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ր Pressure at the sea surface → wave amplification
WIND

ց Shear flow → Vorticity in water

CURRENT + BOTTOM FRICTION → Shear flows → Vorticity
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A very brief summary of our previous results on wind effect
on steep water wave dynamics
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♦ Experiments (LASIF)

◮ Air sea fluxes are strongly enhanced in the presence of steep
wave events

◮ Wind increases the duration and amplitude of SWE

Sketch of the Large Air-Sea Interaction Facility (Marseille).

◮ Water tank dimensions: 40m long, 2.6m wide, 1m deep

◮ Wind tunnel dimensions: 40m long, 3.2m wide, 1.6m high

◮ Paddle: 0.5Hz - 2Hz (regular or random waves)
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♦ Numerical simulations (Sheltering mechanism → Pressure)

◮ Wind increases the lifetime and amplitude of SWE

◮ Wind driven current may play a significant role in their
persistence
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Calculation of surface water waves propagating steadily on a
rotational current

◮ Tsao(1959), Dalrymple (1974), Brevik (1979), Simmen &
Saffman (1985), Teles da Silva & Peregrine (1988), Kishida &
Sobey (1988), Pak & Chow (2009), etc.

◮ Constantin & Strauss (2004), Constantin & Escher (2004),
Hur (2008), Wahlen (2009), Constantin (2011), Kozlov &
Kuznetsov (2013)

For a general description of the problem of waves on current refer
to the following reviews

◮ Peregrine (1976)

◮ Jonsson (1990)

◮ Thomas & Klopman (1997)
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Few studies on the modulational instability (Benjamin-Feir
instability) of progressive waves in the presence of vorticity

◮ Johnson (1976)

◮ Oikawa, Chow & Benney (1987)

◮ Li, Hui & Donelan (1987)

◮ Okamura & Oikawa (1989)

◮ Baumstein (1998)

◮ Choi (2009)

◮ Nwogu (2009)

◮ Thomas, Kharif & Manna (2012)
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Shear profiles in the fixed and moving reference frames
Waves propagating downstream (Ω > 0)
Waves propagating upstream (Ω < 0)
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◮ In the fixed reference frame the shear current is

U = (Ωz + U0, 0)
T

◮ In the moving reference frame with velocity U0 the shear
current is

U = (Ωz , 0)T

We assume that the wave-induced motion in water is potential

The Kelvin-Lagrange theorem states that the vorticity is conserved
⇒ Ω remains constant

◮ In the moving frame the water velocity is described by

u = (Ωz +
∂ϕ

∂x
,
∂ϕ

∂z
)T
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The Euler equation writes

∇(ϕt +
1

2
u2 +

p

ρ
+ gz) = u ∧ (∇∧ u)

Introducing the stream function that satisfies the Cauchy-Riemann
conditions ψz = ϕx and ψx = −ϕz , then

u ∧ (∇ ∧ u) = ∇(
1

2
Ω2z2 +Ωψ)

Hence

∇(ϕt +
1

2
u2 +

p

ρ
+ gz − 1

2
Ω2z2 − Ωψ) = 0

ϕt +
1

2
u2 +

p

ρ
+ gz − 1

2
Ω2z2 − Ωψ = C(t)

ϕt +
1

2
(ϕ2

x + ϕ2
z ) + Ωzϕx +

p

ρ
+ gz − Ωψ = C(t)
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The governing equations are

∇2ϕ = 0, −h < z < η(x , t) (1)

ϕz = 0, y = −h (2)

ηt + (ϕx +Ωη)ηx − ϕz = 0, z = η(x , t) (3)

ϕt +
1

2
(ϕ2

x + ϕ2
z ) + Ωηϕx + gη − Ωψ = 0, z = η(x , t) (4)

The atmospheric pressure at the free surface is assumed constant.

