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INTRODUCTION

In this talk | would like to illustrate that ocean waves playimportant role in the interaction
between atmosphere and ocean.

Ocean waves play a role in air-s momentum transfer and in upper ocean mixing. The
associated Stokes drift combined with the earth’s rotatsuilts in a additional force on the
mean ocean circulation: tl Stokes-Coriolis force. Also, momentum transfer and the sea
state are affected by surface currents, hence it makes seiméeduce a

three-way coupling between atmosphere, ocean circulation and surface waiiesed
result isone model for the geosphereAt ECMWEF, a first version of such a model will be
iIntroduced shortly in the ensemble prediction system arildarmonthly forecasting system.

In this context | thought it would be appropriate to revibg guestion what are the 'correct’
evolution equations for ocean and atmosphere in the presdracean waves. This is basically
a wave, mean-flow interaction problem and | will concentreee mainly on the
Stokes-Coriolis force.
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Today, | discuss briefly the following items:

e Conservation and the surface drift

Following Phillips (1977), | introduce the subject by gigifor a rotating earth the
relevant conservation laws for the total velocity whichhie sum of the ocean velocity and
the surface drift. Next, we obtain the conservation lawtams the ocean circulation
velocity and then an additional force arises, Stokes-Coriolis force. In order to

justify these laws we need to look at the continuous momegunations.

An important role is played by th surface drift , where it is noted that the total
momentum in the surface drift equals the total momentumerStokes drift. For linear
waves the surface drift is singular!
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e Quasi-linear equations for the Ocean

In order to accommodate in an easy manner effects of thecgudiaft | will treat

alr and water as one fluid . 1 will consider arbitrary, but stable density profiles andha t
final result I will choose the appropriate density profiletthiaes surface gravity waves.
Thus, I look at internal gravity waves of which surface giawaves are a special case.

Quasi-linear approximation : In order to evaluate the effect of waves on the ocean
circulation one needs to determine the wave-induced ssassh as- (dudv) and
—(0vow). These are obtained using the linear wave solutions.

In particular, on a rotating, deep ocean there is a f transverse stress —(dvow) which
Is proportional to the cross product of the coriolis paranand the difference between
Stokes drift and surface drif Ergo , the integral over depth of this stress vanishes.
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e Impact of Stokes-Coriolis forcing

| find that in order to understand the momentum balance of ¢cotaulation the surface
drift plays an essential role. On the other hand, only carsid the ocean circulation it is
indeed true that there is a Stokes-Coriolis force. In thadstestate this force plays an
important role in the Ekman turning of the ocean current.

Additional evidence for the importance of the Stokes-O@ifmrce is given by presenting
results from 30-year simulations with the Ocean circulatitodel NEMO (Nucleus for
European Modelling of the Ocean). Systematic impact ondlessirface temperature field
Is found.
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e Upper-Ocean Mixing

Upper ocean mixing is to a large extent caused by breakirggrowaves. As a
consequence there is an energy e from atmosphere to ocean. It is given by

Poc = mpaufa

wherem depends on the sea state. Wave breaking and its associaiied penetrates into
the ocean at a scale of the significant wave hettghtin addition, Langmuir turbulence
penetrates deeper into the ocean with a scale of the typaatiength of the surface
waves.

Developed a simple scheme to model these effects and ajificetthe diurnal cycle in
SST.

This Scheme is also applied to the NEMO model. In the presensian of NEMO there
are only averaged sea state effects included, hemseonstant. Here, it is shown that
when actual sea state effects are included this will havenpact on the mean SST field.
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CONSERVATION OF MASS AND MOMENTUM

Consider an incompressible fluid (water) in a constant ggawnal field on a rotating earth.
Let the body of water with air above it be of infinite extent e thorizontal while in the
vertical it extends fronz = —D (with D the water depth) ta= n, with n(x,y,t) the unknown
surface elevation. Let us assume that the water motion isrged by the continuity equation

