‘(—.QC’.M %
T}'L-Q_O*"L\& o.% WeG e = uibuliney

on  6H ov  SH

s — = 2.
ot ov’ ot on (2:8)
After non-symmetric Fourier transform,
: 1 ;
_ : ikr . —ik
W(r) = f\If(k) e ik, W(k) = W/w(r)e " dr, (2.9)
equation (2.8) reads: )
on 6H oU oH
ot " 8U BT e (2:10)
~ 1
H:WHZHO—FHl"FHQ-I--'- (2.11)
In [41, 42] was shown that Hamiltonian A can be expanded in Taylor series in
powers of 7:
1
Hy = 5/{7€|‘I’kl2 +9g |771-c|2} dk
1 > ey e
= / LO(kt, ko) Uy Uiymiy S(k1 + Fp + B3) b dep dbis (2.12)

1 .
Hy = 5 /L(z) (kl: kZ: k31 k4)lIIk1 q’kﬁkﬂmﬁ(h + ko + ks + k4) dkldk277k377k4

LW (ky, k2) = — (1, ka) — |kr | o] (2.13)
L) (ky, by, ks, oa) = % (v |la {~2[k1| = 2[ka| + |1 + k| + [y + Fal + |2 + ks| + k2 + Kal}
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Let us denote the new variables as &, R. In new variables the cubic terms in
the Hamiltonian vanish and one can introduce the normal variables bk,

(%) Y et
(%)1/4 (b — bp)- (2.14)

In new variables equation (2.10) takes form

I

Sl- sl

&k

Ry =

oby | . 0H _

M g9 2,
5 +iaw 0, (2.15)

where the Hamiltonian is expressed as

~

& 1
H = fwk bk bk dk + Z /Tk1k2k3k4 bzl b;;:z b iy X
X5(k1 + ko — ks — k4) dkq dks dks dk4, (2.16)

and the coupling coefficient Ti, k, kaks satisfies the symmetry conditions:

Tk aks = Dk, kska = Dhrka, kaks = Thokafika- (2.17)
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The explicit expression for T is complicated (32, 42]:

i e .
Tig34 = 2 (T12,34+T21,34),

By = g
12,84 2 (kykgksks) /4

5 4 1
—2(w1 + w2)? |wawy ((ky - Fo) — Kk +wiwa( (ks - ka) — ksky )| —
(1 + w2)? wseoa (B - Rz) ~ o) + cores ((Fs - Ba) sht)
1
P
| 5 o 5 1
—2(w1 — wy)? [wzws ((Fﬁ k) + k1k4) + wiwy ((kz k3) + k2k3)J 7
+[(k1 - ka) + kg ko[ (ks - kea) + kka] + [— (k1 - kz) + Ky ks] [—(ka - k) + koky]
+[—(ky - Ba) + kuka][— (B - Fs) + koks]
k1 - k2) — kiks][(Fs - Kig) — kska]
4 2 [(
+ (wl + ws) w%+2 — (w1 + ws)?
k1 - k3) + kyks)[(ko - k) + kok
o = g [(%1 - k3) + k1ks][(k2 - kq) + koky]

wi_3 — (w1 — w3)?

+ 4(w1 - w4)2 [(El . Eﬁl{z);_fl_kiggi 'uis))z—f— ksz]}- (2-18)

{ — 12k koksky —

—2(w1 — ws)? [W2W4 (Ugl  k3) + k1k3) + wiws ((Ez k) + k2k4)]

9

Here w; = /g [k;]. Then equation (2.15) reads:

ob,, . 1
——a-?k +14 (wk by, + 5 /Tkklkzkg bzlbkzb’% 5(/4: + k1 —ky — k:g) dkldkgdk3) = (2.19)

_ q
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N\ sRhays e waRe RAQua
¢

Q_a\u_a/\,:f)vx

Al

RS . 19 (HQSQ%Q.\MQ nw

dN; "
— = Su =g’ [ [Ty aks|* 8K + k. — K — k3) 8w + wiy — Wiy — Whs) X
X(NklNksz3 + NNy Nigg — N Ni, Ny, — NkalNkE)dkldkzdk;;. (2.28)

can be found, for instance, in [41, 42]. Here

iNy 0Ny  Ow
7 - o + % V Ng (2.29)

and Ty, koks 18 & homogenous function of order 3:
3
Tt Mkx Moz ks = A Ty ks (2.30)

Simple calculation shows that Ty ke r = 1 = 2k°.
For smooth spectra Sp; can be estimated as follow:

Spp == 4wy iy Ny, (2.31)
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Consider the widely used Hasselmann equation:

oN 0w dN
ey e =2 5 2.1
9t Py 97 nl ( )
Sr;,!:Jngf | Tk, ko |2 8 (k +hey — ko — k)

X B(G)k + Wy, — W, — a)k_‘)
X (Nkl N]@Nh +Nka2Nk3
— NiNy, Ni, — NN Ni,) dky dip dis. (2.2)

Here wy = /g ktanh kH, H is the depth, Tik, koks = Tk kkoks =
Tiskskk; = Tikksk, are the coupling coefficients, and

oW =0®+2¢ [Tu Nodli @)

is the renormalized frequency.
As mentioned earlier, the nonlinear interaction term S,
can be presented in the form

Spi = By — Ty Ni, (2.4)
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where
Fy =9T32/ | Tk ot |* 8 (K + ey — kg — k3)
X S(wk + g, — @, — wk3)Nk1 Nkszf, dkqy dky dkg (25)

and I, the dissipation rate due to the presence of four-wave
processes, 1s the following:

I'x Zﬂng | Tk, gk |* 8 G + Ky — kg — ki3)

X 5(Cz)k +C()kl — Wk, — C()kg)
X (Ng, Ny, + Ni, Nr, — N, Ny,) dky diy dks. (2.6)

\—& I us g’l"b\&.a R C\\L%\\‘Q‘\v\
g Q’ :D \_Q,b @ ::\b\ Qwa

Ny =F, (3.3)

By plugging (3.3) into (3.1) we find that each particular term in Sy is diverging,
but in different terms the divergence can be cancelled, thus there is a ”window of
opportunity” for the exponent z. As a result,

Sy = g2 k3192 p(y). (3.4)

Here F(z) is a dimensionless function, defined inside interval 1 < x < 3. The
edges of the window, 1 and xg, are the subject for determination;
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Let us study the quadruplet of waves with wave vectors k, ki, ko, ks, satisfying
resonant conditions (1.12). Suppose that k1] < |k|. The three-wave resonant -
condition, B

EZ kz—l—/gg, WE = Wy + Wiy, (35)

has no nontrivial solutions, thus one of vectors k2, k3 must be small, If k3| < |k2,
then

-3

kZ = E+£1—E37

1(k, ky —F
w(kg) = \/gk (1+§L_1kz*32+”.) 3 (3.6)
and we can put |ks| = |k;|. Vectors k1,ks are small and have approximately

the same length k;. If vector % is directed along axis z, the coupling coefficient
Thykoks depends on four parameters k,k1,01,05. Here 61,65 are angles between
fc}, ks and k. Remembering that ki < k, we calculate the coupling coefficient in
this asymptotic domain. A tedious calculation presented in article [25] leads to
the following compact result:

1
Tkklkgkg =~ 51{; k"% T91,93> :
To10, = 2(cosfy + cosf3) —sin(fy — 03)(sin@; — sin 03). (3.7)
q‘"\(?\?“‘;& [\/ :NQA— N\ Ne — Qb‘t_css NE-RV (=1}

C’QM\\/O\»\,QN\;{*) N\ —  thadk wWanke @Wﬂ»“mﬂh‘lw-f 5 TQILSL \: V\&‘\:)

account the interaction between Ny and Ny only. One can see that N; satisfies the
linear diffusion equation

0 1, 9
B = s D &
8tN1 8k¢DJ

2

3.9
ok Ny, | (3.9)



where D;; is the diffusion tensor

00 2 : 27
Dyj = 2mg?/? /O dqq'7/? /O i /0 d03|T (61, 03)|? pip; N (8, )N (63,q) (3.10)

p1 =cosf; —cosf3, py=sinf; —sinly

If spectrum is isotropic and does not depend on angle 6, we get the further sim-
plification:

Dij=Déy, D="m3g [* 72 N2\ 3.1
ij = D &y, =gm " | a (2)dg. (3.11)

Taking into account (3.3), we find that diffusion coefficient D diverges at k — 0 if
x> 19/4. Thus 9 = 19/4.