◮ Equations (1)-(4) are invariant under the following
transformations : ϕ→ −ϕ, t → −t, Ω → −Ω and ψ → −ψ.
Hence, there is no loss of generality if the study is restricted
to waves with positive phase velocities so long as both
positive and negative values of Ω are considered.
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◮ To reduce the number of dependent variables, we derive the
dynamic boundary condition with respect to x and we use the
Cauchy-Riemann conditions to eliminate the stream function.
The dynamic boundary condition at the free surface becomes

Φtx +Φtzηx +Φx(Φxx +Φxzηx) + Φz(Φxz +Φzzηx)

+ΩηxΦx +Ωη(Φxx +Φxzηx) + gηx +Ω(Φz − Φxηx) = 0
(5)

The notation Φ means that ϕ is calculated at the free surface.

Christian Kharif Workshop on Ocean Wave Dynamics, Toronto, 2013



Approximate approach
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Multiple scale method

◮ A weakly nonlinear wave train propagating on finite depth at
the free surface of a uniform shear current of constant
intensity Ω

η(x , t) =
1

2
(ǫa(ξ, τ) exp[i(kx − ωt)] + c .c) +O(ǫ2)

where ξ = ǫ(x − cg t) and τ = ǫ2t

◮ The evolution of the complex envelope is governed by the
vor-NLS equation

iaτ + Laξξ + N | a |2 a = 0

◮ Explicit formulas for L and N are derived

Let µ = kh, σ = tanh(µ), r = cg/cp , Ω = Ω/ω and X = σΩ
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L =
ω

k2σ(2 + X )
{µ(1− σ2)[1 − µσ + (1− r)X ]− σr2}

N = − ωk2(U + VW )

2(1 + X )(2 + X )σ4

U = 9− 12σ2 + 13σ4 − 2σ6 + (27 − 18σ2 + 15σ4)X

+(33− 3σ2 + 4σ4)X 2 + (21 + 5σ2)X 3 + (7 + 2σ2)X 4 + X 5

V = (1 + X )2(1 + r + µΩ) + 1 + X − rσ2 − µσX

W = 2σ3
(1 + X )(2 + X ) + r(1− σ2)

σr(r + µΩ)− µ(1 + X )
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The coupling between the mean flow and vorticity

At third-order, before deriving the vor-NLS equation, presented
previously, the following equations emphasize the coupling between
the mean flow φ01ξ , due to modulation, and vorticity, −Ω

k3c2p

gσ
[(1+σΩ)2(cp+cg+cpkhΩ)+cp(1+σΩ)−(cg+cpkhΩ)σ

2]φ01ξA

−iω(2 + σΩ)Aτ

+{c2g −gh+ghσ[σ+ kh(1−σ2)]+ cpkh(1−σ2)(cg − cpkhσ)Ω}Aξξ

+
k5c2p

2gσ3
[9− 12σ2 + 13σ4 − 2σ6 + (27 − 18σ2 + 15σ4)σΩ+

(33−3σ2+4σ4)σ2Ω
2
+(21+5σ2)σ3Ω

3
+(7+2σ2)σ4Ω

4
+σ5Ω

5
] | A |2 A = 0

where A = cpa/iσ is the envelope of the velocity potential
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The mean flow

φ01ξ =
gkσ(2 + σΩ) + k2cpcg (1− σ2)

cp[cg (cg +Ωh)− gh]
| A |2

satisfies

φ01ξ →
gk(2 + Ω)

hcp(Ωcg − g)
| A |2 as h → +∞

The coefficient in brackets of φ01ξA is of O(h) whereas φ01ξ is of
O(h−1) and consequently the product has a finite limit when
h → +∞. Finally

iAτ −
ω(1 + Ω)2

k2(2 + Ω)3
Aξξ +

ωk2

8c2p

Ω
2
(2 + Ω)2

1 + Ω
| A |2 A

−ωk
2

8c2p
(4 + 6Ω + 6Ω

2
+Ω

3
) | A |2 A = 0
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The NLS equation for the envelope of the elevation in deep water
and constant vorticity is

iaτ −
ω(1 + Ω)2

k2(2 + Ω)3
aξξ +

ωk2

8

Ω
2
(2 + Ω)2

1 + Ω
| a |2 a

−ωk
2

8
(4 + 6Ω + 6Ω

2
+Ω

3
) | a |2 a = 0

or

iaτ −
ω(1 + Ω)2

k2(2 + Ω)3
aξξ −

ωk2

8(1 + Ω)
(4+10Ω+8Ω

2
+3Ω

3
) | a |2 a = 0

or

iaτ −
ω(1 + Ω)2

k2(2 + Ω)3
aξξ −

ωk2

8

(Ω + 2/3)(3Ω
2
+ 6Ω + 6)