%erD.(pu) = 0. (1)
and the momentum equation
%pu+D.puu:—Dp+pg+puxf. (2)
These equations apply to the domaib < z < n and the boundary conditions are
z=n(Xyt): %n +U.UhN =W, p= Pa, (3)

wherep, is the given air pressure at the sea surfacel@ne- (d/dx,d/dy) is the horizontal
gradient operator.
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At the flat bottomD = Dg we impose the condition that no fluid penetrates the bottom

z=-D: w=0. (4)

Conservation laws for the mean surface elevafiand the mean horizontal velocity may

now be obtained by integration of the continuity equatiod #tre momentum equation over the
depth of the water, followed by a suitable ensemble averadihg ensemble averageg is
supposed to filter the linear gravity wave motion. Here, teamsurface elevatiofis defined
as

(=), (5)
while the mean horizontal velocity follows from
P

with h = D + ¢ the slowly varying water depth.
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Note thatP is thetotal mass flux
n
P—(/ dzpu), ™)
D

i.e., it consists of the sum of the water column m&dhand the surface layer me&¥, defined
as (Hasselmann, 1971)

{
P ([ dzpuy. P ([ dzpu). 8)

In the linear approximation the surface layer mean mass flax Ine expressed in terms of the
wave spectrunt (k)

P""ng/dkl F/c, 9)

where c is the phase speed of the gravity waved anll /k is a unit vector pointing in the
direction of the wave propagation. As a consequence, tha imadzontal velocityJ is the
sum of the ocean circulation velocity. and the wave-induced drifig, +,

U=Uc+Ugys. (10)
Note that the momentum in the mean surface drift equals teebthe Stokes drift.
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The conservation laws become (Mastenbroek et al, 1993)

%,
;¢ +0n-(hU) =0, (11)

and

a— Tb 1
ph ph

wheret, andty represent the atmospheric surface stress and the bottess.siihe radiation

stress tensds represents the contribution of the wave motions to the meaadntal flux of
horizontal momentum. In terms of the wave spectrum it carhiogva to be given by

S‘jZPg/dk{V—ijJr(V—f—%)&j}F(k)- (13)

Note that the first term corresponds to advection of wave nmbume, while the second term
consists of a combination of contributions from the wavedicet pressure and the
wave-induced stress (Phillips, 1977).

0 1 T
(——l—U.Dh) U+gDhZ+Etha= Uxf+

> .S, (12)

On a rotating earth the above result needs to be justifieceftre the need to consider the full
momentum equations.
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So far we have not encountered the Stokes-Coriolis force félce is found if one
concentrates on the ocean circulation velotltyas is common practice in oceanography.

To that end one eliminates from (12) the rate of change in tfriee wave momentum using
the energy balance equation for surface gravity waves. rélaigs

0 0

EF—F % (VgF) = Sn+ S + Siss + Soot »

whereF = F (k) is the two-dimensional wave spectrum angthe group velocity. The source
functions described the generation of waves by wiRgl) ( the dissipation of ocean waves by
e.g. wave breakingSjiss) and the energy/momentum conserving resonant four-wave
Interactions §,).

Noting that wave momentum is wave energy divided by the pbpsed of the waves, one
obtains the rate of change of total wave momentum by divithiegenergy balance equation by
the phase speert= w/k and by integration over wavenumberThe result is

0 | |
P =—pgl. [ dk 2 F+pg [ dk  (Sn S+ Siss+ Soot)- (14)
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Elimination of the wave momentum from (12) gives the follagyievolution equation for the
ocean circulation velocitiy,

0 1 Toc.a— Tocb 1
(Ewcﬂh) Ue+g0nd + - OnpPa = (ot Usir) x === 122 = L On T, (15)

and it is straightforward to rewrite the continuity equatio

9+ O (W) =~ (). (16)

Now, the Stokes-Coriolis force shows up aslthg s x f term. The reason that it shows up in
the equation for the total ocean circulation is that wave motmam evolution is not affected by
rotation on earth.

