN · ẋ = S

combined with ray equations

ẋ = ∇kω , k̇ = −∇xω

and
ω =

√
gk + k · U

where

N : spectral density (wave action) for surface waves

ω : linear dispersion relation

U : (prescribed) near-surface current induced by internal waves
See e.g. Gargett & Hughes (1972), Basovich & Talanov (1977), Alpers (1985), Gasparovic et al. (1988),

Bakhanov & Ostrovsky (2002), etc.



Ray approach

Schematic of surface modulation by internal waves (www.ifm.zmaw.de/ ers-sar)



Wave blocking

In the ray approach, the millpond effect is explained by focusing
and breaking of surface waves due to opposing currents, leaving
calmer water after the internal wave passage

See e.g. Peregrine (1976), Phillips (1977), Chawla & Kirby (2002), etc.



(2D) Two-layer formulation for internal-surface waves

See e.g. Choi & Camassa (1999)

g : acceleration due to gravity
ρ, ρ1 : densities of the lower and upper fluids respectively
(ρ > ρ1 in stable stratification, ρ1/ρ ∼ 1 in oceanic conditions)
h, h1 : mean depths of the lower and upper fluids
η(x, t) : interface displacement, x ∈ R, t ≥ 0
η1(x, t) : surface elevation



Governing equations

Each fluid is incompressible, inviscid and the flow is irrotational

∆ϕ = 0 , for − h < y < η

∆ϕ1 = 0 , for η < y < h1 + η1

∂yϕ = 0 , on y = −h

∂tη + ∂xη ∂xϕ− ∂yϕ = 0 , on y = η

∂tη + ∂xη ∂xϕ1 − ∂yϕ1 = 0 , on y = η

ρ
(
∂tϕ+ 1

2 |∇ϕ|
2 + gη

)
− ρ1

(
∂tϕ1 + 1

2 |∇ϕ1|2 + gη
)

= 0 , on y = η

∂tη1 + ∂xη1 ∂xϕ1 − ∂yϕ1 = 0 , on y = h1 + η1

∂tϕ1 + 1
2 |∇ϕ1|2 + gη1 = 0 , on y = h1 + η1

where ϕ(x, y, t) and ϕ1(x, y, t) are the velocity potentials for
the lower and upper fluids respectively



Hamiltonian formulation

See e.g. Benjamin & Bridges 1997, Zakharov & Kuznetsov 1997

Hamiltonian (total energy)

H =
1
2

∫ (
ξ
ξ1

)>( G11B−1G(η) −G(η)B−1G12

−G21B−1G(η) 1
ρ1

G22 − ρ
ρ1

G21B−1G12

)(
ξ
ξ1

)
dx

+
1
2

∫
g(ρ− ρ1)η2 dx +

1
2

∫
gρ1(h1 + η1)2 dx

with ξ1(x, t) = ρ1 ϕ1|y=h1+η1
and ξ(x, t) = (ρϕ− ρ1 ϕ1)|y=η

Canonical equations of motion

∂t

(
η1
ξ1

)
=

(
0 1
−1 0

)(
δη1 H
δξ1

H

)
, ∂t

(
η
ξ

)
=

(
0 1
−1 0

)(
δηH
δξH

)

Convenient for perturbation calculations

H = H0 + εH1 + ε2H2 + · · ·+ εmHm , ε� 1

Craig et al. 2005, 2012



Dirichlet–Neumann operators

Following Craig & Sulem (1993)

For the lower layer

G(η)Φ(x) = ∇ϕ · N(1 + |∂xη|2)1/2

For the upper layer
(

G11 G12
G21 G22

)(
Φ1(x)
Φ2(x)

)
=

(
−(∇ϕ1 · N)(x, η(x))(1 + (∂xη(x))2)1/2

(∇ϕ1 · N1)(x, h1 + η1(x))(1 + (∂xη1(x))2)1/2

)

We can use their Taylor series expansions in η and η1

G(η) =
∞∑

j=0

G(j)(η)

(
G11(η, η1) G12(η, η1)
G21(η, η1) G22(η, η1)

)
=

∞∑
m1,m2=0

G
(m0,m1)
11 (η, η1) G

(m0,m1)
12 (η, η1)

G
(m0,m1)
21 (η, η1) G

(m0,m1)
22 (η, η1)

 .



Dirichlet–Neumann operators

For example, the first terms in these series are given by

G(0) = D tanh(hD)(
G(0)

11 G(0)
12

G(0)
21 G(0)

22

)
=

(
D coth(h1D) −Dcsch(h1D)
−Dcsch(h1D) D coth(h1D)

)
(

G(10)
11 (η, η1) G(10)

12 (η, η1)

G(10)
21 (η, η1) G(10)

22 (η, η1)

)
=

(
D coth(h1D)η(x)D coth(h1D)− Dη(x)D −D coth(h1D)η(x)Dcsch(h1D)
−Dcsch(h1D)η(x)D coth(h1D) Dcsch(h1D)η(x)Dcsch(h1D)

)

(
G(01)

11 (η, η1) G(01)
12 (η, η1)

G(01)
21 (η, η1) G(01)

22 (η, η1)

)
=

(
−Dcsch(h1D)η1(x)Dcsch(h1D) Dcsch(h1D)η1(x)D coth(h1D)
D coth(h1D)η1(x)Dcsch(h1D) −D coth(h1D)η1(x)D coth(h1D) + Dη1(x)D