1 + Ω
| a |2 a = 0

with Ω > −1
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For Ω > −2/3 ⇒ NLS+ (self focusing NLS equation)

For −1 < Ω < −2/3 ⇒ NLS- (defocusing NLS equation)
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◮ The vor-NLS equation admits the following Stokes’ wave
solution

a = a0 exp(iNa
2
0τ)

◮ Perturbation

a = a0(1 + δa) exp[i(δω + Na20τ)]

with

δa = (δa)0 exp[i(lξ − λτ)]

δω = (δω)0 exp[i(lξ − λτ)]
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◮ Condition of instability with respect to sidebands
perturbations

LN > 0

Let L = L1ω/k
2 and N = N1ωk

2

◮ The growth rate of instability is

γ =
lω

k2

√

2N1L1k4a
2
0 − l2L21

◮ Maximal growth rate

γmax = −N1ω(a0k)
2 for lmax =

√

N1/L1a0k
2
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◮ The wavenumber l of unstable modulational instabilities
satisfies

−
√

2
N1

L1
k2a0 < l <

√

2
N1

L1
k2a0

◮ For Ω < −2
√

gk
3 ⇒ no BF instability
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Thomas, Kharif & Manna (Phys. Of Fluids, 2012)

S

U

kh

khcrit≈1.363

σΩ/ω
-1 0 1 2 3

1

2

3

4

5

-2/3

Stability diagram: S : stable, U : unstable.

−1 <
σΩ

ω
≤ −2

3
σ ⇔ −∞ < Ω ≤ −2

√

gk

3

Christian Kharif Workshop on Ocean Wave Dynamics, Toronto, 2013



Thomas, Kharif & Manna (POF, 2012)
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waves for a simple recurrence with kh = ∞, a0k0 = 1/16 :
Ω/ω = 0 (solid line) and Ω/ω = −0.83 (dash-dotted line)
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Thomas, Kharif & Manna (POF, 2012)
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Ω/ω = 0 (solid line) and Ω/ω = −0.83 (dash-dotted line)
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Thomas, Kharif & Manna (POF, 2012)
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F = 0.0 F = 0.25 F = 0.5 F = 1.0 F = 1.5

kh = 1.5 1.6/1.54 1.3/1.28 1.0/1.00 1.2/1.31 6.0/5.96

kh = 2.0 2.8/2.75 2.4/2.40 2.0/1.97 4.8/4.72 −/−

Table : Dimensionless instability bandwidth. Oikawa, Chow & Benney
(1987) results from their figures/ Present results (F is the dimensionless
vorticity)
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Application to Rogue Waves when modulational instability prevails

◮ The key parameter measuring the importance of the nonlinear
four-wave interaction is the Benjamin-Feir Index (BFI) which
is the ratio of the wave steepness to the normalized spectral
bandwidth.

◮ Within the framework of the NLS equation the BFI writes

BFI =
a0k

∆K/k

√

| N1/L1 |

where ∆K is a typical spectral bandwidth (Onorato et al, 2006 and
Kharif et al, 2009)

◮ The BFI is a convenient indicator for prediction of rogue wave
occurrence. It is related to the pdf of wave heights. The
rogue wave probability occurrence increases with BFI.
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Thomas, Kharif & Manna (POF, 2012)
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Thomas, Kharif & Manna (POF, 2012)
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Conclusions on effect of uniform shear currents on modulational
instability and steep wave event

(within the framework of the vor-NLS equation)

◮ At O(ǫ3) ⇒ importance of the coupling between the mean
flow induced by the modulation and the vorticity. At this
order and in infinite depth this coupling vanishes in the
absence of vorticity as it is expected whereas it is not the case
in the presence of vorticity