Secondly, the stress tensor simplifies to

Vg

Tij:Pg/dk (——%) jF (k). (17)

C
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Finally, the surface stress and the bottom stress are modid®ardingly. For example, the
surface stress felt by the mean circulation is the totakstneinus the net stress going into the

waVves, O,

Toca = Ta— Pg / dk | (S -+ Sul + Stiss) /C. (18)

and the bottom stress becomes

Toon = T+ PY [ dk ISt/ (19)
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THE SURFACE DRIFT PROFILE

Consider first a single gravity wave at the interface of ad aater. Suppose the surface
elevation is given by

n =acosh, 6 = kx— wt, (20)

hence, we take a wave with amplitudewavenumbek and angular frequenay which is
propagating to the right. The question now is what is in a Baeframe the mean momentum
as function of height. Clearly, since this is a periodic wave there is no mean maounen
belowz = —a or abovez = a, hence only mean momentum f@ < a will be found.

The mean momentum at heighis

p— %T Oznde ou = % _6;’0 d6 iy + g—;/ejn% d6 u,, (21)
where6, follows from
Z=acoso,
hence
8o = arccosz/a). (22)
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Here, the subscrip@andw refer to air and water, respectively. For simplicity we assu
potential flowu = d¢@/dx = kd /06 where

@v = -+cae®sing

G = _cae Ksing (23)

with ¢ = w/k is the wave speed. (Note that across the interface t@mponent of the velocity
jumps, while the vertical component is continuous), andiiean momentum becomes

p_ PatPw
It

ke(60),

or,

wa

p="
T

(Pa+ pw)sinbh, (24)

where we ignore the exp-k|z|) factor because we take weakly nonlinear waves, hence,
ka < 1.
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Now, sinfg = /1 —co< 6y = v/1— (z/a)?, and therefore the height dependence of the mean

momentum follows from
1
= 5 (patpw)wa’d(z.a), (25)

where for small amplituda the functiond(z,a) is highly localized around = 0,

d(z.a) na\/ (26)

which is normalized to 1, ief dzd(za) = 1. In particular in the limia — 0 the function
d(za) behaves like &-function and hence the surface drift becomes a surface jet:

lim P — l(paﬁrp\,\,)a)a 0(2), (27)

a—0

and one would expect that such a highly singular jet, whichtha same momentum as the
Stokes drift, should play a role in the mean momentum equstio
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SURFACE DRIFT and OCEAN CIRCULATION

Linear Theory

Starting point are the equations for an adiabatic fluid ontairgg earth, and we consider
phenomena with a speed much smaller than the sound speee, hen

Ou = 0,
0
Epu-|—D.puu = —Up+pg+puxt, (28)
0
(E—l—u.D)p = 0.

The equilibrium is given by
Up =0, g=—0&,po = Po(2),
o= p(2) = ~g [ dzpo(2 (29)

First we shall apply linear theory, which enables us to obtia¢ necessary fluxes in the mean
flow equations. The resulting fluxes will induce a mean flow\vioei shall assume that the
waves are much faster than the mean flow. In other words, maareffects on the waves can
be ignored.
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Consider a plane wave propagating in ¥a@irection so there is ng-dependence. The
perturbations are assumed to have the form

AN A A A P

(0p,ou, dv,ow,op) = (p,0,V, W, p) g% 1 cc, 6 =kx— i, (30)

where the amplitudes are still functions of heighLinearizing Eg. (28) around the
equilibrium (29) then gives

iki+W = 0,
lwd = ikp/po— TV,
il = fq, (31)
oW = gb/po+0'/po,
iwp = Wpp,

where a prime denotes differentiation with resped. to
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Combining the first and third equation of (31) we have

fW W
V= — (= —— 32
YTk YT Tk (32)
hence cross velocity and vertical velocity are in phasengia non-zero fluyog(dvow) which
produces a force orthogonal to the wave propagation dnecti

The density perturbation becomes

~ W
p=po— (33)

while from the second equation of (31) the pressure pertisnb@ecomes

f)—lﬁpoDV\/ D=1—(f/w)?. (34)

Note that in practice for surface gravity waves w, henceD — 1.
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Finally, eliminating pressure and density perturbatiamfithe fourth equation of (31) we
arrive at the Sturm-Liouville type of differential equatio

dﬂz (Po d%W) = %N 906+ @po) (35)
wherek? = k?/D, and the boundary conditions are the vanishing of the venigakity at
infinity:

W — O for |z — oo. (36)
We do not use the so-called Boussinesq approximation (igalbdensity variations except in

combination with acceleration of gravity) because, inipatar for surface gravity waves the
density gradient is large.
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The dispersion relation is obtained from (35) by multiplioa with W* and integration of the
result fromz — —oo to z— +o0. Partial integration of the LHS, and making use of the
boundary condition fow then gives

wZ/_wdzpo{]vV]2+K2]W|2} = —gKZ/_wdzp{)Wz. (37)

Considering only the case of high-frequency waves, suchrace gravity waves are, we
ignore f with respect taw in k. Then, if the density profile is stablg{ < 0) we have real
solutions for angular frequenay, a result which is well-known.
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Quasi-linear fluxes

Next, we will derive some general expressions for the reieflaxes. First, consider the stress
along the wave direction,

Tuw = —Po{OUdW) = —pp (OW* +C.C) (38)

Using (32) one finds

W
TUW - ? (39)

where?” is the Wronskian of the differential equation (35),
W — —ipg (WW —\/\ka> | (40)

If there are no critical layers the Wronskian is constanisTollows immediately by
differentiating’?” with respect t@, and using (35)

d  oia A
d—ZW = —|K2]W]2 (% +po) +cC.c, (41)

and this vanishes because for resihe term in brackets is real. Henag,, is constant and
sincew vanishes for large heights we conclude thgt vanishes.
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Remark that the vanishing af,, depends o being real. In unsteady circumstances there
will be a finite stress. Unsteadiness can be mimicked bydiicton of a slight damping in the
system of equations. In Egns. (28) we replace

0 0

everywhere, where is a small damping rate. This effectively means that andu@uencyw

IS replaced byw — ie. For complex frequency the right-hand side of (41) does antsh. As a
consequence one finds as force along the wave

ir B gk 10 ‘
oz " p 0w at
hence the force is proportional to the time derivative ofwtagical velocity (cf. Andrews and

Mcintyre, 1976). Note that for surface gravity waves, whamdensity shows a jump at= 0,
the above force is singular.

(43)
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The next flux of interest is
Tww = —Po(OVOW) = —pp(V*'W+c.C) (44)

Using (32) this may be written as
f s

Differentiating the stress with respectzand making use of the differential equation for ~
gives the important relation
2

S5t = i o [k 2] + 9 g |+ . (46)
The force given in Eq. (46) consists of two parts. The first gagiven by the term in square
brackets and is a regular function of height, because, @hn may show a jump at the
air-sea interfacgy | is continuous. For the water wave problem this will give tis¢he
us x f - force. The second part is proportional to the density gmatdiThis part is, however, of
a special nature because for the air-water prolpgrshows a jump, hengg), ~ 6(2).
Therefore, there is a very important contribution of thecévery close to the surface. Itis
important to retain thi® (z)-force, however, because of momentum conservation.
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Surface Gravity Waves

Let us now consider the special case of surface gravity wWayéaking as density profile

( Paa Z> 07
Po = X (47)

Pw, Z< 0.

\

wherep, andpy, are constants. The density radie= p;3/pw is assumed to be small.

The relevant wave-induced forces (43) and (46) can now inmegl be evaluated. One finds

iTuw = iPOUsurfa
0z ot
2t = 1o (Ustoes Ui ) (48)
where
PoUsurt = 2(Pa+ Pw) 8(2) |12, Ugokes = k|| 7e~ 2. (49)

With the identification & — athe surface momentum in (49) is found to be identical to the
mean momentum (27) from the simple considerations giverniquisly.
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It is of interest to plot the cross stresg, = 200 f w|f |2e~2Zsign(z) as function ofz.

N

R

Figure 1:Profile of cross-stress,,. For display purposes air and water density are equal.

