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Abstract. Asymptotic multi-layer analyses and computation of solutions for tur-
bulent flows over steady and unsteady monochromatic surface wave are reviewed, in
the limits of low turbulent stresses and small wave amplitude. The structure of the
flow is defined in terms of asymptotically-matched thin-layers, namely the surface
layer and a critical layer, whether it is ‘elevated’ or ‘immersed’, corresponding to its
location above or within the surface layer. The results particularly demonstrate the
physical importance of the singular flow features and physical implications of the
elevated critical layer in the limit of the unsteadiness tending to zero. These agree
with the variational mathematical solution of Miles [1] for small but finite growth
rate, but they are not consistent physically or mathematically with his analysis in
the limit of growth rate tending to zero. As this and other studies conclude, in
the limit of zero growth rate the effect of the elevated critical layer is eliminated
by finite turbulent diffusivity, so that the perturbed flow and the drag force are
determined by the asymmetric or sheltering flow in the surface shear layer and its
matched interaction with the upper region. But for groups of waves, in which the
individual waves grow and decay, there is a net contribution of the elevated critical
layer to the wave growth. Critical layers, whether elevated or immersed, affect this
asymmetric sheltering mechanism, but in quite a different way to their effect on
growing waves. These asymptotic multi-layer methods lead to physical insight and
suggest approximate methods for analysing higher amplitude and more complex
flows, such as flow over wave groups.
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1. Introduction

Various mechanisms have been proposed and evaluated to describe
turbulent winds over water waves and thence to explain how such
waves are generated. But despite 100 years of theoretical research and
more recently, detailed measurements and numerical computations, the
nature of these mechanisms and their relative magnitude remain con-
troversial even for the ideal case of monochromatic waves. Conferences
of wave experts concluded [2,3] that more research is necessary even
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on ideal cases of steady and unsteady waves in order to resolve these
controversies, and to improve in the forecasting of waves and their
effects on weather, climate and forces on ocean structures.

In this paper, written in honour of the late Milton Van Dyke, it is
shown that the different mechanisms affecting air flow over waves and
their relative contributions can be quantified and understood by using
the modern methods of asymptotic multi-layer (AML) analysis [4.5].
An advantage of AML methods is that they also indicate how different
mechanisms can affect each other through weak non-linear interactions.

Many authors have applied AML methods to turbulent flows, includ-
ing those over complex surfaces; first by making statistical assumptions,
for example by deriving approximate equations for statistical moments,
(usually first (i.e. mean) and second-order moments), and then assum-
ing the asymptotic limit of ε→ 0, where ε is the ratio, U∗/U0. Here U∗
is the square root of the Reynolds shear stress or ‘friction velocity’, and
U0 is the undisturbed mean velocity. Another asymptotic assumption
for the analysis of waves is that their slope a/L is also very small, i.e.
a/L → 0, where a is the wave height and L is its wavelength. The
third asymptotic limit used in calculating wind over waves is related
to the unsteadiness of the mean flow and the wave surface, where the
perturbations grow in proportion to exp(cit/L), where ci/U0 > 0 and
ci is the complex part of the wave speed [6]. The equations used in
these analyses depend on the turbulence modelling used, as this paper
demonstrates.

The analysis of wind over waves – which is usually expressed in a
coordinate frame moving with the wave speed cr also requires consider-
ing its multi-layer structure-defined in fig. 1 – which varies depending
on the key variable of the wave speed relative to the friction velocity
cr/U∗. The asymptotic layers are located at the following levels:

(i) critical layer above the waves surface zc, where U(zc) = cr, and
U(z) is the undisturbed velocity profile;

(ii) surface shear layer extending upwards from the surface (z = 0)
over a thickness ls. Note that at the bottom of this layer there
may be an inner layer with thickness li. In flows where cr � U∗
the critical layer at zc may be ‘immersed’ within this layer.

The first models of how air flow leads to wave growth were based
on the intrinsic instability of air flow over water surfaces. For a steady
flow this is the well known Kelvin-Helmholtz (KH) instability; the flow
may be gusty and unsteady leading to unsteady KH waves [7]. Another
kind of instability mechanism is driven by growing fluctuations in the
air caused by instability in the boundary-layer air flow.
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Figure 1. Schematic diagram for flow geometry and asymptotic multi-layer structure
for analysing turbulent shear flow over steady and unsteady monochromatic waves.