◮ The presence of vorticity does not modify the critical value
khcrit = 1.363

◮ Plane wave solutions may be linearly stable to modulational
instability for an opposite shear current independently of the
dimensionless parameter kh

◮ The vorticity may increase or decrease the BFI
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Fully nonlinear approach
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In order to use the HOSM, we consider the evolution equations

ηt + ηx(ϕ
s
x +Ωη)− (1 + η2x)W = 0 (6)

ϕs
t +

1

2
(ϕs

x)
2 − 1

2
(1 + η2x)W

2 + gη +Ωηϕs
x − Ωψs = 0 (7)

where ϕs(x , t) = ϕ(x , η(x , t), t), ψs(x , t) = ψ(x , η(x , t), t) and
W (x , t) = ϕz(x , η(x , t), t)

◮ For the computation of ψs we use the following relation

ψs
x = −(1 + η2x)W + ηxϕ

s
x = −G (η)ϕs

where G is the DNO (Craig & Sulem, 1993)
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Computation of the basic wave: Adjustment scheme
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◮ Initialization of nonlinear waves using an adjustment scheme
(Dommermuth, 2000)

ηt −W (1) = −W (1) − ηx(ϕ
s
x +Ωη) + (1 + η2x)W = F

ϕs
t+gη−Ωψs(1) = −Ωψs(1)−1

2
(ϕs

x )
2+

1

2
(1+η2x)W

2−Ωηϕs
x+Ωψs = G

ηt −W (1) = F{1− exp[−(
t

Ta

)]}

ϕs
t + gη −Ωψs(1) = G{1− exp[−(

t

Ta

)]}

with Ta = 10T0, the period of adjustment and n = 4 the rate of
adjustment
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Ω = 0, ak = 0.10, kh = 2, M = 6 (top), M = 8 (bottom)
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Ω = 0.20, ak = 0.10, kh = 2, M = 3 (top), M = 6 (bottom)
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Ω = 0.40, ak = 0.10, kh = 2, M = 3 (top), M = 6 (bottom)
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Ω = −0.20, ak = 0.10, kh = 2, M = 3 (top), M = 6 (bottom)
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Ω = −0.40, ak = 0.10, kh = 2, M = 3 (top), M = 6 (bottom)
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Modulational instability: Comparison (HOSM vs vor-NLS)

◮ ak = 0.10

◮ kh = 2

◮ 10 waves in one modulation (k=10 and l=1)

◮ The amplitude of the sidebands is 10% of the amplitude of
the carrier wave.

◮ M = 3
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◮ Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM
are offset by 10T0 (Ω = 0)
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◮ Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM
are offset by 10T0 (Ω = 0.10)
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◮ Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM
are offset by 10T0 (Ω = 0.20)

Christian Kharif Workshop on Ocean Wave Dynamics, Toronto, 2013



0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

t/T
0

η k/η
k 0

◮ Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM
are offset by 10T0 (Ω = −0.10)
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◮ Carrier wave and sideband evolutions. Black lines refer to NLS
and red and blue lines to HOSM. The results of the HOSM
are offset by 10T0 (Ω = −0.20)
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Perspectives
(within the framework of the fully nonlinear water wave equations

with vorticity)

◮ Linear stability of Stokes waves of arbitrary steepness on a
linear shear current

◮ Extension of the linear stability analysis to 3D rotational
perturbations within the framework of the Euler equations

◮ numerical simulations within the framework of the Euler
equations
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An asymptotic solution is sought in the following form

ϕ =

+∞
∑

n=−∞

ϕnE
n, η =

+∞
∑

n=−∞

ηnE
n

where E = exp[i(kx − ωt)]

We assume ϕ−n = ϕ∗

n and η−n = η∗n

Then ϕn and ηn are written in perturbation series

ϕn =

+∞
∑

j=n

ǫjϕnj , ηn =

+∞
∑

j=n

ǫjηnj

where ϕnj (ξ, z , τ) and ηnj(ξ, τ)

The small parameter ǫ is the wave steepness.
We assume ϕ00 = 0 and η00 = 0.
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