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A very brief summary of our previous results on wind effect
on steep water wave dynamics
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¢ Experiments (LASIF)

» Air sea fluxes are strongly enhanced in the presence of steep
wave events

» Wind increases the duration and amplitude of SWE

blower

A T
absorbing beach

Sketch of the Large Air-Sea Interaction Facility (Marseille).

» Water tank dimensions: 40m long, 2.6m wide, 1m deep
» Wind tunnel dimensions: 40m long, 3.2m wide, 1.6m high
» Paddle: 0.5Hz - 2Hz (regular or random waves)
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¢ Numerical simulations (Sheltering mechanism — Pressure)

» Wind increases the lifetime and amplitude of SWE

» Wind driven current may play a significant role in their
persistence
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Calculation of surface water waves propagating steadily on a
rotational current

» Tsao(1959), Dalrymple (1974), Brevik (1979), Simmen &
Saffman (1985), Teles da Silva & Peregrine (1988), Kishida &
Sobey (1988), Pak & Chow (2009), etc.

» Constantin & Strauss (2004), Constantin & Escher (2004),
Hur (2008), Wahlen (2009), Constantin (2011), Kozlov &
Kuznetsov (2013)

For a general description of the problem of waves on current refer
to the following reviews

» Peregrine (1976)
» Jonsson (1990)
» Thomas & Klopman (1997)
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Few studies on the modulational instability (Benjamin-Feir
instability) of progressive waves in the presence of vorticity

» Johnson (1976)

» Oikawa, Chow & Benney (1987)

» Li, Hui & Donelan (1987)

» Okamura & Oikawa (1989)

» Baumstein (1998)

» Choi (2009)

» Nwogu (2009)

» Thomas, Kharif & Manna (2012)
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Shear profiles in the fixed and moving reference frames
Waves propagating downstream (Q > 0)
Waves propagating upstream (2 < 0)
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» In the fixed reference frame the shear current is
U=(Qz+ Up,0)"

» In the moving reference frame with velocity Uy the shear
current is

U=(Qz0)7
We assume that the wave-induced motion in water is potential

The Kelvin-Lagrange theorem states that the vorticity is conserved
= ) remains constant

> In the moving frame the water velocity is described by

&ﬂ &ﬂ

=(Qz+ =, 27)"
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The Euler equation writes

1
V(¢t+§u2—|—%+g2):u/\(V/\u)

Introducing the stream function that satisfies the Cauchy-Riemann
conditions ¥, = ¢y and ¥y = —;, then

uA(VAu)= V(%szz + Q)
Hence

1 1
V(pe + §u2—|—%—|—gz— 59222 - Q) =0

1 1
(pt—|—§u2—|— % +gZ— 59222—Qw = C(t)

1
Pt 50k + @)+ 2t gz = Qu = (1)
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The governing equations are

V2p =0, —h<z<n(xt) (1)
Yz = 07 y = —h (2)
ne+ (ox + Q) — 0z =0,  z=n(x,t) (3)
1
e+ (P2 + P2+ Qpx +gn— W =0,  z=n(x,t) (4)

2
The atmospheric pressure at the free surface is assumed constant.

» Equations (1)-(4) are invariant under the following
transformations : ¢ — —p, t - —t, Q — —Q and ¢ — —.
Hence, there is no loss of generality if the study is restricted
to waves with positive phase velocities so long as both
positive and negative values of Q are considered.
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» To reduce the number of dependent variables, we derive the
dynamic boundary condition with respect to x and we use the
Cauchy-Riemann conditions to eliminate the stream function.
The dynamic boundary condition at the free surface becomes

Oy + CD1'277>< + (Dx(q)xx + (sznx) + CDz(q)xz + (Dzznx)

o (5)
+Q77X¢X + Qn(q)xx + (sznx) + gnx + Q((Dz - (Dxnx) =0

The notation ® means that ¢ is calculated at the free surface.
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Approximate approach
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Multiple scale method

v

A weakly nonlinear wave train propagating on finite depth at
the free surface of a uniform shear current of constant
intensity €2

n(x,t) = %(ea(ﬁ, Y expli(kx — wb)] + c.¢) + O(e)

where £ = €(x — czt) and 7 = €%t

v

The evolution of the complex envelope is governed by the
vor-NLS equation

iar + Lage + N|al?a=0

v

Explicit formulas for L and N are derived
Let u = kh, o = tanh(p), r = ¢z/cp, Q@ = Q/w and X = oQ
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L= m{ﬂu — o)1 = po + (1 — 1X] — or?}

wk?(U + VW)

N= i xes X

U=9—120° +130* — 20° + (27 — 1802 4 150*)X

+(33 = 302 + 40%)X? + (21 + 502 X3 4 (7 + 202)X* + X°
V=00+XP?QA+r+puQ)+1+X—ro® —poX
(L+X)2+ X)+r(l—0?)