These mechanisms are observed when wind is initiated over a flat
water surface [8]. It is then observed that waves propagate with a small
normalised rate of growth i.e. ci/U∗ � 1. Note that as waves grow
they have a wide distribution of wavelengths L, travelling at different
speeds. Generally they tend to form wave-groups.

Two main types of ideal model have been developed for slowly
changing waves, which we compare in detail in this paper. Models
for separated flow over high slopes (a/L ∼ 1) [9] and, for low slopes
(a/L � 1) [10,11,12] where ci = 0 have been based on concepts sim-
ilar to flows over hills, with the wind profile decelerating more on the
downwind side than on the upwind side and an acceleration of mean
flow over the top [6]. AML models enable the different processes to be
calculated and compared [13]. The dominant mechanism for low slope
waves is referred to as non-separated sheltering (NSS), which showed
how the mean velocity shear could lead to significant energy transfer
even when a/L� 1. Note that a critical layer exists in these flows since
cr > 0, as is observed in experiments and simulations [14,15], but its
effect is small because (as shown in sections 2 and 3) the simulations
near the critical layer over non-growing waves where 0 < ci <∼ U∗
do not correspond to the analytical or computed results of wind over
growing waves for 0 < ci � U∗.
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Because the steady state model of Jeffreys [9], which effectively as-
sumed a/L ∼ 1, could not explain the transfer of energy into typical
waves with low slope, a new theory was developed by Miles [1] by
considering how the mean velocity profile U(z) over waves with low
slope (a/L� 1) could lead to a significant transfer of energy provided
the waves are growing slowly, i.e. U∗ � ci > 0. Miles’ inviscid analysis,
which centred on the critical layer, was not based on consistent AML
methods, but rather a selective mixture of methods. As argued here in
section 2 (and by Mastenbroek [11]), Miles’ analysis led to a dubious
conclusion (which has never been tested by rigorous numerical simula-
tion) that, when ci → 0, the unsteady result can be applied to waves
where ci = 0.

Nevertheless, with some empirical adjustment, this critical layer
(CL) model (which was ‘justified’ using approximate unstready vortex
dynamics by Lighthill [16]) is used by oceanographers and meteorolo-
gists around the world even for quite complex wave fields, which are
far from the idealised form of the theory [17,18].

A number of authors have discussed combining NSS and unsteady
CL mechanisms, perhaps applied to realistic groups of waves [19,13,20].
This will be considered in more detail in a later paper, using the AML
methods described here.

2. Steady and unsteady linear analysis of outer region flow
above the surface layer

We consider here the perturbation ∆u to the mean shear flow U(z) in
the outer region over unsteady monochromatic two-dimensional waves
above the surface layer, i.e. z > ls, where ls/L � 1, in the limit in
which ε� 1.

The wave surface zs has wavelength L = 2π/k moving with speed
cr, so that

zs = a exp{ik(x− crt) + kcit}.

The height of the critical layer zc, where U(zc) = cr, may or may not
be above ls.

The two-dimensional mean velocity field is defined by u = (U +
∆u,∆w), where by continuity

∂∆u

∂x
+
∂∆w

∂z
= 0.

The perturbation velocity ∆w = W (z)eik(x−crt)+kcit is determined by
the linearised momentum equation, in a frame of reference moving with
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the wave, where the amplitude of the perturbation, W satisfies the
inhomogeneous Rayleigh equation

∂2W

∂z2
−
(
k2 +

U ′′

U − ici

)
W = − i

k(U − ici)
∂2

∂z2

(
νe
∂2W

∂z2

)
(1)

where νe is the eddy viscosity in the critical layer, and U (z) ≡ U(z)−cr.
Note that if νe = 0, the equation (1) is the Rayleigh equation and is
singular at the critical height zc if the waves do not grow i.e. when
ci = 0. We note that when νe 6= 0 this is a truncated form of the Orr-
Sommerfeld equation. We remark that weak turbulence in the outer
region produces second order stresses, whose effects on the waves are
considered in section 3 (see also [13]).

For non-zero value of νe, the solution to equation (1) is determined
by the boundary condition at z ∼ ls, which is defined by matching
between the outer region and the surface shear layer.

