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Abstract

Peregrine breather being the lowest order rational solution of the 
nonlinear Schrodinger equation is commonly considered as a 
prototype of a rogue wave in the ocean. Higher-order rational 
solutions are far from being as simple as the Peregrine breather itself. 
They are not as simple as a nonlinear superposition of solitons either. 
Only recently, the complexity of their spatio-temporal structures 
started to be revealed. Basic thoughts on their classification will be 
presented in this talk.

“Workshop on Ocean Wave Dynamics”
Toronto, Ontario, May 6-11, 2013



Rogue wave in a laboratory, Hamburg

Merchant ship labouring in heavy seas as 
a huge wave looms behind. Published in 

Fall 1993 issue of Mariner’s Weather Log.

Amin Chabchoub et al, Phys. Rev. X 2, 011015 (2012)



Rogue wave in the sea



Rogue waves in the ocean

What kind of a wave is Hokusai’s 
“Great wave off Kanagawa”

By J. Cartwright and H. 
Nakamura

In 1978, the München, a German 
barge carrier, sank in the Atlantic. 

A print by Katsushika Hokusai 
(1760-1849) ‘Fast Cargo Boat 
Battling the Waves’



Recorded rogue waves

The Draupner wave, a single giant wave 
measured on New Year's  Day 1995, finally 
confirmed the existence of freak waves, which 
had previously been considered near-mythical

The Draupner platform is a key hub for 

monitoring pressure, volume and quality of gas 

flows in the Norway's offshore gas pipelines.



Optical Rogue Waves



Rogue waves are ubiquitous

M. S. Ruderman,

University of Sheffield, 

Freak waves in 

laboratory and 

space plasmas, 



Rogue waves in finances

Journal of Political 

Economy, 81, 637 (1973)

Merton and Scholes received the 1997 Nobel Prize in 

Economics
A liquidity crisis in the Nineteenth Ward Bank In New York City in 1911

US Subprime lending expanded significantly in the years 

2004-2006 preceding the economic crisis



Two forms of the NLS equation
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Water surface elevation:
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η = Re y (x,t)exp iw 0t - ik0x( )[ ]

Dispersion relation:
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Group velocity:
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A. Osborne, Nonlinear ocean waves and the inverse scattering transform (Academic Press, 
2010)

K. Trulsen, Weakly nonlinear and stochastic properties of ocean wave fields: application to an 
extreme wave event. In: Waves in geophysical fluids: Tsunamis, Rogue waves, Internal waves 
and Internal tides. Eds.: Grue, J. \& Trulsen, K. CISM Courses and Lectures No. 489, 
(Springer, NY, Wein, 2006).



Modulation instability and FPU

The simplest form of Akhmediev breather:
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Benjamin-Fair (Bespalov-Talanov) instability:
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exp ix( )

Growth rate of instability:
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Modulation instability, ABs and continuous 
wave supercontinuum generation

Dudley et al., Optics Express, 17, No 24, 21497 (2009)



NLSE and variety of its solutions
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Rational soliton
Double periodic solution

Kuznetsov-Ma soliton

Collision of plain solitons

Akhmediev breather



Observation of super-rogue wave

Amin Chabchoub et al, PRX (2012)

Spectra:

Second order rogue wave:

Surface Elevation



The Peregrine soliton in nonlinear fibre optics

B. Kibler et al, Nature Physics, 22 August (2010)

Experimental set-up: ECL: external-cavity laser, OSA: opt. spectrum 

analyser, HNLF; highly nonlinear fibre, FROG: frequency-resolved opt. gating

AB solutions with various modulation 

parameters a=0.25: 0.45: 0.48 and 0.5 Experimental results

Expected dynamic evolution



Darboux transformations
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With the following matrices:

We use the seeding solution of NLSE:
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ψ0 = exp(ix)
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Collision of breathers

Collision of two ABs with zero velocity Collision of two ABs with nonzero velocity

Collision of 3 ABs with eigenvalues:

(0.5+i0.95), (i0.92) and (-0.5+i0.95)

Collision of 3 ABs with eigenvalues:

(0.2+i0.95), (i0.92) and (-0.2+i0.95)



Waves that appear from nowhere and 
disappear without a trace
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Higher order rational solution:
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Higher-order translations
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AB solution:

Kuznetsov-Ma solution:

Peregrine solution:
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Infinite period limit of ABs
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Rogue wave clusters

Kedziora et al,     Phys. Rev. E 84, 056611 (2011)

N=5N=4N=3

N=2

Rogue wave of order n:

Total number of PS in the 
structure n(n+1)/2

Order of the central peak n-2,
Number of PS in the circular 
shell 2n-1

Rogue wave clusters

N=8



Astronomers capture death of star

The 1987A supernova 

April 3, 2013

Scientists in Australia have captured the most detailed images yet of the death of a giant star. A team of 
astronomers led by the International Centre for Radio Astronomy Research (ICRAR) in Western 
Australia has revealed new images of the death throes of Supernova 1987A, whose demise was first 
spotted more than 25 years ago. Situated on the outskirts of the Tarantula Nebula in the Large 
Magellanic Cloud, SN1987A expired about 168,000 light years from Earth. 
In new research published in the Astrophysical Journal, a team of astronomers from Australia and 
Hong Kong has succeeded in using the Australia Telescope Compact Array, a CSIRO radio telescope in 
NSW, to make the highest-resolution images yet of the expanding supernova.

The ring consists of 19 RWs.  (2N-1)=19. Thus N=10



Rogue wave cascades

Kedziora et al,     Phys. Rev. E 84, 056611 (2011)



Higher order modulation instability

Erkintalo et al, Phys. Rev. Lett., 107, 253901 (2011)



Classification of higher order rogue wave structures
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Rogue waves of Hirota equation
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Breather solution:
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where s = 2 1 - 2a1 , b = 2a1 s and v = 2e 1+ 4a1( )

Very little difference from the NLSE case

Ankiewicz et al, PRE 81, 046602 (2010)



Rogue waves of the Sasa-Satsuma equation
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Modulation instability of a plane wave:

Growth rate of modulation instability:

Rogue wave solution:
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K = 3k +1

Physics Letters A 376, 1558 (2012)

Three parameters control the solution:

Eigenvalue of scattering problem:

Variables x and  enter here:τ



First order rational solution
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Second order rational solution
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Early detection of rogue waves
in a chaotic wave field

Evolution of maxima of the chaotic field
  generated from the CW background

Contour plot of the chaotic field 
      around the rogue wave

Evolution of the spectrum 
  for the same rogue wave

The total t-window of the chaotic field
      where the rogue wave appears 3D plot of the same rogue wave

PLA 375, 2999 (2011)



Dissipative rogue waves: model

Model of the fiber laser

Pulse propagation in EDF:

€ 

iy z +
D

2
y tt + G2 y

2
y =

igo

1+ Q /Qsat

y + b2y tt( )

Where the total energy is

€ 

Q = y
-¥

¥

ò
2

dt

Transfer function of saturable absorber:

€ 

iy z +
D

2
y tt + y

2
y = 0

Pulse propagation in SMF:

€ 

T = T0 + DT
I(t)

Isat + I(t)
where I(t) = y (t)

2

A dissipative system is the one with
continuous pump and losses in the 
Sense introduced by Prigogine. 
In other words,  it is a system far 
from equilibrium.

A few samples of output radiation
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Pulse evolution when Qsat= 3 Pulse group evolution when Qsat= 60



Dissipative solitons with energy and matter flows: 
fundamental building blocks for the world of living organisms
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Dissipative rogue waves: numerical results

A sample of output radiation

Two round trips containing 
    the highest amplitude

Bifurcation diagram



Dissipative solitons with energy and matter flows: 
internal balances
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Energy flow j(x) (green dashed curve), energy 
distribution (x) (red curve) and density of ρ
energy generation p(x) (blue dotted curve), 
across the stationary soliton at n = 0.15∆

Matter flow J(x) (green dashed line), matter 
distribution m(x) (red curve) and density of 
matter generation P (x) (blue dotted curve) 
across the same stationary soliton.



Dissipative rogue waves: 
Probability density functions

Probability density functions



Dissipative Rogue Waves, Experiment

PRL 108, 233901 (2012)

(a) Histogram (log-
scale) showing a large 
deviation above the 
classical distribution 
(indicated by the 
yellow dotted-line) for 
6.8 millions of trace 
events. RW events are 
observed at the level of 
up to 3 times the SWH. 
(b) Optical spectrum. 
(c) Optical 
autocorrelation trace, 
with a close-up view of 
the central coherence 
peak (inset).
(d) Stroboscopic 
recording showing the 
intracavity evolution 
over successive 
roundtrips around a 
rogue wave event.