Thus strictly speaking there is a Stokes-Coriolis forcanbotair and water!
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Many waves
So far we considered a single wave but the generalizatiomesft results to the case of many

waves with random phase is immediate. Simply rep|§¢€ by F (w)/2 with F (w) the wave
spectrum and integrate over. The surface and the Stokes drift become

PoUsurf = (Pa—+pw)o /dwa
Polgokes = 5po | do PR (w)e 2, k= o?/g (50)
0

Furthermore, the variance in the vertical velocity, retevfar the wave-induced dynamic
pressure, can be related to the wave spectrum as well as

(OWP) = /Ooo dw w’F (w)e 2. (51)
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Consequences for ocean circulation

Generalizing to the case of arbitrary wave propagatiorctior, and adding the effects of
turbulent momentum transport through the divergence oftautant stress;,, one finds as
total circulation equation

J 0
Ep (u—usurf) =—(p)+p (U_Usurf) X f+ PUgokes X f+ 0_ZTturba (52)

where
() = ~po(ow?) ~g [ dzpo (53)

Consistent with our discussion on the total column budgstihmediately evident from Eq.
(52) that there is a natural distinction between the totaleniu and the surface drifiig, +.
Furthermore, it seems natural to introduce the ocean aition velocityuc = U — Ug ¢, IN
complete agreement with the practice that has been dewkfop#he total momentum budget,
cf. Eqg. 10.
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The Stokes-Coriolis force seems to be important for themceaulation. Defining the
transport as

0
T=/ dz puc (54)

then in the steady state a result is found which deviates thenclassical Ekman spiral:

To X f
T_0><

- [ dzpusoes (55)

Using the well-known expression of the Stokes drift in teohthe wave spectrum, the final
result is

To><f
f2

In the extra-tropics the Stokes-Coriolis effect can benestied to be 30% of the total transport,
therefore this effect should be taken into account in theetiiodj of the ocean circulation.
Caveats are the steady state assumption and stratificéfieaisan the ocean which reduce
turbulent transport (compare Poltenal with Ardhuin c.s.).

T= —po/dooooF w), (56)
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Using a constant eddy viscosity model it is straightforwardhiow the impact of the
Stokes-Coriolis force on the Ekman Spiral:

2 T U U U |

— classical Ekman
— with Stokes-Coriolis

O —]

viw*
)
|
|

_ I | I | I | I | I
6-4 -2 0 2 4 6
u/w*

Figure 2: Ekman spiral for case of constant eddy viscosity. A comparis made between the classical
Ekman spiral and the case of Stokes-Coriolis forcing by glsiwave train.
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Evidence from simulations with NEMO

At ECMWF we use the NEMO ocean model. All experiments repoln@ are with a spatial
resolution of £and 75 layers in the vertical with a top-layer of 1 m. Forcis@iovided by
ERA-interim and the period is more than 20 years. Fluxes fratk formula!!

The Stokes drift induced by the ocean waves combined witlCtrelis effect gives rise to an
additional force which is to the right (left) of the wind dateon in the Northern (Southern)
Hemisphere. This has impact on the instantaneous curredtalso on the average SST in
Winter (DJF) and Summer (JJA).
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Angular difference Stokes-Coriolis forcing (ccw positive), 2009-01-31
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Figure 3:Impact of Stokes-Coriolis forcing on current direction.
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DJF difference, lev: 0 votemper fsee-fsei
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Figure 4:Impact of Stokes-Coriolis forcing on SST averaged over ae) period.
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WAVE BREAKING and UPPER OCEAN MIXING

In the past 15 years observational evidence has been pedssmut the role of wave breaking
and Langmuir turbulence in the upper ocean mixing.

Because wave breaking generates turbulence near theesurfaclayer of the order of the
wave heighHg, the turbulent velocity is enhanced by a factor of 2-3, whileagreement with
observations there is an enhanced turbulent dissipatiois.deviates from the
'law-of-the-wall’.