As with many unsteady shear flow problems, the basic mechanisms
are best explained by considering the singularities of the governing
equations, which is associated with the term U ′′/{U(z) − (cr + ici)}
as ci → 0. For a typical monotonic mean wind profile with U(z) =
(U∗/κ) ln(z/z0) and vorticity ω = U∗/(zκ), where κ is von Kármán
constant, the peak velocity gradient is at the wave surface. However,
the most significant perturbation to the mean vorticity occurs where
the wave displacement leads to closed streamlines near z = zc [6], see
fig. 2.

The local analysis near zc, shows how the vertical profile of the in-
phase and out of phase perturbation velocity, and pressure perturbation
has a singular behavior near z = zc when 0 < ci � 1. Belcher et al.
[21] showed that the local solution in the critical layer is1

W ∼ {U (z)− ici}
{
A+B

∫ z−zc dζ

[U (ζ)− ici]2

}
(2)

where A and B are constants and can be determined by matching the
inner and the outer solutions. They showed that in the limit of slow-
growing waves ε = ciU

′′
c /U

′2
c � 1 (where the suffix c refers to evaluation

at the critical point where U = cr) and a logarithmic profile for the
mean velocity U(z) the integral (I, say) in (2) can be reduced to

1 This assumes that in the middle layer the advection term is negligible compared
with the curvature term and thus (1) reduces to W ′′ − U ′′/(U − ici)W ∼ 0.
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6 Sajjadi, Hunt & Drullion

Figure 2. (a) Mean streamlines of flow over waves viewed as moving with the waves,
whose closed loops are centred at the elevated critical height. (b) Profiles of the
horizontal velocity perturbation for the inviscid solution of equation (1) with νe = 0.
Note that the perturbations become singular as the growth rate ci → 0; (i) In phase
perturbations showing singular shearing over the crest and trough; (ii) Out of phase
perturbations showing singular peak velocities over up/down slopes.
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I ∼ ε

ciU ′c
ln(ξ − i) as ξ → ±∞

=
ε

2ciU ′c
[ln(ξ2 + 1) + 2iθ] (3)

where ξ = ζU ′c/ci, ζ = z − zc and θ is given by

tan θ = −ξ−1 = −ci/U ′c(z − zc) (4)

For a logarithmic velocity profile tan θ = εzc/(z−zc) and hence θ varies
between

θ → 0 as (z − zc)/lc →∞ and θ → π as (z − zc)/lc →∞ (5)

The imaginary part of the integral for |z − zc| � lc then varies like

Im{I} ∼ ε/ciU ′cθ = U ′′c /U
′3
c H(z − zc) as ξ → ±∞, (6)

where H(z − zc) is the Heaviside step function. The result given by
(6) is remarkable since it is independent of ci which means even for
a slowly-growing wave it leads to an out of phase component of the
motion that is independent of the growth rate, provided νe 6= 0.

The significance of the term iU ′′c /U
′3
c in the solution for I is that

it yields an out of phase contribution to the vertical velocity that
ultimately leads to the same contribution to the wave growth by the
critical layer as found by Miles [1]. This result shows the solution found
by Miles [1] is valid only when the waves grow sufficiently slowly such
that

ci � U ′czc ∼ U∗ (7)

and hence the effects of the critical layer calculated by Miles [1] are valid
only in the limit ci/U∗ ↓ 0. We remark that Miles [1] only analysed the
overall flow drag and energy input which required making a hypoth-
esis about the singularity of the critical layer without considering the
velocity profiles.

As fig. 2a shows, when ci → 0 the out of phase perturbation to ∆u
becomes very large within a very thin layer of thickness of order ci/U

′
c.

Effectively the vorticity in the y-direction ωy is amplified on the lee
side and reduced on the upwind side, which leads to the mean stream
lines being deflected, with a lower pressure on the lee side and a higher
drag.