(Left)  Comparison between 
narrow (a) 200 MHz and wide 
(b) 20 GHz electronic 
bandwidth analysis of the
same sequence of laser output 
pulse events. Insets: One pulse 
event is magnified in both 
cases.

(Above) (a) Optical intensity 
record of a chaotic bunch of 
pulses (b) Optical spectrum 
(c) Histogram (log-scale) 
showing the distribution of 
the optical intensity maxima 
for 4.9 millions of trace 
events. SWH is 41.9 mV

(Left)  (a) Fiber laser 
experimental setup. 

(b) Temporal trace of 
a stationary bunch of 
pulses circulating at 
the fundamental 
cavity repetition rate 
of 17.2 MHz. 

(c) temporal magni-
fication of the 1-ns-
long bunch using a 
20-GHz oscilloscope 
with a 45-GHz 
photodiode.
 
(d) Optical spectrum.



FPU Recurrence and Cherenkov radiation
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FPU Recurrence and radiation

Spectral output for a propagation distance 
z=20, 3=0.01 and for various values of 2. β β
The two sidebands are related to modulation 
instability, while the additional spectral band 
on the right represents the resonant radiation.

Spectral output for a propagation 
distance z=20, 2=1 as a function of 3 β β

Soto-Crespo, Ankiewicz, Devine  and Akhmediev, JOSA B 29, 1930 (2012)
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Soto-Crespo, Ankiewicz, Devine  and Akhmediev, JOSA B 29, 1930 (2012)

Recurrence spectrum of the NLSE with small TOD, β3=0.01, and 
β2=1. The resonant radiation that can be seen on the r.h.s. of the 
spectrum  is indicated by the dashed blue line. Its influence is negligible 
until the radiation grows to higher amplitudes and distorts the initially 
symmetric AB spectrum. However, this distortion occurs at very long 
propagation distances. The two red vertical lines show the limits of the 
modulation instability region (±2). The initial condition contains only a 
single pair of sidebands at the maximum growth rate ω=sqrt(2). The 
periodicity is preserved on propagation by imposing periodic boundary 
conditions, such that the whole spectrum remains discrete.

The TOD is higher: β3=0.02. Resonant radiation is now closer 
to the pump.  It hardly influences the first recurrence, but due to 
the FWM through the pump, the resonant radiation appears 
almost symmetrically on the left-hand-side of the spectrum. 
Moreover, an additional ``sideband" of the resonant radiation 
appears at an equal distance on the right-hand-side of the 
spectrum. The asymmetry between the lhs. and rhs of the 
spectrum is due to the delay in the transfer of the spectral energy 
to the left-hand-side of the spectrum.
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The TOD is further increased to β3=0.04. The resonant radiation (shown 
by the blue dashed line) is now much closer to the pump, but is still out of 
the instability band shown by the red dashed lines. The four-wave mixing 
adds distortions on each side of the spectrum. The resonant radiation 
appears at higher values of the background spectrum, thus increasing its 
influence. It accumulates much faster and FPU recurrence is lost right 
from the first broadening of the spectrum. No cycles of recurrence can be 
seen here.

FPU recurrence dynamics of MI with almost perfect triangular spectrum 
of the sidebands when β3=1. The resonant frequency here is within the 
MI band. It defines the fundamental frequency of the sidebands.

Field evolution, starting with modulation instability, for three small values of TOD. 
The solid red curve is for β3=0.02, the green dotted line is for β3=0.03, and the blue 
dashed curve for β3=0.04. Up to z=12, the three curves almost coincide. Multiple 
recurrence is clearly seen at the initial stages of evolution for the smallest values of 
β3. Increasing the TOD parameter causes the periodic behavior to deteriorate.
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Optical field evolution, starting with modulation instability for three 
larger values of TOD: the red solid line stands for β3=0.3, the green 
dotted line for β3=0.4 and the dotted blue line for β3=0.5. 
Recurrence, which was lost for small values of β3, starts to be seen 
again for larger values of TOD, namely  for β3> 0.3.

Recurrent trajectories of MI dynamics for  β3=0 (green 
curve), β3=0.02 (red curve) and β3=1 (blue curve).



The END
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