Let us find behavior of function F'(z) near = = z5. In the isotopic case equation
(3.9) reads

3N1 D 8 3

If £ — 19/4, we get the following estimate:

F(x)_g 11 657% 1 1264
4 4 16 19/4—z  19/4—=z

(3.13)

To find z1, the lower end of window, we should study the influence of short
waves to the long ones. Let us suppose that |kq], [kz| > k. In the first approxima-
tion |k3| = |k|, and the resonant interaction S,; can be separated into two groups
of terms: S,; = ,5'7%) —|—S7(§) . For Sﬁ) the integrand includes product Ny, Ni,. If we
putb ki = ky, we get the following expression for the low-frequency tail of spectrum:

S?%) = 27frg'2 / |Tkk1,k1,k3 ]2 5((.() — wks) (N,zc3 — Nk) Ngl dk;. (3.14)

Notice, if [k1| > |k|, then |Tir, &y ks|? =~ k? and integrand in (3.14) is proportional
to kf NZ,. If z < 2, integral (3.14) diverges.
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The group of terms linear with respect to the high-frequency tail of spectru

is more complicated:

s@ = 2rg® Ny f | Togiaks|* Nico (N — Nia) X

X 8(wp -+ Wiy — Wk — Why) 0(F + k1 — b — Fa) dfer dkz s, (3.15)

We can perform expansion

ON

Nigy — Nigg = ps T

pi = (k — k3);. (3.16)

In the general anisotropic case the integrand is proportional to ki (pV Ng,) and
the divergence occurs if z = z; = 2. However, in the isotropic case this term,
the most divergent one, is cancelled after integration by angles. In this case we
should study quadratic terms in expansion of the integrand in powers of parameter
(P, k1)/k?. The most aggressive term appears from the expansion of §-function on
frequencies 6(wg; — Wiy 4p + Wi — wiy). Performing integration by angles we end
up with the equation

AN,

. .7 g
ot K" Ne g5 o
. - f_g,}_re, PRE = %ngsﬂ /Oo K32 Ny, dk.
0

Here E is the total energy. Thus in the isotropic case z; = 5 /2 and we get for
function F'(x) the following estimate:

525 5 1 241.86
= - = = . 18
28" 5/2—x 5/2—=x (3.18)

F
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To prove this result, let us consider that spectra are isotropic and present conser-
vation laws of energy and wave action in the differential form:

ol _ ON}, __ ap

5= 2mkwy, ot R (3.20)
k %

P 271'/ kwy, Spy dk, (3.21)
0

ON,  0Q

k

Q=2n / kSydk. (3.23)

40

Here P is the flux of energy directed to high wave numbers, while @ is the flux of
wave action directed to small wave numbers. Equations

P=PF =const, Q= Qo = const (3.24)

apparently are solutions of stationary equation Snt = 0. We will look for the
solution in the powerlike form N — ) k™%; then equations (3.24) read

F(x)

-PO = 27{'92)\3‘?;(?—_—4}- k—3(a)—4) (325)
F(z) il
= —2mg®2 )3 __T\&) _3(eey3) |
Qo 2rg°le )\ 3(@ = 26/3) k (3.26)

One can see that Py and Qp are finite only if '(4) = 0 and 7(26/ 3) = 0, moreover,
if F'(4) > 0 and F(26/ 3) < 0. We conclude that equation Sp; = 0 has the following
solutions:



1 P(] 1/3 1
O Cp(g_z_) - | (3.27)
QO 1/3 1
N — (53/_2) . (3.28)

Here ¢, ¢, are dimensionless Kolmogorov constants
3 1/3 3 1/3
e (gw F'(4)) T (:m |F'(23/6)|) |

On Figure 2 is presented the zoom of function F'(z) in vertical coordinate. The
numerics gives F'(4) = 45.2 and F”(23/ 6) = —40.4. In the area of zeros F(z) can
be approximated by parabola,

() =~ 256.8(z — 23/6)(z — 4). (3.29)

Thus we get ey 0,219, =097 | (3.31)

“In the isotropic case, the energy spectrum%i(ﬁ)ﬂﬁéﬂ?_ﬁ(:l:& can be ex-
pressed through IV,
F(w)dw = 2mwy, Ny & di, (3.32)

and the energy spectrum corresponding to solution (3.27) has the following form,
called Zakharov-Filonenko spectrum:

P 1/3 92
1
FW () = 4y, (?) T (3.33)

This spectrum was found in 1966 as a solution of equation Sy, = 0 [10]. For the
spatial spectrum
I dk = 2wy, N(k) kdk, (3.34)
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; P\ 1/3 gl/Z N
Q”:QW%(?Q 575 = hAE (3.35)

Spectra (3.27), (3.33), (3.25) are realized if we have a source of energy that ig
concentrated at small wave number and generates the amount of energy P in a
unit of time. For the spectrum (3.28), first reported by Zakharov in 1966 [34],

Ik(:Q) = 9 Cq Q1/3 k-—7/3 ~ o cq Q1/3 k2.33? (336)
g4/

F(2)(w) = drc, Q3 75

(3.37)

Spectra (3.30) and (3.36) can be realized in the case of a small source of wave
action in the high wave numbers area.