Thus it is clear that in the limit of zero growth, i.e. ci → 0 (for
small but finite νe), the amplitude of the unsteady critical layer vor-
ticity distortion mechanism tends to zero. However this was not the
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mathematical conclusion of Miles [1], who did not calculate the profile
in the critical layer. He calculated (for a flow where zc > ls i.e. cr > U∗)
the overall drag, CD, and energy input, E, as a function of ci and the
profile U(z), and derived finite values for these overall properties of
the flow for finite ci, ε, and a/L. But he also deduced that CD and E
are finite as ci → 0. This is because he did not allow for the effects
of small but finite eddy diffusivity, and consequently, as shown in the
appendix, the contributions by the inertial critical layer to CD and E
are zero. Lighthill [16] provided an approximate physical analysis of
the distortion of the vorticity produced by the wave (ignoring viscous
effects and the inner surface layer) in the limit of ci → 0. The perturbed
flow field with the jet on the lee slope shown in fig. 2b is consistent with
his ‘delta function’ analysis (see p. 391 of reference [16]). But because
he ignores the effect of finite eddy viscosity his physical conclusion is
only correct when ci is finite.

In order to have a complete solution it is necessary to consider the
surface shear layer and its asymptotic interaction with the whole flow.

3. Surface shear layer analysis for steady flows and
matching with outer flow

The AML analysis of the surface layer and its matching with the outer
region formally requires an asymptotic expansion for first and second
order terms in the perturbation velocity, see fig. 3. For the longitudinal
component, these are denoted by ∆u0, and ∆u1, i.e. ∆u = ∆u0 +ε∆u1
[22]. The perturbation equations for this layer are, like other boundary
layer problems, the momentum equations with a perturbation pressure
∆p, where ∆p denotes the ratio of the perturbation pressure to the
density. For steady flow, in a frame of reference moving with the wave,
for z < ls

U (z)
∂∆us
∂x

+ ∆ws
dU

dz
= −∂∆p

∂x
+
∂∆τ

∂z
(8)

where ∆us,∆ws and ∆p match with the outer region solution (dis-
cussed in section 2). To leading order the results are sensitive (to at
least a factor of 2 in ∆u) to the model for ∆τ in relation to ∆u.
Within the surface layer, where the turbulence is in the local equilib-
rium turbulence, the usual mixing- length eddy viscosity model, leads
to

∆τ ∼ zU∗
∂∆u

∂z
.

So that to leading order in (8) ∆τ is negligible, but to first order ∆u1(z)
is determined by ∆τ . At the bottom of the layer, as with all non-
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uniform turbulent boundary layers, the rapid variation of ∂∆τ/∂z (in
fact logarithmic) determines the profiles of the perturbations, even if
there is an ‘immersed’ critical layer [13]. Above the surface layer the
turbulence is not in equilibrium, which leads to a lower value of ∆τ ,
and a higher value of speed-up ∆u. Vertical profiles of the various
terms in the turbulent energy equation for production, dissipation and
transport over waves are reviewed by Belcher & Hunt [6]. Similarly, this
application of AML can be extended to the intense local turbulence
processes in the highly sheared, elevated critical layers over unsteady
waves. This shows that the perturbation turbulent stresses in the outer
region can be so significant that they can destroy the inertial effect of
these critical layers.

Figure 3. Schematic of wind over wave mechanisms for steady low amplitude waves
showing sheltering mechanism in the surface layer and its coupling with the outer
flow. The immersed critical layer has no significant effect.

For calculating such complex interacting flows, when the asymp-
totic layers are no longer distinct and interact significantly, it is more
straightforward and more flexible to have a single differential equation
for the perturbations, where the inhomogeneous, equilibrium and non-
equilibrium turbulent stresses are modelled with suitable relaxation
adjustments, see the appendix.

4. Approximate application of AML methods to complex
wind wave models

Almost all photographs of ocean waves [14], and fig. 4 and even wind-
driven capillary waves on ponds show that they form in groups of
individual waves which vary in size from small to large and then small
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Figure 4. Wind over wave groups. Typical random groups of ocean waves (not
breaking, but with sharp crests. Photograph taken off the coast of the eastern
Mediterranean sea).

again, typically about 5 to 7 waves in the folk-lore of mariners. The
fact that their form broadly persists over large distances compared
with the size of the wave group is generally assumed to be a results
of nonlinear interactions between waves in the water, reinforced by
nonlinear interactions between the waves and the wind [23]. Persistent
wave groups form both when the waves do not break and when they
break systematically within the groups, in general on the down side of
the group. A diagram of a typical wave group, showing the asymptotic
layers in the wind flow is shown in fig. 5a. (see also [3]). In such a
group the individual waves grow on the upwind side of the group and
decrease in amplitude on the downwind side. Because of the asymmetry
of the flow over the whole group, the critical layer zc is higher over the
downwind than the upwind part of the wave group. As section 2 and
fig. 2b demonstrate, this means that the net effect of the unsteady
dynamics (i.e. positive drag from growing waves with lower zc exceeds
the negative drag from the decreasing waves in the down-wind part)
contributes to the mean drag and energy input to the wave group. In
addition the higher value of zc thickens the surface layer and adds to the
sheltering drag [13]. This hypothesis, based on applying AML concepts
to this complex flow, needs to be tested over a wide parameter range
of flow and wave groups.