The turbulence modelling is based on an extension o Mellor-Yamada scheme with sea
state effects. Combined with a proper modelling of buoyaaftgcts a realistic simulation of
the diurnal cycle may be obtained. Here, the energy flux frawes to ocean column follows
from the dissipation term in the energy balance equation:

Doc = —ng/dCUde -
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(|z|+z_0)/H_S

1__ T
10 — ]
B = Neutral
7 - = Stable (L=0.76 m
B Fit to Obs
— / e -
10: | | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII:
8.0001 0.001 0.01 0.1 1

eps H_S/w*"3

Figure 5:Dimensionless dissipatiaf = eHs/ Do Versus(z+ zy)/Hs
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TKE EQUATION

The enhanced turbulent dissipation can be described irotiext of the turbulent kinetic

energy (TKE) equation. If effects of advection are ignored, TKE equation describes the rate
of change of turbulent kinetic energydue to processes such as shear production (including the
shear in the Stokes drift), damping by buoyancy, verticalgpart of pressure and TKE, and
turbulent dissipatios. It reads

de 0Us 5

10

— (O pow) + 4 — (edw) —

0z

wheree = g?/2, with g the turbulent velocityS= dU /dzandN? = gpo_ldp/o"z, with N the
Brunt-Vaisala frequencypy is the water density) p andow are the pressure and vertical
velocity fluctuations and the over-bar denotes an averagmtaker a time scale that removes
linear turbulent fluctuations. The eddy viscosities for neoam and heat are denoted gy
andvy. | usevy =1(2)q(z)Su wherel (z) is the mixing length an&,, depends on stratification.
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The turbulent production of Langmuir circulation is moeellby the second term on the
right-hand side of the TKE equation which represents woggsrest the shear in the Stokes
drift. HereUg is the magnitude of the Stokes drift for a general wave speth(w),

Us= S/ dw w’F (w)e 2, k= w?/g.
0

Although in principle the depth dependence of the Stokdsidknown it still is a fairly
elaborate expression through the above integral. In thérBsalt we will use the approximate
expression

Ug= Us(O)e_ZkS‘Z‘ ;

whereUg(0) is the value of the Stokes drift at the surface &gis an appropiately chosen
wavenumber scale.
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The dissipation term is taken to be proportional to the culibeoturbulent velocity divided by
the mixing length = k|z

Here,B is another dimensionless constant.

The pressure transport term can be determined by expyierietlelling the energy transport
caused by wave dissipation. The correlation between predisictuation and vertical velocity
fluctuation at the surface is

1/2
1l ——— Poc ® Pa 3 Pw

lw(0) = +—0 6wz:0:—:—/ s(K)dk = m=u® = m_wS,
W( ) Pw p ( ) ,OW g 0 SdIS'S( ) Pw p;_/z

whereu, is the air friction velocity whilew, is the water friction velocity which follows from

2 2
PaUy = PwW.
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and the main problem is how to model the depth dependengéediv. Assume depth scale is
controlled by significant wave heigHis;:

lw(z) = +$5p5\,\/: lw(0) x I, Tw=e18/%

where the depth scaig ~ Hg will play the role of a roughness length. Thus, the TKE edurati
becomes
3

de 0 de 0IW() dUs q
E_d—z<lqsqd—z)+ = VS + W2 z_VNZ_T()

At the surface there is no direct conversion of mechanicafgnto turbulent energy and
therefore the turbulent energy flux is assumed to vanishceélére boundary conditions
become

|qs13—(::o for  z=0,

Jde

R— f )
5y 0 or Z— 00
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STEADY STATE PROPERTIES
NEUTRALLY STABLE

The properties of the steady state version of the TKE equatere studied extensively.
Without presenting any of the details, for neutral stradiiicn the following '1/3’-rule is
found. Introducing the dimensionless turbulent veloQity- (S\A/B)l/4 x q/W; the
approximate solution of the TKE equation becomes

s
dz’

di,
Q*~1+m @K|z]d—2’ +La %k|Z

a
whereLa = (w;, /Us(0))Y?2 is the turbulent Langmuir number. So, in termsQ¥there is a
superposition principle , i.e. contributions due to wave dissipation and Langmuinulence
may be added to the shear production term.