or(r+ pQ) — u(l+ X)
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The coupling between the mean flow and vorticity

At third-order, before deriving the vor-NLS equation, presented
previously, the following equations emphasize the coupling between
the mean flow ¢p1¢, due to modulation, and vorticity, —Q

k3c2 _ _ _ _
gUP [(1+0Q)?(cp+cgt+cpkhQ)+cp(1+0Q) —(cg +cpkhQ) o] o1 A

—iw(2+ 0cQ)A;
+{cg — gh-+gholo + kh(1— o%)] + cpkh(1 — 0%)(cg — cpkho )2} Age
5.2

k>c _
T2 219 — 120% + 130™ — 20° + (27 — 180 + 150* )02+
g

(33-302+40%)0 20 +(214+502) 3L+ (T+202) 0 QA +0°Q ) | A2 A = C
where A = cpa/io is the envelope of the velocity potential
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The mean flow

gka(2+0Q) + K?cpeg(1 — 0?) AP
cplcg(cg + 2h) — ghl

do1e =

satisfies

gk(2 + Q)

®o1 —>—|A|2 as h— +oo
¢ hep(Qcg — g)

The coefficient in brackets of ¢gi¢A is of O(h) whereas ¢g1¢ is of
O(h~1) and consequently the product has a finite limit when
h — +oo. Finally
w(1+0)? wk? Q° (2 + Q)2

+ _— Al A
KE+)3 ¢ 82 1+Q Al

2
(4+6Q+6Q + ) AR A=

T

wk

8cp
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The NLS equation for the envelope of the elevation in deep water
and constant vorticity is

r —

w(l+Q)? wk? 52(2 + Q)2 9
> —ace + —— |al a
k?(2 + Q) 8 1+Q

k2
% (4+6Q+60°+0Q°)al2a=0
or
o, WA QR Wk (4+10Q+80°+30°) |a2a=0
TR QR 81+ 0)

or

w140y wk? (Q+ 2/3)32° +6Q+6) |,
iar — —=—ag — — lal“a=0
k?(2 4 Q)3 8 1+Q

with Q > —1
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For Q> -2/3 = NLS+ (self focusing NLS equation)

For -1 < Q< —2/3 = NLS- (defocusing NLS equation)
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» The vor-NLS equation admits the following Stokes' wave
solution

a = ag exp(iNa3T)

» Perturbation
a=ag(1+ da)exp[i(dw + Na37)]

with
da = (0a)o exp[i(/1€ — A7)]

dw = (0w)o exp[i(1€ — A7)
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» Condition of instability with respect to sidebands
perturbations

LN >0
Let L = Liw/k? and N = Nywk?

» The growth rate of instability is
v=13  JeMLkeas — P2

» Maximal growth rate
Ymax = —Niw(aok)?  for lpax = v/N1/L1aok?
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» The wavenumber / of unstable modulational instabilities

satisfies
N N
— /252 KPag < 1 < /22 K2 ag
L1 Lq

> For Q < —24/ g3—k = no BF instability
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Thomas, Kharif & Manna (Phys. Of Fluids, 2012)

Mkh

U

14T kh_=1363

crit S

GQ/(,Q 3

Stability diagram: S : stable, U : unstable.

—1<£§—ga<:>—oo<9§—2wg—k
w 3 3
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Thomas, Kharif & Manna (POF, 2012)

Amax/ AO
N

0 200 400 600 800 1000

Dimensionless maximum amplitude of the envelope of a group of 8
waves for a simple recurrence with kh = oo, agkp = 1/16 :
Q/w =0 (solid line) and Q/w = —0.83 (dash-dotted line)
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Thomas, Kharif & Manna (POF, 2012)

Amax/ AO
N

Dimensionless maximum amplitude of the envelope of a group of 8
waves for a double recurrence with kh = 0o, agk = v/3/16:
Q/w =0 (solid line) and Q/w = —0.83 (dash-dotted line)
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Thomas, Kharif & Manna (POF, 2012)

ymax/ Yo max

-0.5 0 0.5 1 15 2
0=0Q/w
Dimensionless maximum growth rate as a function of the vorticity
for kh = 1.40 (solid line), kh = 1.70 (dashed line) and kh = co
(dash-dotted line). vo,.., is the maximum growth rate in the
absence of shear current
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Dimensionless growth rate as a function of the perturbation
wavenumber / in finite depth (kh = 2) for Q/w = —0.50 (solid
line), Q/w = 0 (dashed line), Q/w = 0.50 (dash-dotted line)
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Dimensionless growth rate as a function of the perturbation
wavenumber / in infinite depth (kh = o0) for Q/w = —0.50 (solid
line), Q/w = 0 (dashed line), Q/w = 0.50 (dash-dotted line)
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F=00]| F=025] F=05] F=10| F=15
kh=15 | 1.6/1.54 | 1.3/1.28 | 1.0/1.00 | 1.2/1.31 | 6.0/5.96
kh =20 | 2.8/2.75 | 2.4/2.40 | 2.0/1.97 | 48/472 | —/—

Table : Dimensionless instability bandwidth. Oikawa, Chow & Benney
(1987) results from their figures/ Present results (F is the dimensionless

vorticity)
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Application to Rogue Waves when modulational instability prevails

» The key parameter measuring the importance of the nonlinear
four-wave interaction is the Benjamin-Feir Index (BFI) which

is the ratio of the wave steepness to the normalized spectral
bandwidth.