Initial computations of turbulent flows over specified groups of 3
dynamic waves, (which are rising and falling as they move), using a
non-equilibrium eddy viscosity model [24]2 shows, from streamwise

2 The turbulence model adopted here is the high-Reynolds number extension of
that given by Sajjadi et al. [31].
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Figure 5. (a) Schematic of asymmetric wind flow over wave groups showing separa-
tion and changing behaviour of the critical layer. (b, c) Computations of turbulent
flows over wave groups: (b) mean velocity, (c) mean streamlines relative to average
velocity of the waves.
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velocity profiles, for U∞ = 10.8 m/s (fig. 5b), how zc is higher on
the downwind than on the upwind part of the wave group. This, and
also computations of streamline patterns, for U∞ = 2.18 m/s (fig. 5c),
are consistent with the hypothesis of asymmetric flow over the group.
For all these simulations |ci|/cr

.
= 1

10 being approximately equal to
amax/LG, where amax denotes the maximum amplitude in the group
and LG is the wavelength of the group.) As can be seen from these
diagrams the critical layer height of zc varies over the wave groups.
We emphasize the same anomaly is observed over unsteady (growing)
monochromatic waves [24].

The consequence of this physical picture of turbulent wind-wave
interactions is that the wave cannot be regarded as a random surface
uncorrelated (on the scale of typical wave groups) with the wind struc-
ture. With remote sensing of waves and wind, and analysis of their
correlations (e.g. with wavelet, as opposed to Fourier, methods), and
AML methods applied to groups of waves, it should become possible
to improve wave modelling and forecasting in future.

Another major challenge is to include the generalization effects of
separation [25] and wave breaking [26]. This also provides a system-
atic approach for studying different types of wind-wave interactions
for quite different forms of wind structure such as occurs in tropical
cyclones [27,28], and when significant ocean currents affect the wave
growth and wave groups [3,24].

Appendix

A. Effect of the inertial critical layer

In a frame of reference moving with the waves, the vertical perturbation
to the air flow, ∆w = W (z)eik(x−crt)+kcit, satisfies the Orr-Sommerfeld-
like equation [29,30]3

T ′′ ≡ (νeW
′′)′′ = ik[(U − ici)(W ′′ − k2W )− U ′′W ] (9)

where νe is the eddy viscosity.
In the outer region, turbulence is negligible and thus the left-hand

side of (9) can be neglected compared to the right-hand side and thus
we obtain the Rayleigh equation

(U − ici)(W ′′ − k2W )− U ′′W = 0 (10)

3 Miles and Sajjadi arrived at the same equation independently, but they invoked
different turbulence closure schemes for the turbulent flow above the surface waves.
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As was shown by Sajjadi [32], the leading order solution to (10) is

W = (U − ici)e−kz
[
A+ WcU

′
ce
kzc

∫ ∞
0

{
1

(U − ici)2
− 1

}
dz

]
(11)

where A is constant which can be determined by matching the solutions
to the outer and the inner regions.

For slow growing waves ci > 0, the critical layer lies within the inner
region close to the surface wave and the integral in (11) is regular since
U > 0 there. Let us now suppose that

ci � U ′2c /U
′′
c

then the integral in (11) can be evaluated approximately.
Hence, indenting the path of integration in (11) under the singularity

z = zc, we obtain

W = (U − ici)e−kz
[
A+ WcU

′
ce
kzc

(∫ ∞
0
−

{
1

(U − ici)2
− 1

}
dz − I

)]
(12)

where

I = lim
$→0

∫ ηc+$

ηc−$

{
1

(U − ici)2
− 1

}
dz (13)

Expanding U (z) as a Taylor expansion in the vicinity of the critical
point, i.e.

