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Abstract

We study amplitudes of six-wave interactions for compact 1-D Zakharov equation.
It was found that six-wave amplitude is not canceled for this equation. Thus, 1-D
Zakharov equation is not integrable.
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1 Introduction

The work described here is motivated by remarkable fact regarding two-
dimensional free surface hydrodynamics - four-wave interaction coefficient van-
ishes on the resonant manifold

k4 ky =k + ks,
Wi +wk1 :ka +wk3.

This cancellation was derived in [1] and brought the hypothesis of integrabil-
ity of 2-D free surface hydrodynamics. Also the cancellation allows to consider
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surface waves moving in the same direction only. Namely, if initial state con-
sists of such waves, evolution equation keeps this property. In this article we
study the problem of integrability in more details.

So, we consider two-dimensional potential flow of an ideal incompressible fluid
with a free surface in a gravity field fluid which is described by the following
set of equations:
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here n(z,t) - is the shape of a surface, ¢(z, z,t) - is a potential function of the
flow and g - is a gravitational acceleration. As was shown in[2] these equations

are Hamiltonian with respect to variables n(x,t) and (z,t) = ¢(z, z,t)
z=1
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a oy E

Here H = K + U is the total energy of the fluid with the following kinetic and
potential energy terms:
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Hamiltonian can be expanded in infinite series of characteristic wave steepness
knr << 1 and we consider this series up to the fourth order:
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Applying canonical transformation along with introducing normal complex
variable b(x,t) Hamiltonian (1.1) transforms to the equivalent compact form

| - A
H = [vabdc+ 5 [P [%(bb’* — ) — ko] de (1.2)

Here V' = %, wr = v/ gk and k - modulus k operator. All the details of this

transformation can be found in [3].



For Fourier harmonics Hamiltonian can be written as following
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Here
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0 - functions in (1.4) is the manifestation of waves moving in the same direc-
tion. Corresponding evolution equation is the following:

by
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Below we will analyze this equation from the point of view of its integrability.

2 Scattering matrix for compact equation

For further consideration we introduce ¢ () in a following way:
bk (t) = Ck(t) e_i“kt .
Then equation (1.5) can be rewritten as

i (t) = / TiRL e () cry () oy (8) €/ n TRk =k )5 (o 4 foy — Koy — ki) dhoydhadis

(2.6)
and rewrite it in the Picard form (e > 0)
ex(t) = ¢ —i lim / dt / TR Gt ()i (£)ca (£) R0 02—k (e ey ey dkadhs
(2.7)

This equation can be solved by iterations:

cr = c/l(€ ) 4+ c/l(€ )(t) + c,(f)(t) + ... g)) = ¢(—00)

Following [4] we introduce a so-called formal scattering matrix for the equation

(2.7) for

- _ . + o .
Cp = t—lgiloo cx(t), = t—ilir—ll—oo cx(t).



¢, = Sler] (2.8)

So far as (2.6) has only four-wave vortex, scattering matrix has the form:
S[CI;] = C]; + SQQ[C];] + 533[(3]; + ... (29)

Element Sy has already been calculated in [6]. In spite of it has logarithmic
divergence (it is why scattering matrix is formal) , it does not produce "new”
wave vectors as should be in the integrable systems. Below we will calculate
Ss3. Performing two iteration of (2.7) one can get for ¢, )(t).
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Performing second iteration one can get:
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Here TPP2bs is equal to:
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Element TPP2Ps is the kernel of six waves element of scattering matrix Sss.
Symbolically in can be represented as 9 diagrams, given in the Appendix. Now

we calculate 6-waves element T;’ll;;%ff on the resonant manifold

PL+pP2+pP3s=q +q+qs
Wp, + Wpy + Wpy = Wq, + Wgy + Wey

On this manifold expression for T?'22P3 can be simplified:
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Manifold can be parametrized using three parameters \, «, and [ as following
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Plugging w;, p; and ¢; for different values of A, a;, and 8 one can check that

Q“P1p2p3 §£ 0'

919243

This is the proof of nonintegrability of compact 1-D Zakharov equation.

Note, that if consider above theory for Nonlinear Schrodinger Equation for
which

Tk =1, wy = k?
simple calculations end up with TPP2Ps = (), as it must be for integrable
system.

3 Conclusions

Compact 1-D Zakharov equation (1.5), or equivalent system with Hamiltonian
(1.1) is nonintegrable system. However the question about integrability of fully
nonlinear system (1.1) is still unclear. Exact equation has his own six wave
term which could make total six wave coefficient changed.
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