» Within the framework of the NLS equation the BFI writes
aok
BFI = v | Ni/L

where AK is a typical spectral bandwidth (Onorato et al, 2006 and
Kharif et al, 2009)

» The BFl is a convenient indicator for prediction of rogue wave
occurrence. It is related to the pdf of wave heights. The
rogue wave probability occurrence increases with BFI.
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Thomas, Kharif & Manna (POF, 2012)

25

BFI/BFI,

Normalized BFI as a function of kh for several values of Q:
Q = 0 (solid line), Q = 1 (dashed line), Q = 2 (dot-dashed line)
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Thomas, Kharif & Manna (POF, 2012)

BFI/BFI,

Normalized BFI as a function of kh for several values of Q:
Q = 0 (solid line), Q = —0.3 (dashed line), Q = —0.6 (dot-dashed
line)
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Conclusions on effect of uniform shear currents on modulational
instability and steep wave event
(within the framework of the vor-NLS equation)

» At O(€3) = importance of the coupling between the mean
flow induced by the modulation and the vorticity. At this
order and in infinite depth this coupling vanishes in the
absence of vorticity as it is expected whereas it is not the case
in the presence of vorticity

» The presence of vorticity does not modify the critical value
kherit = 1.363

» Plane wave solutions may be linearly stable to modulational
instability for an opposite shear current independently of the
dimensionless parameter kh

» The vorticity may increase or decrease the BFlI
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Fully nonlinear approach
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In order to use the HOSM, we consider the evolution equations

Ne+mx(ey + ) — 1+ )W =0 (6)
1

1
o5+ E(wi)2 -50 W2+ gn+ gl — Q=0 (7)

where ©°(x, t) = p(x,n(x, t),t), ¥°(x, t) = ¥(x,n(x, t), t) and
W(x, t) = pz(x,n(x, t), t)

» For the computation of ¥° we use the following relation

Vi = (L)W + neel = —G(n)¢°
where G is the DNO (Craig & Sulem, 1993)
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Computation of the basic wave: Adjustment scheme
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» Initialization of nonlinear waves using an adjustment scheme
(Dommermuth, 2000)

ne— WO = - WO — (05 +Qn) + (L+2)W = F

pi+en—Qu) = —Q¢5(1)—%(¢i)2+%(1+n§)WZ—QWHQW =G

e — WO = F{1 - expl ()]}

a

o+ g — W = G{1 - expl ()]}

a

with T, = 10Ty, the period of adjustment and n = 4 the rate of
adjustment
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Q =0, ak =0.10, kh =2, M = 6 (top), M = 8 (bottom)
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Q =0.20, ak =0.10, kh =2, M =3 (top), M = 6 (bottom)
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Q =0.40, ak =0.10, kh=2, M =

= 3 (top), M = 6 (bottom)
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= —0.20, ak = 0.10, kh =2, M = 3 (top), M = 6 (bottom)
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Q = —0.40, ak = 0.10, kh =2, M = 3 (top), M = 6 (bottom)
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Modulational instability: Comparison (HOSM vs vor-NLS)

» ak =0.10
> kh=2
» 10 waves in one modulation (k=10 and |=1)

» The amplitude of the sidebands is 10% of the amplitude of
the carrier wave.

> M:3
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» Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM

are offset by 107, (22 = 0)
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» Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM

are offset by 107, (22 = 0.10)
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» Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM

are offset by 107, (2 = 0.20)
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» Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue Iinis to HOSM. The results of the HOSM
are offset by 107y (€2 = —0.10)
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» Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM

are offset by 107y (©2 = —0.20)



Perspectives
(within the framework of the fully nonlinear water wave equations
with vorticity)

» Linear stability of Stokes waves of arbitrary steepness on a
linear shear current

> Extension of the linear stability analysis to 3D rotational
perturbations within the framework of the Euler equations

» numerical simulations within the framework of the Euler
equations
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An asymptotic solution is sought in the following form
+00 +00
o= > @aE",  n= > nE"
n=—o0 n=—o00
where E = exp[i(kx — wt)]
We assume ¢_, = ¢} and n_, = n;,

Then ¢, and 7, are written in perturbation series
+0o0 “+oo
Yn = Zej‘:onj» Nin = Z & 1nj
Jj=n Jj=n

where ¢p;i(&,2,7) and 1,;(§,7)

The small parameter ¢ is the wave steepness.
We assume g9 = 0 and 199 = 0.
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