U (z) ∼ ηU ′c + 1
2η

2U ′′c +O(η3), η ≡ z − zc,

setting z = zc$e
iθ, where $ ≡ ci/U∗ � 1, and

tan θ = −ci/U ′cη

then (13) becomes

I ∼ 1

U ′2c

{
lim
$→0

∫ zc+$

zc−$

dz

(z − zc)2
+ iπ

U ′′c
U ′c

}
=

iπU ′′c
U ′3c

(14)

which is in agreement with the result obtained by Belcher et al. [21].
As also pointed out by Belcher et al. [21], for a logarithmic mean

velocity profile tan θ = $zc/(z−zc). Hence θ varies between 0 and π as
(z−zc)/lc tends to ±∞, respectively. Note that, the transition between
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these limiting values occurs across the layer of thickness lc = $zc. Note
also, the significance of the term iU ′′c /U

′3
c in the solution for I is that

it leads to an out of phase contribution to the wave induced vertical
velocity. This gives rise to the same wave growth-rate as that of Miles
[1] critical-layer model.

The result of the present analysis confirms the earlier finding [21] in
that Miles [1] solution is only valid when the waves grow significantly
slowly such that

ci � U ′czc ∼ U∗ (15)

Our analysis also shows that when inertial effects controls the behaviour
around the critical layer, there is a smooth behaviour around the critical
layer of thickness [21]

lc ∼ ci/U ′c ∼ zcci/U∗ (16)

Hence this proves the effects of critical layer [1] are only valid in the
limit ci/U∗ ↓ 0.

To calculate the energy-transfer parameter due to critical layer, βc,
we let W = −V M , where V = U − ici. Thus, (9) becomes

[νe(V M ′′ + 2U ′M ′ + U ′′M )]′′ = ik[(V 2M ′)′ − k2V 2M ] (17)

In the quasi-laminar limit the left-hand side of (17) is negligible and
thus we have

(V 2M ′)′ − k2V 2M = 0 (18)

Multiplying (18) by M , integrating by parts over 0 < z < ∞, and
invoking the inner limits M → a and V 2M ′ → P0 (the complex
amplitude of the surface pressure) and a null condition at z = ∞, we
obtain

aP0 = −
∫ ∞
0

V 2(M ′2 + k2M 2) dz (19)

Using the simplest admissible trial function for the variational inte-
gral (19), i.e.

M = ae−kz/ς (20)

where ς is a free parameter. Substituting (20) into (19) together with
the approximation V ≈ U1 ln(z/zc)− ici we get

P̂0 ≡P/kaU2
1 = −k(ς−2 + 1)

∫ ∞
0

e−2kz/ςF (z) dz
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where
F (z) = ln2(z/zc)− 2iĉi ln(z/zc)− ĉ2i

and ĉi = ci/U1. Evaluating the integral we obtain

P̂0 = − ς + ς−1

2

{
π2

6
+ ln2

(
2γξc
ς

)
− 2iĉi ln

(
2γξc
ς

)
+ ĉ2i

}
(21)

where ξc ≡ kzc (cf. [1], see also the caption of figure 1), γ = 0.5772 is
Euler’s constant, U1 = U∗/κ, and κ = 0.41 is von Kármán’s constant.

It then follows from the variational condition ∂P̂0/∂ς = 0 that

ς2 =
L2
ς − 2(1 + iĉi)Lς + (ĉ2i + 2iĉi + π2/6)

L2
ς + 2(1− iĉi)Lς + (ĉ2i − 2iĉi + π2/6)

(22)

where Lς = −(L0 + ln ς) and L0 = γ − ln(2ξc) = Λ−1.
The corresponding critical-layer approximation to the energy-transfer

parameter β may then be calculated from (12), which implies Wc =
Pc/U

′
c ≈P0/U

′
c, and (14), which yields

βc = πξc|Wc/U1a|2 = πξ3c |P̂0|2

= 1
4π(ς + ς−1)2

∣∣(L2
ς − 2iĉiLς + ĉ2i + 1

6π
2
)∣∣2

= πξ3cL
4
0

[
1 +

(
4− 1

3π
2 + 10ĉ2i

)
Λ2 +O(Λ3)

]
. (23)

To obtain the corresponding expression for the component of the
energy-transfer parameter, βT , due to turbulence, we multiply (9) by
−M , integrating over 0 < z <∞, invoking the conditions