)

where D = −i∂x



Coupled long-wave/modulational regime

We consider long waves at the interface

η ∼ ε2r(X, τ), X = εx, τ = ε3t

where
a
h

=

(
h
l

)2

= ε2 � 1

(a: internal wave amplitude, l: internal wavelength)

Smaller modulated monochromatic waves at the surface

η1 ∼ ε1v(X, τ1)eik0x−iω(k0)t + c.c., τ1 = ε2t

where
k0a1 = ε1 = ε2+α , α > 0

(a1: surface wave amplitude, k0: surface wave number)



KdV-linear Schrödinger system

See also Kawahara et al. 1975, Ma 1983, Lee et al. 2007

At lowest order in ε, we find

∂τ r = −a1r∂Xr − a2∂
3
Xr (KdV)

−i∂τ1v = −δ2∂2
Xv + r(X) v (Schrödinger)

with the resonance condition

(surface group velocity) ∂kω(k0) = c (internal phase velocity)

The coefficients a1, a2 and δ depend on the physical parameters
ρ, ρ1, h and h1

An internal wave solution is given by the soliton

r(X) =
3a2r0

a1
sech2

(√
r0

2
X
)

which plays the role of a potential in the linear Schrödinger
equation for surface waves



Coefficients

a1 (dashed line) and a2 (solid line) as functions of h1/h for ρ1/ρ = 0.95 (left), 0.99 (center) and 0.998 (right)

δ2 as a function of h1/h for ρ1/ρ = 0.95 (thin line), 0.99 (thick line) and 0.998 (dashed line)

For ρ1/ρ ∼ 1 and h1/h < 1, the internal soliton is of depression
(i.e. potential well) and δ2 � 1



Internal solitary waves

Off the Oregon coast - NOAA

See e.g. Helfrich & Melville 2006, Grimshaw, Pelinovsky & Talipova 2007



Schrödinger equation

Looking for solutions

v(X, τ1) =

∫
eiλτ1u(X, λ)dµ(λ)

the linear Schrödinger equation reduces to the eigenvalue
problem

−δ2u′′ + r u = λ u

The spectrum consists of a finite number of negative eigenvalues

λ0 < λ1 < · · · < λJ < 0

along with the continuous part λ > 0

For ρ1/ρ ∼ 1 and h1/h < 1, recall δ2 � 1 which implies a large
number of negative eigenvalues λj with corresponding localized
bound states uj(X) characterized by their number of zeros



Analogy with quantum mechanics

Consider the 1D Schrödinger equation for electrons

~2

2m
d2ψ

dx2 +
[
λ− V(x)

]
ψ = 0

where
ψ : wave function (probability density) for electrons
V : attractive potential due to the nucleus
~ = 6.62× 10−34 m2 kg s−1 : Planck’s constant



Analogy with quantum mechanics

Scattering theory for the Schrödinger equation says

λ < V(±∞) : discrete/quantized spectrum (bound states)
Electrons that are ‘trapped’ near the nucleus

λ > V(±∞) : continuous spectrum (scattering states)
The ‘other guys’ who wander far away ...



Bound states

Bound states corresponding to λ0 (ground state, blue), λ2 (green) and λ20 (red)

N = 8192 collocation points are used



Numerical simulations

Left: internal wave with surface signature for ρ1/ρ = 0.997, h1/h = 0.266, a/h = 0.069 and k0h = 396.4 (Andaman Sea)

Right: internal wave with surface signature for ρ1/ρ = 0.998, h1/h = 0.035, a/h = 0.192 and k0h = 3696.2 (off the Oregon coast)

Blue line: internal wave η
Green line: surface signature η1 (ground state + oscillations)
=⇒ the rip



Looks like ...

Schematic of internal-surface wave interaction (www.ifm.zmaw.de/ ers-sar)



Continuous spectrum λ > 0

By successive approximations, consider the solution for X < −A

u(X) = e−i
√
λX/δ + bei

√
λX/δ

+
1

δ
√
λ

∫ X

−∞
sin

[√
λ

δ
(X − Y)

]
r(Y)

(
e−i
√
λY/δ + bei

√
λY/δ

)
dY

and, for X > A,

u(X) = c

(
e−i
√
λX/δ − 1

δ
√
λ

∫ X

−∞
sin

[√
λ

δ
(X − Y)

]
r(Y)e−i

√
λY/δdY

)



Continuous spectrum λ > 0

After veeery looooonnngg calculations, we find the following
Proposition:
In the limit δ, λ→ 0 with

√
λ/δ → 0, the coefficients of reflection

and transmission have the asymptotic values

b = −1 + O(
√
λ)

c = 0 + O(
√
λ)

respectively

In other words:
Quasi-monochromatic surface waves tend to be completely
reflected from the internal wave region

The fact that very little is transmitted may contribute to
the millpond effect



Summary

For an internal soliton moving into an ambient sea state:

Absorption into bound states above the soliton (the rip)

Reflection from and transmission through the soliton region

Total reflection in the monochromatic limit
√
λ/δ → 0

Wave absorption + reflection provide an explanation
for the millpond effect (no wave breaking needed)



A ‘dirty’ analogy

A passing internal wave sweeps the sea surface of waves



The end ...

THANK YOU!