The next graph shows the contributions of wave dissipatmahLaangmuir turbulence to the
turbulent velocity
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Figure 6: Profile of Q% according to the local approximation in the ocean columir tie@surface. The
contributions by wave dissipation (red line) and Langmurbtlence (green line) are shown as well. Fi-
nally, thew-profile according to Monin-Obukhov similarity, which isdieally the balance between shear
production and dissipation, is shown as the blue line.
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IMPACT ON DIURNAL CYCLE
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T(0.17)-T(3.5), K

Figure 7:0bserved and simulated ocean temperaidre= T (0.17) — T(3.5) at 1930’ N, 61°30’ E in the
Arabian Sea for 20 days from the 23rd of April.
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Figure 8:Comparison of simulated and observed diurnal amplitud&28a N, 61°30’ E in the Arabian
Sea for the one year period starting from 16th of October 1994
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IMPACT ON MEAN SST FIELD

The insights gained during the diurnal cycle work have besadun further developing the
NEMO ocean model. The ocean model is forced by the momentumdlthe ocean column,
while the mixing due to wave breaking now explicitely depeond the dissipation produced by
the WAM model. The Stokes drift is determined as well. Thiewvas for explicitely taking into
account the effects of Langmuir turbulence and the Stola(s force.

Specifically the momentum flux to the ocean is given by

21T [
Toc = Ta— Pug /O /O dewdB K (S + Stiss) /@, (57)

while the energy flux to the ocean reads
21T o
Doc = —pwd /0 /O dwdb s, (58)

Monthly means of these quantities are shown in the next twodm)
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OCEAN STRESS FOR 1995050100
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Figure 9: Monthly mean of momentum flux into the ocean, normalized lid monthly mean of the
atmospheric stress.
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ENERGY FLUX TO OCEAN FOR 1995050100
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Figure 10:Monthly mean of energy flux into the ocean, normalized with thonthly mean opaus.
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Impact continue

We compare the average of the SST field produced by the NEM@Imath explicit sea state
effects (hence the dimensionless dissipation fius determined by the WAM model) with a
version of NEMO wheranis given a constant value, appropriate for old wind sea.

Considerable differences in SST are found.
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Figure 11:Combined impact on SST averaged over a 20 year period.
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Figure 12:Combined impact on SST averaged over a 20 year period for dinéa Mtlantic.
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CONCLUSIONS

The Stokes-Coriolis effect seems to have important coresexgs for the upper ocean
circulations. Wave effects are felt down to the Ekman depth.

By regarding air and water as one fluid it is evident that theedso a Stokes-Coriolis
force in the atmosphere, but the importance of this for theaphere still needs to be
assessed.

The introduction of the surface drift enabled me to undesthe ocean momentum
budget in the presence of ocean waves. This drift is not aigvant because of
theoretical considerations, but is also of practical vaheording to me in a coupled
atmosphere-ocean model the surface drift is a key playéeibboundary condition for the
atmosphere.

Wave breaking enhances the upper ocean mixing and evemsatiecaverage SST field
over a 20 year period.
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Generalizing the expression for the surface drift

The result for the mean momentum of a single wave may be geregtdo the case of many
waves once the joint probability distribution function ohplitude and period of the waves is
known. To this end we start from Eq. (25). This is an equatiotaimed for a single wave train.
Without given the proof it is stated that the result (25) distds approximately for a
narrow-band wave train, i.e.

n = a(x,t)coso,

wherea is a slowly varying amplitude, while also local wavenumket 6 /dx and local
angular freguencw = —d60/dt are slowly varying functions of space and time. From now
onwards the envelope and local frequency are treated asmavariables. In practice it is
well-known that for linear wave trains the surface elevatjoobeys a Gaussian distribution.
As shown in the Appendix it is then straightforward to obtdia joint pdf of envelopa and
periodt = 211/ w. The ensemble averaged wave momentum then becomes

1 z o
(Pw) = E(Pa+Pw)/() da/O dr p(a, 1) a%w d(z a),
where the joint pdb(a, 1) follows from Eq. (A6). The relevant integrals may be evadaband
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the following simple result is obtained:

_ ~ (patpw) 1@z . _Hs
<PW>_p<uSUI’f>_ \/ZT owe 2 , 0= 47

with Hg the significant wave height and with the mean angular frequency equahtg/mg
wherem; andmg are moments of the spectrum. Hence, in contrast to the svale case, for
a spectrum of waves with random phase the profile of the wadheeed momentur®,, is a
well-behaved function of depth as it is a Gaussian with walttermined by the significant
wave height.
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