M = a, M ′ = ka, T ′ = ik[P0 − kac2]

on z = 0 and the null condition for z → 0, we obtain∫ ∞
0

MT ′′ dz = ka[T0 − iP0] + i(kac)2 +

∫ ∞
0

M ′′T dz

= i(kac)2 + ik

∫ ∞
0

V 2
(
M ′2 + k2M 2

)
dz, (24)

where T0 is the complex amplitude of the surface shear stress and
c = cr + ici. Then, in the limit as s ≡ ρa/ρw, where ρa and ρw are
densities of the air and water, respectively, we obtain from

α+ iβ ≡ (c2 − c2w)/sU2
1 = (P0 + iT0)/kaU

2
1 ≡ (P̂0 + iT̂0), (25)

where c is the complex wave speed,

cw =
√
g/k − 2ikνw, |kνw/c| � 1
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is the speed of water waves in the absence of the airflow above it, νw is
the kinematic viscosity of water, and the suffix zero denotes evaluation
at z = 0. Then if follows from (24) and (21) that

αT + iβT = (kaU1)
−2
∫ ∞
0

{
iνe

[
V M ′′2 + 2U ′MM ′′ + U ′′MM ′′

]
−kV 2

(
M ′2 + k2M 2

)}
dz.

The above integral can be evaluated asymptotically4 whose imaginary
part yields

βT = 5κ2L0 +O(Λ). (26)

In fig. 6, we show comparison of the energy-transfer rate, β, between
the present result for a monochromatic unsteady (growing) wave, both
analytically and numerically, and those calculated by Miles [1] and
Janssen [18] for the steady wave counterpart. Miles and Janssen both
assume that the drag CD, and thence β, is dominated by the limiting
inviscid wave growth mechanism, thus their formulation is independent
of ci. In contrast, the present calculation is for a viscous unsteady
(growing) wave, where ci/U∗ = 0.01 and kz0 = 10−4.

We emphasize that the various models [13,11,33] all generally agree
with our numerical simulations performed using the Reynolds-stress
closure scheme [34] for the energy transfer parameter, β, shown in fig.
6. This shows consistency between these models and the unimportance
of very small ci for which viscous processes are significant.

We remark that, these parameterizations have been incorporated
and tested in spectral wave models, WaveWatch and WindWave, which
shows a superior results when compared with field data [35,36].

Figure 7 shows comparison of βc as a function of wave age cr/U1, cal-
culated from the numerical solution of inviscid Orr-Sommerfeld equa-
tion [37], against the numerical solution of equation (1) for ci/U∗ =
0.01, kz0 = 10−4 and νe 6= 0. We remark that increasing ci/U∗ from 0.01
to 0.1 (not shown here) makes no significant difference in the magnitude
of βc. We conclude therefore for a finite value of νe the right-hand side of
equation (1) is dominant and therefore the magnitude of βc, calculated
from the solution of (1), is practically zero over a wide range of the
wave age, in particular for a ‘young’ wave, where cr/U1 < 2. We thus
conclude that the critical-layer mechanism plays an insignificant role
for cr/U1 < 9, and very little effect for 9 ≤ cr/U1 ≤ 10.5.

4 The detailed evaluations may be obtained from the authors upon request.
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Figure 6. Total energy transfer parameter, β, due to the combined effect of sheltering
and inertial critical layer for growing waves (where ci � U∗) as a function of the
wave age cr/U1. +++++, Miles [1] calculation (ci = 0, νe = 0) from his formula:

β = πξc
{

1
6
π2 + log2(γξc) + 2

∑∞
n=1

(−1)nξnc
n!n2

}2

, where ξc = kzc is the critical height

ξc = Ω(U1/cr)
2ecr/U1 and Ω = gz0/U

2
1 is the Charnock’s constant [38].

Thick solid line, parameterization of Miles formula [18], for ci = 0, νe = 0:

β = 1.2κ−2ξc log4 ξc, where ξc = min
{

1, kz0e
[κ/(U∗/c+0.011)]

}
.