The described spectra exhaust all powerlike isotropic solutions of the stationary
kinetic equation S =0, His important to stress that thermodynamical solutions
N = const and N = ¢/kY? are not the solutions of this equation, because their
exponents z =0 and z = 1 /2 are far below the lower end of the "window of POs-
sibility” z; = 5 /2. This fact means that thermodynamics has nothing in common
with the theory of wind-driven sea.

Solutions (3.29) and (3.30) are not the unique stationary solutions of St = (.

the following form:

1/3 1/2 1) 1.1/2
(3) _ 2 | g Q k

Here L is an unknown function of one variable,

L=l at k-0, Le)-%eus 4 1o (3.39)
¢
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6. Damping due to nonlinear interaction

How must we compare S,,; and S, ?

In this section, we show that S,; is the leading term in the
balance equation (1.11). In fact, the forcing terms Sin and Sgis
are not sufficiently accurately known; thus it is reasonable to
accept the simplest models of both terms assuming that they
are proportional to the action spectrum:

Sin = Yin(k) N (k), (6.1)

Sais = — Vais (k) N (k). (6.2)

Hence
y (k) = yin (k) — Vais (k). (6.3)
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Sn+y (k) N, =0 (6.4
and present the S,; term as
St = Fr — T'x Ny. 6.5

The definitions of I'y and F; are given by equations (2.5) anc
(2.6).
The solution of stationary equation (6.4) is the following

Tv— v
A positive solution exists if 'y > 9. The term I'y can b
treated as the nonlinear damping that appears due to four-wavi

interaction. This damping has a very powerful effect
A ‘naive’ dimensional consideration gives

Ni

(6.6

4y g?
Ty ~ 2 plO N2, 6.7
Wy,
however, this estimate works only if k >~ k,, with k, being the
wave number of the spectral maximum.
Let k > k,. Now for I'; one gets

Ty =2mg” [ | Tk ks |* 8 (@, — @k;) Ni Ni, deydle. (6.8)
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Uy =882 k2 cos?0 | k2 §2(ky) diy. (6.9)
i 1

Even for the most mildly decaying KZ spectrum, Ny ~ ~25/8,
the integrand behaves like k1_7/ S and the integral diverges. For
steeper KZ spectra, the divergence is stronger.

Let us estimate I'; for the case of a ‘mature sea’, when
the spectrum can be taken in the form

= ok —k,). (6.10)

Here E is the total energy. By plugging (6.10) into (6.9), one
gets the equation

® 3
Iy =367w (—-) 15 cos?6, (6.11)
@p

which includes a huge enhancing factor: 36 ~ 113.04. For a
very modest value of steepness, p =2 0.05, we get

3
T, ~7.06 x 1040 (3) cos24. 6.12)

wy



In the isotropic case, to find I'; for w/w, > 1 we need to
perform a simple integration over angles that yields

2 21 5
f f T3 o, 0y d6y = = (2m)%;
o Jo 1' 2

- thus instead of equation (6.11) we get
n:ﬁmﬁ%{[ k> N (k1)? dky (6.13)
0 .
or 3
- 457 w
To=—28"w|—) u. (6.14)
2 wp

Finally, assuming that
- 3 E
v

we get from equation (6.8) the following estimate for I, =
Flk:kp:

kp

Tp 9wy, (6.15)

Even in this case, we have a pretty high enhancing factor:

9 ~ 28.26. In fact, in all known models, I'y surpasses . at

least in order of magnitude even for these very smooth waves.
In the presence of peakedness

Cpies A @l © (6.16)
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_F igure 4. Split of the nonlinear interaction term Sy (central curve)
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data on y; shows that [y surpasses y, at least by an order

of magnitude. This fact is demonstrated in figure 3, where .

experimental data taken from [26] are presented.

As a result, we can conclude that S,; is the leading term
in the balance equation (1.11) and that the rear face of the
spectrum is described by the solution of equation (4.1), which
has a rich family of solutions. In particular, this equation
describes the angular spreading.

In figure 4, we demonstrate that for the nonlinear
interaction term Sui = F — TNy, the magnitudes of

constituents [, and [yw, essentially exceed their difference.,
They are one order higher than the magnitude of S,

The dominance of S,; was not apparent until now for
two reasons. Firstly, it is not correct to compare S,; and
Sin; instead, one should compare I'y and y;. Secondly, the
widely accepted models for Sy essentially overestimate the
dissipation due to white capping. As a result, the dominance
of §,; is masked. We offer an alternative model for Sy, which
will be published in a forthcoming article [27]. Preliminary
results obtained in this direction are given in [28].
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