Thin solid line, present formulation: (βT + βc) for ci 6= 0, νe 6= 0. ◦, Numerical
simulation using the Reynolds-stress closure model [34] for ci 6= 0, νe 6= 0. Note
that, β given in [1,18] is equivalent to βc in our notation.
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Figure 7. Component of energy transfer parameter, βc, due to inertial critical layer
for growing waves (where ci � U∗) as a function of the wave age cr/U1. •, numerical
solution of inviscid Orr-Sommerfeld equation [37] for ci = 0 and νe = 0 using the
singular critical layer approach; ◦ numerical solution of equation (1) for ci 6= 0 and
νe 6= 0.
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(ed) 11th Proceedings of International Congress in Applied Mechanics. Springer-
Verlag, Berlin, pp109–128

sajjadi-hunt-drullion-rev4.tex; 1/05/2013; 19:39; p.18



Asymptotic Analysis of Wind Over Unsteady Surface Waves 19

20. McIntyre ME (1993) On the role of wave propagation and wave breaking in
atmosphere-ocean dynamics. In: Proc. Int. Cong. Theoret. Appl. Mech., 18th,
Haifa, Elsevier, pp281–304

21. Belcher SE, Hunt JCR, Cohen JE (1999) Turbulent Flow Over Growing Waves.
In: Sajjadi SG, Thomas NH, Hunt JCR (eds) Proceedings of IMA Conference
on Wind Over Waves. Oxford University Press, pp19–30

22. Hunt JCR, Leibovich S, Richards KJ (1988) Turbulent shear flows over low hills.
Q. J. R. Meteorol. Soc., 114:1435–70

23. Kharif C, Giovanangeli JP, Touboul J, Grare L, Pelinovsky E (2008) Influence of
wind on extreme wave events: experimental and numerical approaches. J. Fluid
Mech., 594:209–247

24. Sajjadi SG, Drullion F (2013) Influence of grouping on growth of surface gravity
waves by turbulent shear flow. Int. J. Numer. Meth. Fl. (to be submitted)

25. Banner ML, Melville WK (1976) On Separation of Air Flow Over Water Waves.
J. Fluid Mech., 77:825–42

26. Banner ML, Peregrine DH (1993) Wave Breaking in Deep Water. Ann. Rev.
Fluid Mech., 25:373–97

27. Li L, Kareem A, Xiao Y, Hunt JCR (2012) Turbulence spectra in typhoon bound-
ary layer winds-a conceptual framework and field measurements at coastlines.
Boundary-Layer Meteorol (submitted)

28. Sajjadi SG (2007) Interaction of turbulence due to tropical cyclones with surface
waves. Adv. Appl. Fluid Mech., 1:101–145

29. Miles JW (1996) Surface-wave generation: a viscoelastic model. J. Fluid Mech.,
322:131–145

30. Sajjadi SG (1998) On the growth of a fully nonlinear Stokes wave by turbulent
shear flow. Part 2: Rapid distortion theory. Math. Eng. Ind., 6:247–260

31. Sajjadi SG, Craft TJ, Feng Y (2001) A numerical study of turbulent flow over
a two-dimensional hill. Int. J. Numer. Meth. Fl, 35:1–23

32. Sajjadi SG (1988) Shearing flows over Stokes waves. Department of Mathematics
Internal Report, Coventry Polytechnic, UK

33. Cohen JE (1997) Theory of Turbulent Wind Over Fast and Slow Waves. PhD
Dissertation, University of Cambridge

34. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a
Reynolds-stress turbulence closure. J. Fluid Mech., 68:537–566

35. Fitzpatrick P, Mostovoi G, Li Y, Bettencourt M, Sajjadi SG (2002) Coupling
of COAMPS and WAVEWATCH with Improved Wave Physics. DoD High Per-
formance Computing Modernization Program Programming Environment and
Training Report No. 0005

36. Sajjadi SG, Bettencourt MT, Fitzpatrick PJ, Mostovoi G, Li Y (2002) Sensi-
tivity of a coupled tropical cyclone/ocean wave simulation to different energy
transfer schemes. In Proceeding of 25th Conference on Hurricanes and Tropical
Meteorology p15D.5

37. Conte SD, Miles JW (1959) On the Numerical Integration of the Orr-Sommerfeld
Equation. J. Soc. Indust. Appl. Math., 7:361–366

38. Charnock H (1955) Wind Stress on a Water Surface. Q. J. R. Meteorol. Soc.,
81:639–640

sajjadi-hunt-drullion-rev4.tex; 1/05/2013; 19:39; p.19



sajjadi-hunt-drullion-rev4.tex; 1/05/2013; 19:39; p.20


